
Michigan Math. J. 48 (2000)

Determinantal Hypersurfaces

Ar naud Beauville

To Bill Fulton

Introduction

(0.1) In this paper we discuss which homogeneous form onPn can be written
as the determinant of a matrix with homogeneous entries (possibly symmetric),
or the pfaffian of a skew-symmetric matrix. This question has been considered in
various particular cases (see the historical comments that follow), and we believe
that the general result is well-known to the experts; but we have been unable to
find it in the literature. The aim of this paper is to fill this gap.

We will discuss at the outset the general structure theorems; roughly, they show
that expressing a homogeneous form F as a determinant (resp. a pfaffian) is equiv-
alent to produce a line bundle (resp. a rank-2 vector bundle) of a certain type on
the hypersurface F= 0. The rest of the paper consists of applications. We have
restricted our attention tosmoothhypersurfaces; in fact, we are particularly inter-
ested in the case when thegenericform of degreed in Pn can be written in one of
the above forms. When this is the case, the moduli space of pairs(X ,E),where X
is a smooth hypersurface of degreed in Pn and E a rank-1 or rank-2 vector bundle
satisfying appropriate conditions, appears as a quotient of an open subset of a cer-
tain vector space of matrices; in particular, this moduli space isunirational. This
is true, for instance, of the universal family of Jacobians of plane curves (Corol-
lary 3.6), and of intermediate Jacobians of cubic threefolds (Corollary 8.8).

Unfortunately, this situation does not occur very frequently: we will show that
only curves and cubic surfaces generically admit a determinantal equation. The
situation is slightly better for pfaffians: plane curves of any degree, surfaces of
degree≤ 15, and threefolds of degree≤ 5 can be generically defined by a linear
pfaffian.

(0.2) Historical Comments. The representation of curves and surfaces of
small degree as linear determinants is a classical subject. The case of cubic sur-
faces was already known by the middle of the last century [G]; other examples of
curves and surfaces are treated in [S]. The general homogeneous forms that can be
expressed as linear determinants are determined in [D]. A modern treatment for
plane curves appears in [CT]; the result has been rediscovered a number of times
since then.
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40 Ar naud Beauville

The representation of the plane quartic as a symmetric determinant goes back
again to 1855 [H]; plane curves of any degree are treated in [Di]. Cubic and quar-
tic surfaces defined by linear symmetric determinants (“symmetroids”) have been
also studied early; see [Ca]. Surfaces of arbitrary degree are thoroughly treated in
[C1], and an overview of the use of symmetric resolutions can be found in [C2].

Finally, the only reference we know about pfaffians is Adler’s proof [AR,
Apx.V] that a generic cubic threefold can be written as a linear pfaffian.

(0.3) Conventions. We work over an arbitrary fieldk, not necessarily alge-
braically closed. Unless explicitly stated, all geometric objects are defined overk.

Acknowledgments. I thank F. Catanese for his useful comments and F.-O.
Schreyer for providing the computer-aided proof of Propositions 7.6(b) and 8.9
(see Appendix).

1. General Results: Determinants

(1.1) LetF be a coherent sheaf onPn. We will say thatF is arithmetically
Cohen–Macaulay(ACM for short) if:

(a) F is Cohen–Macaulay—that is, theOx-moduleFx is Cohen–Macaulay for
everyx in Pn; and

(b) Hi(Pn,F(j)) = 0 for 1≤ i ≤ dim(SuppF )−1 andj ∈Z.

Put Sn = k [X 0, . . . ,X n] =
⊕

j∈Z H0(Pn,OPn(j)) (we will often drop the
superscriptn if there is no danger of confusion). Following EGA, we denote by
G∗(F ) theS-module

⊕
j∈Z H0(Pn,F(j)). The following well-known remark ex-

plains the terminology.

Proposition 1.2. The sheafF is ACM if and only if theS-moduleG∗(F ) is
Cohen–Macaulay.

Proof. Let U := An+1 {0}. The projectionp : U → Pn is affine and satis-
fiesp∗OU =

⊕
j∈Z OPn(j). TheS-moduleG∗(F ) defines a coherent sheafF̃ on

An+1, whose restriction toU is isomorphic top∗F . Therefore, Hi(U, F̃ ) is iso-
morphic to

⊕
j∈Z Hi(Pn,F(j)). The long exact sequence of local cohomology,

· · · −→ Hi
{0}(A

n+1, F̃ ) −→ Hi(An+1, F̃ ) −→ Hi(U, F̃ ) −→ · · · ,
implies that H0

{0}(A
n+1, F̃ ) = H1

{0}(A
n+1, F̃ ) = 0 and gives isomorphisms⊕

j∈Z

Hi(Pn,F(j)) ∼−→H i+1
{0} (A

n+1, F̃ ) for i ≥ 1.

Thus, condition (b) of(1.1) isequivalent to Hi{0}(F̃ ) = 0 for i < dim(F̃ ), that is, to
F̃0 being Cohen–Macaulay. On the other hand, sincep is smooth, condition (a) is
equivalent toF̃v being Cohen–Macaulay for allv ∈U ; hence the proposition.

Let us mention incidentally the following corollary, due to Horrocks.
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Corollary 1.3. A locally free sheafF on Pn with Hi(Pn,F(j)) = 0 for 1≤
i ≤ n− 1 andj ∈Z splits as a direct sum of line bundles.

Proof. The S-moduleG∗(F ) is Cohen–Macaulay of maximal dimension and
hence projective. It is therefore free as anS-graded module; that is, isomorphic to
a direct sumS(d1) ⊕ · · · ⊕ S(dr) [Bo, Sec. 8, Prop. 8]. SinceF is the sheaf on
Proj(S) associated toG∗(F ), it is isomorphic toOPn(d1)⊕ · · · ⊕OPn(dr).

Theorem A. LetF be an ACM sheaf onPn of dimensionn−1. Then there exists
an exact sequence

0−→
⊕̀
i=1

OPn(ei)
M−→

⊕̀
i=1

OPn(di) −→ F −→ 0. (A1)

Conversely, letM:
⊕`

i=1OPn(ei) →
⊕`

i=1OPn(di) be an injective homo-
morphism. Then the cokernel ofM is ACM and its support is the hypersurface
det M= 0.

Proof. Suppose thatF is ACM of dimensionn − 1. The Cohen–MacaulayS-
moduleG∗(F ) has projective dimension 1; by Hilbert’s theorem [Bo, Sec. 8,
Cor. 3] it admits a free graded resolution of the form

0−→
⊕̀
i=1

S(ei) −→
⊕̀
i=1

S(di) −→ G∗(F ) −→ 0, (A2)

which gives (A1) by taking the associated sheaves onPn.

Conversely, suppose we are given the exact sequence (A1). The support of
F consists of the pointsx of Pn where M(x) is not injective, that is, where
det M(x) = 0. Since M is generically injective, this is a hypersurface inPn.

For everyx ∈Pn, theOPn,x-moduleFx has projective dimension≤ 1; hence it
has depth≥ dimOPn,x −1= dimFx and thus it is Cohen–Macaulay. From (A1)
we deduce that Hi(Pn,F(j)) = 0 for 1≤ i ≤ n− 2; henceF is ACM.

(1.4) The homomorphism M is given by a matrix(mij )∈M `(S),withmij homo-
geneous of degree(di − ej ); we will use the same letter M to denote this matrix.

(1.5) LetF be an ACM sheaf onPn of dimensionn − 1. We will always take
for (A2) aminimalgraded free resolution ofG∗(F ); this means that the images in
G∗(F ) of the generators ofS(di) (1≤ i ≤ `) form a minimal system of generators
of theS-moduleG∗(F ). Such a resolution is unique up to isomorphism. The reso-
lution (A2) is minimal if and only if the matrix(mij ) is zero modulo(X 0, . . . ,X n),

that is, if and only ifmij = 0 wheneverdi = ej .
With a slight abuse of terminology, we will refer to the corresponding exact

sequence (A1) as theminimal resolutionof the sheafF .
(1.6) The minimal resolution 0→ L1 → L 0 → F → 0, with L1 =⊕`

i=1OPn(ei) and L0 =
⊕`

i=1OPn(di), is unique up to isomorphism, but this
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isomorphism is not unique in general;it is unique if max(ej ) < min(di) (in par-
ticular, in the linear case). Indeed, this condition implies that Hom(L 0,L1) = 0
and thus the map End(L 0) → Hom(L 0,F ) is injective. Hence, the only auto-
morphism of L0 that induces the identity onF is the identity. If, moreover, every
automorphism ofF is scalar, then we see that the only pairs of automorphisms
(P,Q)∈Aut L 0 × Aut L1 such that PM= MQ are the pairs(λ, λ) for λ∈ k∗.
(1.7) In this paper we will mainly use Theorem A in the following way. We will
start from an integral (usually smooth) hypersurface X and a vector bundle E of
rankr on X; then we will still say that E is ACM if it is so as anOPn -module, that
is, if H i(X ,F(j)) = 0 for 1≤ i ≤ n− 2 andj ∈Z. For such a sheaf, Theorem A
provides a minimal resolution (A1); localizing at the generic point of X and using
the structure theorem for matrices over a principal ring yields det M= Fr , where
F= 0 is an equation of X. This gives the following corollary.

Corollary 1.8. Let X be a smooth hypersurface inPn given by an equation
F= 0.

(a) Let L be a line bundle onX , with Hi(X ,L(j)) = 0 for 1≤ i ≤ n− 2 and
all j ∈Z. ThenL admits a minimal resolution

0−→
⊕̀
i=1

OPn(ei)
M−→

⊕̀
i=1

OPn(di) −→ L −→ 0

with F= det M.
(b) Conversely, letM = (mij ) ∈ M `(S), with mij homogeneous of degree

(di − ej ) and F = det M. Then the cokernel ofM:
⊕`

i=1OPn(ei) →⊕`
i=1OPn(di) is a line bundleL on X with the foregoing properties.

(1.9) The apparent generality of this corollary is somewhat misleading: taking
for L the line bundleOX(j) gives rise to the trivial casè= 1,M = (F). Thus, if
Pic(X ) is generated byOX(1) then the hypersurface cannot be defined by à× `
determinant with̀ > 1. So interesting situations occur only for curves and sur-
faces. In particular, we infer from the Noether–Lefschetz theorem that the generic
hypersurface of degreed in Pn can be expressed in a nontrivial way as a determinant
only if n = 2 orn = 3 andd ≤ 3. On the other hand, we will see in (3.1) and (6.4)
that any smooth plane curve or cubic surface can be defined by a linear determinant.

(1.10) Conversely, given integersei anddj, one may ask whether a general ma-
trix (mij ) ∈M `(S) with degmij = di − ej defines a smooth curve or surface. If
we order the numbersei, dj so thate1 ≤ · · · ≤ e` andd1 ≤ · · · ≤ d`, a sufficient
condition is the inequalitydi > ei+1 for 1≤ i < `. Indeed, we can consider the
matrix

M =


F1 G1 0 · · · 0
0 F2 G2 · · · 0
...

. . .
. . .

...

0 F̀ −1 G`−1

G` 0 · · · 0 F̀

,
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where the entries are product of linear forms. Then det M can be written in the
form

∏
L i +

∏
Pi , where Li and Pj are arbitrary linear forms. In this way we ob-

tain, for instance, the Fermat hypersurface
∑

X d
i = 0 in P2 or P3. (If char(k) | d,

consider the surface X0(X
d−1
0 + X d−1

1 )+ (X1+ X2)(X
d−1
2 + X d−1

3 ) = 0.)
The integersei, dj that occur in the minimal resolution are determined by the

S-moduleG∗(F );we will see some examples in the next sections. We will be par-
ticularly interested in the case where the entries(mij ) are linear forms; in this case
we will say for short that the matrix M islinear. There is a handy characterization
of the sheaves which give rise to linear matrices, as follows.

Proposition 1.11. LetF be a coherent sheaf onPn. Then the following condi-
tions are equivalent:

(i) there exists an exact sequence

0−→ OPn(−1)` −→ O `
Pn −→ F −→ 0;

(ii) F is ACM of dimensionn− 1, and

H0(Pn,F(−1)) = Hn−1(Pn,F(1− n)) = 0.

Proof. In view of Theorem A the implication (i)⇒ (ii) is clear, so assume that
(ii) holds. Then Hi(Pn,F(−i)) = 0 for i ≥ 1; that is,F is 0-regular in the sense
of Mumford [Mu, lec. 14]. Again by [Mu], this implies thatF is spanned by its
global sections and that the natural map

H0(Pn,F(j))⊗ H0(Pn,OPn(1)) −→ H0(Pn,F(j +1))

is surjective forj ≥ 0. Since H0(Pn,F(−1)) = 0, this means that the multipli-
cation mapS ⊗k H0(Pn,F ) → G∗(F ) is surjective, and therefore the minimal
resolution ofF takes the form

0−→
⊕̀
i=1

OPn(ei)
M−→ O `

Pn
p−→ F −→ 0

with ` = dim H0(Pn,F ). Since H0(p) is bijective and Hn−1(Pn,F(1− n)) = 0,
we must haveei = −1 for all i.

This result likewise can be reformulated, as follows.

Corollary 1.12. Let X be a smooth hypersurface of degreed in Pn given by an
equationF= 0.

(a) Let L be a line bundle onX with Hi(X ,L(j)) = 0 for 1≤ i ≤ n − 2 and
all j ∈ Z , and letH0(X ,L(−1)) = Hn−1(X ,L(1− n)) = 0. Then there exists a
d × d linear matrixM such thatF= det Mand also an exact sequence

0−→ OPn(−1)d
M−→ O d

Pn −→ L −→ 0.

(b) Conversely, letM be ad × d linear matrix such thatF = det M. Then the
cokernel ofM: OPn(−1)d → O d

Pn is a line bundleL on X with the foregoing
properties.
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2. General Results: Symmetric Determinants and Pfaffians

(2.1) We will now put extra data on our ACM sheaf. LetF be a torsion-free
sheaf on an integral variety X, and let L be a line bundle on X; a bilinear form
ϕ : F⊗OXF → L is said to beinvertibleif the associated homomorphismκ : F →
HomOX(F,L) is an isomorphism. We will consider forms that areε-symmetric
(ε = ±1), that is, such thattκ = εκ.

Theorem B. Assume thatchar(k) 6= 2. Let X be an integral hypersurface of de-
greed in Pn, and letF be a torsion-free ACM sheaf onX that is equipped with
an ε-symmetric invertible formF ⊗ F → OX(d + t) (t ∈ Z). ThenF admits a
resolution

0−→ L∗0(t)
M−→ L 0 −→ F −→ 0, (B1)

whereL 0 =
⊕OPn(di) andM is ε-symmetric(i.e., tM = εM).

Conversely, if a sheafF onX fits into the exact sequence(B1), then it is ACM,
torsion-free, and admits anε-symmetric invertible formF ⊗ F → OX(d + t).

Proof. Consider a minimal resolution

0−→ L1
M−→ L 0

p−→ F −→ 0

of F . Applying the functorHomOPn(∗ ,OPn(t)) gives an exact sequence

0−→ L∗0(t)
tM−→ L∗1(t) −→ Ext1OPn

(F,OX(t)) −→ 0

and the vanishing ofExt iOPn
(F,OX(t)) for i 6= 1.

Let i be the embedding of X intoPn,and putF ′ = HomOX(F,OX(d+t)). Gro-
thendieck duality provides a canonical isomorphismExt1OPn

(F,OX(t))
∼−→ i∗F ′.

Thus the above exact sequence gives a minimal resolution of theOPn -moduleF ′,
and the isomorphismκ : F → F ′ extends to an isomorphism of resolutions:

0 −−→ L1
M−−→ L 0

p−−→ F −−→ 0

B

y A

y κ

y
0 −−→ L∗0(t)

tM−−→ L∗1(t)
q−−→ F ′ −−→ 0.

Applying the functorHomOPn(∗ ,OPn(t)) leads to another commutative diagram:

0 −−→ L1
M−−→ L 0

p−−→ F −−→ 0

tA

y tB

y tκ

y
0 −−→ L∗0(t)

tM−−→ L∗1(t)
q−−→ F ′ −−→ 0.

Sincetκ = εκ, we haveq B tB = tκ B p = εq BA, which means that there exists a
map C: L0→ L∗0(t) such thattB− εA = tMC.
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SincetBM = tM tA, we have
tMCM = (tB− εA)M = t(AM )− ε(AM ) = −ε tM tCM

and thus the map A′ := A + (ε/2) tMC satisfiest(A′M) = εA′M. Moreover, we
still haveq BA′ = κ B p, so A′ is an isomorphism. We have an exact sequence

0−→ L∗0(t)
M ′−→ L 0

p−→ F −→ 0,

where M′ := A′−1 tM satisfiestM ′ = εM ′.
Conversely, starting from the exact sequence (B1), Grothendieck duality im-

plies as above an isomorphismκ : F → Hom(F,OX(d + t)); applying again the
functorHomOPn(∗ ,OPn(t)), we obtaintκ = εκ.
Remark 2.2. The result remains valid in characteristic 2 under the extra hypoth-
esis max(ej ) < min(di). Indeed, using our notation, the relationq BA = q B tB
implies then directly A= tB (1.6), and we can take M′ = A−1 tM.

Catanese pointed out that his proof [C1] for symmetric surfaces extends read-
ily to the case considered here; it has the advantage of working equally well in
characteristic 2, without the restriction on the degrees.

(2.3) Assume again that max(ej ) < min(di), and let

0−→ P∗0(t
′)

M ′−→ P0
p ′−→ F −→ 0

be another resolution (B1) ofF . Then we havet = t ′ and a commutative diagram

0 −−→ L∗0(t)
M−−→ L 0

p−−→ F −−→ 0

B

y A

y ∥∥∥
0 −−→ P∗0(t)

M ′−−→ P0
q−−→ F −−→ 0,

where the vertical arrows are isomorphisms.
We have AM= M ′B and hence, since M and M′ areε-symmetric, MtA =

tBM ′ and sotBAM = M tAB. By (1.6) this implies thattAB = λI for someλ ∈
k∗. Multiplying A by a scalar yields M′ = AM tA. Thus, allε-symmetric matrices
providing a minimal resolution ofF are conjugate under the action of Aut(L 0).

In the same way, we see that every automorphism ofF is induced by a matrix A∈
Aut(L 0) such that AMtA = λM for someλ∈ k∗.
As before, let us rephrase Theorem B in the way we will mostly use it.

Corollary 2.4. Assume thatchar(k) 6= 2. Let X be an integral hypersurface
of degreed in Pn, and letE be an ACM line bundle onX with E2 ∼= OX(d + t)
(resp., an ACM rank-2 vector bundle onX with determinantOX(d + t) ). There
exists a symmetric(resp. skew-symmetric) matrix M = (mij ) ∈M `(S), withmij
homogeneous of degreedi + dj − t, and an exact sequence

0−→
⊕̀
i=1

OPn(t − di) M−→
⊕̀
i=1

OPn(di) −→ E−→ 0;
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X is defined by the equationdet M= 0 (resp.pf M = 0). If H0(X ,E(−1)) = 0
andt = −1, then the matrixM is linear and the exact sequence takes the form

0−→ OPn(−1)rd
M−→ O rd

Pn −→ E−→ 0

with r = rk E.

Proof. By assumption, E carries anε-symmetric form E⊗ E→ OX(d + t) with
ε = (−1)r−1. Then Theorem B provides the desired minimal resolution; by (1.7),
we have F= det M if r = 1 and F2 = det M = (pf M)2 if r = 2. Moreover, if
t = −1 then we have Hn−1(X ,E(1− n)) ∼= H0(X ,E(−1))∗ by Serre duality, so
the last assertion follows from Proposition 1.11.

3. Plane Curves as Determinants

Let C be a smooth plane curve of degreed defined by an equation F= 0. We de-
note byg = 1

2(d −1)(d − 2) the genus of C. Any line bundle L on C is ACM and
hence admits a minimal resolution (A1) with det M= F.

The case of line bundles of degreeg − 1 follows directly from Corollary1.12
(applied to L(1)) to yield the following.

Proposition 3.1. (a)LetL be a line bundle of degreeg−1onCwithH0(X ,L) =
0. Then there exists ad × d linear matrix M such thatF = det M and an exact
sequence

0−→ OP2(−2)d
M−→ OP2(−1)d −→ L −→ 0.

(b) Conversely, letM be ad × d linear matrix such thatF = det M. Then the
cokernel ofM: OP2(−2)d → OP2(−1)d is a line bundleL on C of degreeg − 1
with H0(X ,L) = 0.

(3.2) Let|OP2(d )|sm be the open subset of the projective space|OP2(d )| param-
eterizing smooth plane curves of degreed. For δ ∈ Z , let J δd → |OP2(d )|sm be
the family of degree-δ Jacobians:J δd parameterizes pairs(C,L) of a smooth plane
curve of degreed and a line bundle of degreeδ on C. Finally, we denote by2d

the divisor inJ g−1
d consisting of pairs(C,L) with H0(C,L) 6= 0. It is an ample

divisor, so its complement inJ g−1
d is affine.

LetLd be the open subset of the vector space of linear matrices M∈M d(S
2) such

that the equation det M= 0 defines a smooth plane curve CM in P2. By associating

to M the curve CM and the line bundle LM := Coker
[OPn(−2)d

M−→ OPn(−1)d
]

on CM,we define a morphismπ : Ld → J g−1
d 2d. The group GL(d )×GL(d )

acts onLd by (P,Q) ·M = PMQ−1; this action factors through the quotient Gd
of GL(d )×GL(d ) by Gm embedded diagonally.

Proposition 3.3. The groupGd acts freely and properly onLd , and the mor-
phismπ induces an isomorphismLd/Gd → J g−1

d 2d.
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Proof. This is proved, for instance, in [B3, Sec. 3]; let us give a proof based on
our present methods. Let M∈Ld , (P,Q) ∈GL(d )×GL(d ), and M′ = PMQ−1.

Then det M′ = det M up to a scalar, and we have a commutative diagram

0 −−→ OP2(−1)d
M−−→ O d

P2

p−−→ LM −−→ 0

Q

y P

y yo
0 −−→ O d

P2

M ′−−→ OP2(−1)d −−→ LM ′ −−→ 0;

(3.3.a)

thus,π factors through a morphismLd/Gd → J g−1
d 2d. Conversely, if two

matrices M and M′ give rise to isomorphic pairs, then the minimal resolution of
LM and LM ′ are isomorphic and so we again have diagram (3.3.a), which shows
that M and M′ are conjugate under Gd . Thus the orbits of Gd in Ld are isomor-
phic to the fibres ofπ and hence are closed. Moreover, by (1.6) the stabilizer of
M in GL(d ) × GL(d ) reduces toGm embedded diagonally, so Gd acts freely on
Ld . This proves our assertions.

Remark 3.4. A simpler birational presentation of the quotient GL(d )\Ld/
GL(d ) (and therefore ofJ g−1

d ) is obtained as follows. LetDd be the closed
subset ofLd consisting of matrices of the form X0 I d + X1M1+ X2M2; it is iso-
morphic to an affine open subset ofM d ×M d , whereM d denotes thek-variety of
(d × d )-matrices. Then GdDd is an open affine subset ofLd , and the stabilizer of
Dd in Gd is PGL(d ) acting onM d ×M d by conjugation. We thus have an open
embeddingDd/PGL(d ) ↪→ GL(d )\Ld/GL(d ).

These quotients are of course unirational. It is a classical question to decide
whether they are rational: this would have interesting applications in algebra
(where the function field ofDd/PGL(d ) is known as the “center of the generic
division algebra”) and in geometry(Dd/PGL(d ) is birationally equivalent to the
moduli space of stable rank-d vector bundles onP2 with c1= 0 andc2 = d ). The
rationality is known only ford ≤ 4. We refer to [L] for an excellent survey of
these questions.

It is amusing to observe that the universal JacobianJ g

d is rational [B3, 3.4]:
using the rational mapJ g

d 99K Symg(P2) which maps a general pair(C,L) to
the unique element of|L|, we see thatJ g

d is birational to a projective fibre bun-
dle over the rational variety Symg(P2). Unfortunately, this does not seem to have
any implication on the more interesting question of the rationality ofJ g−1

d .

We will now determine the minimal resolution of a generic line bundle L of arbi-
trary degree on a generic plane curve. Replacing L by L(t) for somet ∈ Z , we
can assume thatg −1≤ deg L≤ g −1+ d.
Proposition 3.5. Let L be a line bundle of degreeg−1+p onC,with 0 ≤ p ≤
d. Then the following conditions are equivalent.
(i) H 0(C,L(−1)) = H1(C,L) = 0, and the natural map

µ0 : H0(C,L)⊗ H0(C,OC(1))→ H0(C,L(1))

is of maximal rank
(
that is, injective forp ≤ d

2 and surjective forp ≥ d
2

)
.
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(ii) There is an exact sequence

0−→ OP2(−2)d−p
M−→ OP2(−1)d−2p ⊕OpP2 −→ L −→ 0 if p ≤ d

2 ,

0−→ OP2(−2)d−p ⊕OP2(−1)2p−d
M−→ OpP2 −→ L −→ 0 if p ≥ d

2 ,

with det M= F.

The set of pairs(C,L) satisfying these conditions is Zariski dense inJ g−1+p
d (and

open ifk = k̄).
Proof. Assume that (i) holds. The natural maps

µj : H0(C,L(j))⊗ H0(C,OC(1))→ H0(C,L(j +1))

are surjective forj ≥ 1 because H1(C,L) = 0 [Mu]; since H0(C,L(−1)) = 0,
this means that theS2-moduleG∗(L) is generated by homogeneous elements of
degree 0 and 1. In other words, the minimal resolution of L takes the form

0−→
p+q⊕
i=1

OP2(ei)
M−→ OP2(−1)q ⊕OpP2 −→ L −→ 0

for some integerq ≥ 0 (observe that dim H0(C,L) = p by Riemann–Roch). The
vanishing of H1(C,L) and the minimality of the resolution implyei ∈ {−2,−1},
so we have

0−→ OP2(−2)d−p ⊕OP2(−1)r
M−→ OP2(−1)q ⊕OpP2 −→ L −→ 0, (3.5.a)

with r = 2p − d + q. After tensor product withOP2(1), the cohomology exact
sequence gives

q = dim Cokerµ0, r = dim Kerµ0, (3.5.b)

from which (ii) follows.
If (ii) holds, we have the exact sequence (3.5.a) withr = 0

(
if p ≤ d

2

)
or q =

0
(
if p ≥ d

2

)
. By (3.5.b),µ0 is of maximal rank; the vanishing of H0(C,L(−1))

and H1(C,L) is clear.
Let V be the vector space of matrices M appearing in (ii), and let V0 be the open

subset of matrices whose determinant defines a smooth curve; observe that V0 is
non-empty by(1.10). As in(3.3), we have a morphismπ : V0 → J g−1+p

d ; since
property (i) is open inJ g−1+p

d , it follows thatπ is dominant. The last assertion
of the proposition follows.

We just also proved the following corollary.

Corollary 3.6. The varietyJ δd is unirational for all δ ∈Z.

Example 3.7. Consider the relative JacobianJ 0
d . We haveg −1= 1

2d(d − 3),
so if d is odd thenJ 0

d is canonically isomorphic toJ g−1
d . Assumed = 2e, so

thatJ 0
d is canonically isomorphic toJ g−1+e

d . For (C,L) generic inJ g−1+e
d , the

minimal resolution of L takes the form
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0−→ OP2(−2)e
M−→ O e

P2 −→ L −→ 0;
hence, the equation of C can be written as the determinant of a matrix M∈M e(S

2)

with quadratic entries. Writing such a matrix as M= ∑
X iXjM ij, we see as

in (3.4) thatJ 0
d is birationally equivalent to the quotient ofM 5

e by GL(e) acting
by conjugation. This quotient is birationally equivalent to a vector bundle over
M 2

e/GL(e) [L]; in particular, we see that the varietyJ 0
d is rational ford = 4, 6,

or 8.

4. Plane Curves as Symmetric Determinants

By Corollary 2.4, any line bundle L on C with L⊗2 ∼= OC(s) admits a symmetric
minimal resolution. There are (at least) two interesting applications.

(4.1) Theta Characteristics. Recall that atheta characteristicon a smooth
curve C is a line bundleκ such thatκ⊗2 ∼= K C. We writeh0(κ) := dim H0(C, κ).

Proposition 4.2. Let C be a smooth plane curve defined by an equationF= 0,
and letκ be a theta characteristic onC.

(a) If h0(κ) = 0 thenκ admits a minimal resolution

0−→ OP2(−2)d
M−→ OP2(−1)d −→ κ −→ 0,

where the matrixM ∈M d(S
2) is symmetric(linear) anddet M= F.

(b) If h0(κ) = 1 thenκ admits a minimal resolution

0−→ OP2(−2)d−3⊕OP2(−3)
M−→ OP2(−1)d−3⊕OP2 −→ κ −→ 0,

with a symmetric matrixM ∈M d−2(S
2) satisfyingdet M= F and of the form

M =


L1,1 · · · L1,d−3 Q1

...
...

...

L1,d−3 · · · L d−3,d−3 Qd−3

Q1 · · · Qd−3 H

,
where the formsL ij, Qi , andH are (respectively) linear, quadratic, and cubic.

Conversely, the cokernel of a symmetric matrixM as in(a) (resp.(b)) is a theta
characteristicκ on C with h0(κ) = 0 (resp.h0(κ) = 1).

Part (a) is well known and goes back essentially to Dixon [Di]. Part (b) is stated
(without proof ), for instance, in [B1, 6.27]. Geometrically, when char(k) 6= 2,
(a) means that C is the discriminant curve of a net of quadrics inPd−1,and (b) means
that C is the discriminant curve of the quadric bundle obtained by projecting the cu-
bic hypersurface

∑
UiUjL ij +

∑
UiQi+H = 0 in the projective spacePd−1 with

coordinates U1, . . . ,Ud−3,X 0,X1,X2 from the subspace X0 = X1= X2 = 0.

Proof. Part (a) follows directly from Corollary 2.4 (applied to E= κ(1)).
Let κ be a theta characteristic on C, with h0(κ) = 1. Then H1(C, κ(1)) =

H0(C, κ(−1))∗ = 0, soG∗(κ) is generated by its elements of degree 0, 1, and 2.
In view of (2.4), the minimal resolution ofκ is of the form
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0−→ OP2(−1)q ⊕OP2(−2)p ⊕OP2(−3)
M−→ OP2(−2)q ⊕OP2(−1)p ⊕OP2 −→ κ −→ 0

for some nonnegative integersp, q. Since the resolution is minimal, the summand
OP2(−1)q in the first term is mapped intoOP2; this impliesq ≤ 1, and in factq =
0 because otherwise the nonzero section ofκ would be annihilated by some linear
form. This gives the form of the resolution (and of the matrix M) in part (b).

Assume now that char(k) = 0. (This works equally well in all characteristics6=
2, but references are lacking.) The moduli space of pairs(C, κ), where C is a
smooth plane curve of degreed andκ a theta characteristic on C, has two compo-
nents corresponding to the parity ofh0(κ) plus one special component whend is
odd, consisting of the pairs(C,OC((d − 3)/2)) [B2, Prop. 3]; a general element
(C, κ) in a nonspecial component satisfiesh0(κ) ≤ 1.

Corollary 4.3. Each component of the moduli space of smooth plane curves
with a theta characteristic is unirational.

Remark 4.4. If k is algebraically closed, then any smooth curve admits a theta
characteristic L with H0(L) = 0; this follows (via the Riemann singularity theo-
rem) from the classical fact that the theta divisor of a principally polarized Abelian
variety cannot contain all points of order 2 (see e.g. [I, Ch. IV, Lemma 11]). Thus
everysmooth plane curve can be defined by a symmetric linear determinant. Ac-
tually, every plane curve C admits such a representation: one reduces readily to
the case when C is integral; then Theorem B is applied to the sheafπ∗L, where
π : C′ → C is the normalization of C and L is a theta characteristic on C′ with
H0(C′,L) = 0. (This remark answers a question of F. Catanese.)

(4.5) Half-Periods. We assume again that char(k) = 0. Let us consider now
the moduli spaceRd of pairs(C, α), where C is a smooth plane curve of degree
d andα is ahalf-period,that is, a nontrivial line bundle on C withα⊗2 ∼= OC. If
d is odd then the map(C, α) 7→ (C, α((d − 3)/2)) gives an isomorphism ofRd

onto the above moduli space; we thus restrict to the case ofd even—say,d = 2e.
It follows then from [B2, Prop. 2] thatRd is irreducible.

Proposition 4.6. For (C, α) general inRd , the line bundleα admits a minimal
resolution

0−→ OP2(−e − 1)e
M−→ OP2(−e + 1)e −→ α −→ 0,

where the matrixM ∈ M e(S
2) is symmetric(with quadratic entries) and

det M= F.

Proof. In view of Corollary 2.4, this amounts to saying that the line bundleα(e−1)
satisfies the equivalent conditions of Proposition 3.5. As in that proposition, it suf-
fices to exhibit a symmetric matrix M∈M e(S

2) with quadratic entries such that
the equation det M= 0 defines a smooth plane curve.

Start with a symmetric linear matrix(L ij )∈M e(S) such that the curve0 defined
by det(L ij ) = 0 is smooth (such a matrix exists by Proposition 4.2). Changing
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coordinates if necessary, we can assume that0 is transverse to the coordinate axes
and does not pass through the intersection point of any two axes. Consider the
coveringπ : P2 → P2 given byπ(X 0,X1,X2) = (X2

0,X
2
1,X

2
2). The pull-back

of 0 by π is smooth by our hypotheses; it is defined by the determinant of the
symmetric matrix M= (L ij (X2

0,X
2
1,X

2
2)) with quadratic entries.

Corollary 4.7. The moduli spaceRd is unirational.

5. Plane Curves as Pfaffians

Again, any rank-2 vector bundle E on the plane curve C with determinantOC(s)

for some integers admits a skew-symmetric resolution. Let us restrict our atten-
tion to the linear case. Corollary 2.4 applied to E(1) gives the following.

Proposition 5.1. Let C be a smooth plane curve of degreed, and let E be a
rank-2 vector bundle onC with det E∼= K C and H0(C,E) = 0. ThenE admits a
minimal resolution

0−→ OP2(−2)2d
M−→ OP2(−1)2d −→ E−→ 0,

where the matrixM ∈M 2d(S
2) is linear skew-symmetric andpf M = F.

Note that the condition H0(C,E) = 0 implies that E is semi-stable.

Corollary 5.2. The moduli space of pairs(C,E), whereC is a smooth plane
curve of degreed andE is a semi-stable rank-2 vector bundle onC with determi-
nantK C, is unirational.

This is not surprising in this case, since the fibres of the projection to|OP2(d )| are
already unirational.

(5.3) Another consequence of Proposition 5.1 is that ifd ≥ 4 and M is general
enough, then the corresponding vector bundle EM = Coker M is stable and there-
fore simple; that is, End(M) = k. This means in view of (2.3) that, given three
generic skew-symmetric matrices M0,M1,M2 ∈M 2d(k), the equationstAM iA =
M i for i = 0,1,2 imply A = ±I.

6. Surfaces as Determinants

(6.1) Let S be a smooth surface of degreed in P3 defined by an equation F=
0. Let C be a curve in S and L= OS(C). Using the exact sequence 0→ L−1→
OS→ OC→ 0 and Serre duality, we see that LisACM if and only if C is projec-
tively normal inP3; that is, the restriction map H0(P3,OP3(j))→ H0(C,OC(j))

is surjective for everyj ∈ Z. Since any line bundle is of the formOS(C) after
some twist, this characterizes the ACM line bundles on S. Thus, any projectively
normal curve contained in S gives rise to an expression of F as the determinant
of a matrix M∈M k(S

3). Recall, however, that a hypersurface section of S gives



52 Ar naud Beauville

the trivial case M= (F); a curve C defined inP3 by two equations A= B = 0
produces a 2× 2-matrix M= (A B

C D

)
.

We will now restrict our study tolinear determinants.

Proposition 6.2. Let C be a projectively normal curve onSof degree1
2d(d−1)

and genus16(d−2)(d−3)(2d+1). Then the line bundleOS(C) admits a minimal
resolution

0−→ OP3(−1)d
M−→ O d

P3 −→ OS(C) −→ 0

with det M= F.
Conversely, letM ∈M d(S

3) be a linear matrix such thatdet M= F. Then the
cokernel ofM: OP3(−1)d → O d

P3 is isomorphic toOS(C), whereC is a smooth
projectively normal curve onS with the above degree and genus.

Proof. Let C be a curve on S, and put L= OS(C). A straightforward Riemann–
Roch computation shows that the given condition on the degree and genus of C
is equivalent toχ(L(−1)) = χ(L(−2)) = 0. If C is projectively normal then
the spaces H1(S,L(j)) vanish, by (6.1); therefore, the preceding condition is also
equivalent to H0(S,L(−1)) = H2(S,L(−2)) = 0. This is exactly what we need
to apply Corollary1.12.

Conversely, given a matrix M, let L = Coker M; in view of the foregoing we
need only prove that the linear system|L| contains a smooth curve. This is ob-
vious in characteristic 0, since L is spanned by its global sections. In the general
case, we first observe that the restriction of L to any smooth hyperplane section
H of S is very ample: indeed, from the resolution 0→ OP2(−1)d → O d

P2 →
L
∣∣
H → 0 we obtain H1(H,L

∣∣
H(−1)) = 0 and hence H1(H,L

∣∣
H(−x − y)) = 0

for all x, y ∈ H. It follows that the linear system|L| on S separates two points
x, y ∈S (possibly infinitely close) unless the line〈x, y〉 lies in S; in other words,
the morphismϕL : S→ Pd−1 defined by|L| contracts finitely many lines and em-
beds the complement of these lines. Then a general hyperplane inPd−1 cuts down
a smooth curve C∈ |L|.
(6.3) Under the hypotheses of Proposition 6.2, Grothendieck duality provides a
dual exact sequence

0−→ OP3(−1)d
tM−→ O d

P3 −→ L−1(d −1) −→ 0

(see the proof of Theorem B); in other words,the involutionM 7→ tM on the space
of linear matrices corresponds to the involutionL 7→ L−1(d −1) on Pic(S).

As we have already pointed out, a general form of degreed on P3 can be repre-
sented as a linear determinant only ford ≤ 3, the only nontrivial case beingd =
3. There we find the following classical result [G].

Corollary 6.4. Assume thatk is algebraically closed. A smooth cubic surface
can be defined by an equationdet M= 0,whereM is a3×3 linear matrix. There
are72 such representations(up to the action ofGL(3)×GL(3) by left and right
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multiplication), corresponding in a one-to-one way to the linear systems of twisted
cubics onS.

There are various ways of describing the set of linear systems of twisted cubics
on S: they also correspond to the birational morphisms S→ P2, or to the sets
of six lines on S that do not intersect each other. In terms of these, the involu-
tion M 7→ tM corresponds to the Schäfli involution, which associates to such a
set{`1, . . . , `6} the unique set{`′1, . . . , `′6} such that the twelve lines̀i , `′j form a
double-six; that is, they satisfỳ i ∩ `′i = ∅ and`i · `′j = 1 for i 6= j.

As a consequence, the space of pairs(S, λ), where S is a smooth cubic surface
andλ a set of six non-intersecting lines, isrational; as in (3.4), it is birational to
the quotient of(M3)

3 by the group GL(3) acting by conjugation, and we know
that this quotient is rational.

In the case of a not necessarily algebraically closed field, we find the following
result of Segre [Se].

Corollary 6.5. Let Sbe a smooth cubic surface. The following conditions are
equivalent:

(i) S can be defined by an equationdet M= 0,whereM is a3×3 linear matrix;
(ii) S contains a twisted cubic;

(iii) S admits a birational morphism toP2;
(iv) S contains a rational point and a set(defined overk) of six non-intersecting

lines.

Proof. The equivalence of (i), (ii), and (iii) follows from Proposition 6.2. The
implication (iii) ⇒ (iv) is clear. If (iv) holds, then the surface obtained from S
by blowing down the set of six non-intersecting lines is isomorphic toP2 over k̄,
contains a rational point, and hence isk-isomorphic toP2.

Corollary 6.6. A smooth quartic surface is determinantal if and only if it con-
tains a nonhyperelliptic curve of genus3 embedded inP3 by a linear system of
degree6.

Proof. The only point to check is that a curve C of genus 3 embedded inP3 by a
linear system|L|of degree 6 is projectively normal if and only if it is not hyperellip-
tic. Since H1(C,L) = 0, the projective normality reduces (using the basepoint-
free pencil trick) to the surjectivity of the restriction map H0(P3,OP3(2)) →
H0(C,L⊗2) or, equivalently (since both spaces have the same dimension), to its
injectivity. One checks that C is contained in a quadric if and only if it is hyper-
elliptic.

(6.7) There is another approach to Proposition 6.2, which we will now sketch.
Given the linear matrix M, let C be the divisor of the section of L= Coker M
corresponding to the first basis vector ofO d

P3. Using (6.3), we see easily that the
curve C is defined inP3 by the maximal minors of the matrix N obtained from M
by deleting the first row. Conversely, since C is projectively normal, it admits a
resolution



54 Ar naud Beauville

0−→
`−1⊕
j=1

OP3(ej )
N−→

⊕̀
i=1

OP3(di)
1−→ OP3 −→ OC −→ 0,

where1 is given by the maximal minors of N; with some work one finds̀= d,
e1= · · · = ed−1= −d, andd1= · · · = dd = −(d −1). It follows easily that any
surface of degreed containing C is defined by the determinant of a linear matrix
obtained by adding one row to N.

(6.8) We will not consider surfaces defined by symmetric determinants, though
this is again a classical and rich story. See [C1] or [C2] for a modern treatment.

7. Surfaces as Pfaffians

From now on we assumechar(k) = 0 (see Remark 7.3(a)).

(7.1) Again wewill restrict ourselves to the linear case—that is, to surfaces S⊂
P3 defined by an equation pf M= 0, where M is a(2d )× (2d ) skew-symmetric
linear matrix.

Let Z be a finite reduced subscheme ofPn of degreec (the degree of Z is by
definition dimk H0(Z,OZ)), and letIZ be its homogeneous ideal inSn. Then Z is
said to bearithmetically Gorensteinif the algebraR := S/IZ is Gorenstein. This
implies that there exists an integer N such that

(a) dimRp + dim RN−p = c for all p ∈Z.

The integer N is uniquely determined: it is the largest integer such that dimRN < c.

For lack of a better name, we will call it theindexof Z.
Assume thatk = k̄. By [DGO, Thm. 5], the subscheme Z is arithmetically

Gorenstein if and only if it satisfies both (a) and

(b) Z has the Cayley–Bacharach property w.r.t. the linear system|OPn(N)|; that
is, for each pointz ∈ Z, every element of|OPn(N)| containing Z z con-
tains Z.

In general, Z is arithmetically Gorenstein if and only if Z⊗k k̄ has the same
property.

Let Z ⊂ P3 be a finite arithmetically Gorenstein subscheme contained in a
surface S of degreed. Let IZ be the sheaf of ideals of Z inOS. Using the ex-
act sequence 0→ IZ → OS → OZ → 0, property (a) forp = N gives
dim H1(S, IZ(N)) = 1. Thus there exists a unique nontrivial extension (up to
automorphism)

0−→ OS −→ E−→ IZ(N− d + 4) −→ 0.

We claim that E is locally free. To check this we can assume thatk is algebraically
closed; then (b) is equivalent to H1(S, IZ′(N)) = 0 for each proper subset Z′ ⊂
Z, which implies our assertion by [GH]. We will say that E is the vector bundle
associated to Z.
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Proposition 7.2. Let Sbe a smooth surface of degreed in P3. Then the follow-
ing conditions are equivalent:

(i) S can be defined by an equationpf M = 0, whereM is a skew-symmetric lin-
ear (2d)× (2d) matrix;

(ii) S contains a finite arithmetically Gorenstein reduced subschemeZ of index
2d − 5, not contained in any surface of degreed − 2.

More precisely, under hypothesis(ii), the rank-2 vector bundleE associated toZ
admits a minimal resolution

0−→ OPn(−1)2d
M−→ O2d

Pn −→ E−→ 0;
the degree ofZ is 1

6d(d − 1)(2d − 1).

Proof. If (i) holds then the vector bundle E := Coker M is spanned by its global
sections. Let Z be the zero locus of a general section of E. Under (i) or (ii) we
have an exact sequence

0−→ OS −→ E−→ IZ(d −1) −→ 0. (7.2.a)

In view of Proposition 2.4, we have to prove the equivalence of:

(1) E is ACM and H0(S,E(−1)) = 0;
(2) Z is arithmetically Gorenstein and H0(S, IZ(d − 2)) = 0.

Toward that end, we may assume thatk = k̄. That E is locally free implies that
Z has the Cayley–Bacharach property w.r.t.|OP3(2d − 5)| [GH]. The sequence
(7.2.a) provides an isomorphism

H0(S,E(−1)) ∼−→H0(S, IZ(d − 2))

and gives rise, for eachj ∈Z , to an exact sequence

0−→ H1(S,E(j)) −→ H1(S, IZ(d −1+ j)) ∂−→ H2(S,OS(j)).

Using the exact sequence 0→ IZ → OS → OZ → 0, we can identify
H1(S, IZ(k)) with the cokernel of the restriction maprk : H0(S,OS(k)) →
H0(Z,OZ(k)); the map H0(Z,OZ(d − 1+ j)→ H2(S,OS(j)) deduced from∂
is identified by Serre duality to the transpose ofrd−4−j . Therefore, the vanishing
of H1(S,E(j)) is equivalent to Imrd−1+j = Ker trd−4−j = (Im rd−4−j )⊥, that is,
to dimRd−1+j = c − dim Rd−4−j . This proves the equivalence of (i) and (ii).

Under these equivalent conditions, we have Card Z= c2(E); this number can
be computed, for instance, using Riemann–Roch andχ(E) = 2d.

Remarks 7.3. (a) We must restrict to the characteristic 0 case because we do not
know how to prove that the zero locus of a general section of E is smooth in char-
acteristicp. The same problem occurs in higher dimension as well.

(b) As in (6.7), we could follow another approach: Using the Buchsbaum–
Eisenbud theorem [BE], one shows thatIZ is generated by the(2d−2)× (2d−2)
pfaffians extracted from a skew-symmetric linear(2d − 1)× (2d − 1) matrix N;
then X is defined by the pfaffian of the matrix

( N C
−tC 0

)
, where C is a column of

linear forms.
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Examples 7.4. For a cubic surface we have deg Z= 5 and N= 1. If k = k̄

then a subset Z is arithmetically Gorenstein if and only if any four points in Z are
linearly independent, that is, Z is in general position.

For a quartic, the subset Z should have 14 points, not be contained in a quadric,
and satisfy the Cayley–Bacharach property w.r.t.|OS(3)|.
(7.5) Observe that, for eachd, there exist smooth surfaces that are defined by
the pfaffian of a(2d )× (2d ) skew-symmetric linear matrix and therefore contain
a subset Z with the properties of the proposition. For instance, we could take M=( 0 N
−tN 0

)
, where N is a lineard × d matrix; we have pf M= det N, and we can

choose N so that the surface det N= 0 is smooth (see(1.10)). The corresponding
vector bundle E is L⊕ L−1(d − 1), where L is the line bundle Coker N; the zero
set Z of a general section of E is the intersection of two curves on S of the type
described in Property 6.2 (see also (8.3)).

We will now investigate when a generic surface of degreed can be written as a
linear pfaffian.

Proposition 7.6. Assume thatk is algebraically closed.
(a)Every cubic surface can be defined by a linear pfaffian.
(b) A general surface of degreed in P3 can be defined by a linear pfaffian if

and only ifd ≤ 15.

Proof. (a) follows from Proposition 7.2 and Example 7.4. LetSd be the variety
of linear skew-symmetric matrices M∈M 2d(S

3) such that the equation pf M= 0
defines a smooth surface inP3. Consider the map pf :Sd → |OP3(d )|. We have
dimSd/GL(2d ) = 4d(2d − 1) − 4d2 = 4d(d − 1); an easy computation gives
4d(d −1) < dim|OP3(d )| for d ≥ 16, which gives the “only if ” part of (b).

To prove the remaining part we use Adler’s method [AR, Apx. V]—namely,
we prove that the differential of pf is surjective at a general matrix M∈ Sd . As
in [AR], a standard computation shows that this is equivalent to the fact that the
vector space H0(P3,OP3(d )) is spanned by the forms XkM ij, where Mij is the
pfaffian of the skew-symmetric matrix obtained from M by deleting the rows and
columns of indexi andj. This has been checked by F. Schreyer using the com-
puter algebra system Macaulay 2: a script is provided in the Appendix.

We do not consider the proof of (b) as completely satisfactory, since it relies on
a computer checking which does not provide any clue regarding why the result
holds. The following lemma explains better the meaning of the result. Recall that
we associate to a matrix M∈ Sd the smooth surface SM defined by pf M= 0 and
the vector bundle EM := Coker

[OPn(−1)d
M−→ O d

Pn
]

on SM .

Lemma 7.7. The pfaffian mappf : Sd → |OP3(d )| is dominant if and only if
H2(SM, End0(EM)) vanishes for a generalM in Sd .

(As usual,End0(E) denotes the bundle of traceless endomorphisms of E.)
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Proof. We will restrict our attention to matrices M such that EM is simple(i.e.,
has only scalar endomorphisms). According to (2.3), this means that the only ma-
trices A∈M d(k) such that AMtA = M are±I. The matrices M with this property
form an open subsetS sd of Sd , which is non-empty by (5.3).

We consider the map pf :S sd → |OP3(d )|; its fibre at a point S∈ |OP3(d )| is the
moduli space of simple ACM rank-2 vector bundles on S with det E= OS(d −1)
and H0(S,E(−1)) = 0. A straightforward computation gives

dimSd/GL(2d ) = dim|OP3(d )| − χ(End0(EM))

= dim|OP3(d )| + dim H1(SM, End0(EM))

− dim H2(SM, End0(EM)) (7.7.a)

for any matrix M∈S sd .
If H 2(SM, End0(EM)) = 0, then the moduli space of simple vector bundles on

SM is smooth of dimension dim H1(SM, End0(EM)) at [EM]. It then follows from
(7.7.a) that pf is dominant.

Conversely, assume that pf is dominant. Let S be a generic surface of degreed;
the fibre pf−1(S) can be identified with an open subset of the moduli space of sim-
ple rank-2 bundles E on S with det E= OS(d−1) andc2(E) = 1

6d(d−1)(2d−1).
Because it is smooth, this open subset is of dimension dim H1(S, End0(E)).
Comparing with (7.7.a) gives H2(S, End0(E)) = 0.

(7.8) Assertion (b) of Proposition 7.6 is therefore equivalent to the fact that, on
a general surface S of degreed, the moduli space of ACM rank-2 vector bundles
with det E= OS(d − 1) and H0(S,E(−1)) = 0 is smooth and of theexpected di-
mension−χ(End0(E)) for d ≤ 15. We were not able to prove this directly except
in the obvious case ofd = 4, where the vanishing of H2(S, End0(E)) follows
from Serre duality.

8. Threefolds as Linear Pfaffians

(8.1) Let us first briefly recall Serre’s construction. Let X be a projective mani-
fold of dimension≥ 3, and let E be a rank-2 vector bundle on X that is spanned
by its global sections; put L= det E. Then the zero locus of a general sections of
E is a submanifold V of codimension 2 in X, and there is an exact sequence

0−→ OX
s−→ E−→ IV L −→ 0;

it follows that KV is isomorphic to(KX⊗L)
∣∣
V . Conversely, given a codimension-2

submanifold V⊂ X and a line bundle L on X such that KV
∼= (KX ⊗ L)

∣∣
V, there

exists a rank-2 vector bundle E and a sections ∈ H0(X ,E) such that Z(s) = V.
Moreover, if V is connected then the pair(E, s) is uniquely determined up to iso-
morphism. We will refer to E as the vector bundle associated to V.

Recall that a submanifold V ofPn is said to bearithmetically Cohen–Macaulay
if the sheafOV is ACM andV is projectively normal. This implies in particular
that H0(V,OV) = k, so V is connected.
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Proposition 8.2. Let X be a smooth hypersurface of degreed in Pn (n = 4 or
5). Then the following conditions are equivalent:

(i) X can be defined by an equationpf M = 0, whereM is a skew-symmetric
linear (2d)× (2d) matrix;

(ii) X contains a codimension-2 submanifoldV that is arithmetically Cohen–
Macaulay, not contained in any hypersurface of degreed − 2, and such that
KV
∼= OV(2d − 2− n).

More precisely: under hypothesis(ii), the rank-2 vector bundleE associated to
V admits a minimal resolution

0−→ OPn(−1)2d
M−→ O2d

Pn −→ E−→ 0;
the varietyV has degree16d(d − 1)(2d − 1).

Proof. If (i) holds then the vector bundle E := Coker M is spanned by its global
sections. Let V be the zero locus of a general section of E. Under (i) or (ii) we
have an exact sequence

0−→ OX −→ E−→ IV(d −1) −→ 0.

By Serre duality, E is ACM if and only if Hi(X ,E(j)) = 0 for 1≤ i ≤ n − 3;
in view of the foregoing exact sequence, this is equivalent to V being arithmeti-
cally Cohen–Macaulay. Similarly, the condition H0(X ,E(−1)) = 0 translates as
H0(X , I(d − 2)) = 0; we conclude by Corollary 2.4.

The degree of V can be deduced for instance from (7.2) by restriction to a gen-
eral 3-dimensional linear subspace.

(8.3) Note that there do indeed exist smooth threefolds and fourfolds satisfying
the equivalent conditions of Proposition 8.2. One way to see this is to consider
the vector spaceM ss

2d of skew-symmetric(2d )× (2d )matrices and the universal
pfaffian hypersurfaceXd ⊂ P(M ss

2d) consisting of singular matrices. The singular
locus ofXd has codimension 6 and consists of those matrices that are of rank≤
2d − 4. Hence, forn ≤ 5, a genericPn ⊂ P(M ss

2d) intersectsXd along a smooth
hypersurface inPn defined by the vanishing of a linear pfaffian.

(8.4) The Cubic Threefold

Proposition 8.5. If k = k̄, then every smooth cubic threefold can be defined by
an equationpf M = 0, whereM is a skew-symmetric linear6× 6 matrix.

As mentioned in the introduction, this result is due to Adler [AR, Apx.V] in the
case of agenericcubic threefold.

Proof. Let X be a smooth cubic threefold. In view of Proposition 8.2, we have to
prove that X contains a normal elliptic quintic curve. This is essentially in [MT,
Remark 4.9]; we sketch the argument since the result we need is not explicitly
stated there.

We first observe that X contains a nonnormal elliptic quintic curve C (i.e., con-
tained in a hyperplane); in fact, any smooth hyperplane section S of X contains
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finitely many 5-dimensional families of such curves (represent S asP2 blown up
at six points and consider the linear system of plane cubics passing through four
of the six points). Varying the hyperplane section gives an 8-dimensional family
of nonnormal elliptic quintic curves in S.

Let C be one of these curves. Then the normal bundle NC/V fits into an exact
sequence

0−→ OC(1) −→ NC/V −→ NC/S −→ 0,

from which one deduces H1(C,NC/V) = 0 and dim H0(C,NC/V) = 10. Therefore,
the Hilbert scheme of curves of degree 5 and arithmetic genus 0 in V is smooth
of dimension 10 at C. The general member of the component containing C is a
smooth elliptic quintic curve not contained in any hyperplane and thus projectively
normal.

(8.6) By Proposition 2.4, a rank-2 vector bundle E on X is associated to a nor-
mal elliptic quintic if and only if F= E(−1) satisfies det F= OX and H0(X ,F) =
0; since Pic(X ) = Z , this last condition means that F isstable(with respect to
OX(1)). LetMX be the moduli space of stable ACM rank-2 vector bundles on X
with trivial determinant; it is smooth of dimension 5 [MT]. By a theorem of Druel
[Dr], this is also the moduli space of stable rank-2 vector bundles on X withc1=
0 andc2 = 2`, where` denotes the class of a line in H4(X ,Z); we will not need
this result here.

Let us now vary X and consider the spaceM of pairs (X ,F), where X is a
smooth element of|OP4(3)| and F∈MX . By Proposition 8.5 we have a dominant
rational map from the space of linear skew-symmetric matrices M∈M 6(S

4) onto
the spaceM, which is thereforeunirational.

(8.7) Thanks to [MT], this has the following nice consequence. We now assume
k = C. Let |OP4(3)|sm be the open subset of|OP4(3)| parameterizing smooth
cubic threefolds. The intermediate Jacobians of cubic threefolds fit into a univer-
sal familyJ → |OP4(3)|sm. More generally, for each integerk we can define
a twisted intermediate Jacobian Jk(X ), which parameterizes 1-dimensional cy-
cles on X with cohomology classk`; this is a principal homogeneous space under
the usual intermediate Jacobian J0(X ). These spaces fit into a familyJ k over
|OP4(3)|sm;while each Jk(X ) is isomorphic to J0(X ), it is not clear thatJ k is iso-
morphic toJ. However, the class of a plane section is a canonical element in each
J3(X ), giving a section of the fibrationJ 3→ |OP4(3)|sm; this provides canoni-
cal isomorphismsJ k ∼−→J k+3 above|OP4(3)|sm. Note also that, forp ∈ Z , the

multiplication mapJ k ×p−−→ J pk is a finite étale covering, since it is so on each
fibre.

Corollary 8.8. The intermediate JacobianJ of the universal family of cubic
threefolds is unirational.

Proof. Associating to a pair(X ,F) inM, the class ofc2(F) defines a morphism
M → J 2 above|OP4(3)|sm. By [MT], this morphism is étale and hence dom-

inant; thusJ 2 is unirational. Using the mapsJ 2 ×3−→ J 6 ∼−→J, we conclude
thatJ is unirational.
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Let us now discuss the case of higher-degree threefolds.

Proposition 8.9. Assume thatk is algebraically closed. A general threefold of
degreed in P4 can be defined by a linear pfaffian if and only ifd ≤ 5.

Proof. Let us denote again bySd the space of linear skew-symmetric matrices
M ∈ M 2d(S

4) such that the equation pf M= 0 defines a smooth hypersurface
X M ⊂ P4. As before, the group GL(2d ) acts freely and properly onSd , and the
map pf :Sd → |OP4(d )| factors throughSd/GL(2d ).

An easy computation gives dimSd/GL(2d ) < dim|OP4(d )| for d ≥ 6, so a
general threefold of degree≥ 6 is not pfaffian. Ford = 4 and 5, one checks as in
Proposition 7.6 that the differential of pf at a generic matrix is surjective (see the
Appendix; ford = 4 this was also observed in [IM]).

(8.10) Exactly as in Lemma 7.7, we find that the map pf :Sd → |OP4(d )| is
dominant if and only if H2(X M, End0(EM)) = 0 for M general inSd—that is, if
the moduli space of the vector bundles we are considering on a general quartic or
quintic threefold has the expected dimension. We see in particular that there is a
finite number of ways of representing a general quintic as a pfaffian; this number
is an instance of thegeneralized Casson invariantconsidered by Thomas [T]. It
would be of course quite interesting to determine it.

9. Fourfolds as Linear Pfaffians

(9.1) Let us keep the notation of Proposition 8.9 forfourfoldsin P5. We find in
this case that dimSd/GL(2d ) < dim|OP5(d )| for d ≥ 3, so a general hypersur-
face of degree≥ 3 in P5 cannot be defined by the vanishing of a linear pfaffian
(a smooth hyperquadric can of course, since it is isomorphic to the Grassmannian
of lines inP3 in the Plücker embedding). Ford = 3, one finds dimS3/GL(6) =
dim|OP5(3)| −1.

Proposition 9.2. (a)A (smooth) cubic fourfoldX ⊂ P5 is pfaffian if and only if
it contains a Del Pezzo surface of degree5.

(b) Assumek = C. The mappf : S3/GL(6) → |OP5(3)| is generically injec-
tive. In particular, pfaffian cubic fourfolds form a hypersurface in the space of all
smooth cubic fourfolds.

The pfaffian cubics play a key role in the proof that the variety of lines contained
in a cubic fourfold is irreducible symplectic [BD]. Cubic fourfolds containing a
Del Pezzo surface of degree 5 have been considered by Fano [F].

Proof. Part (a) follows at once from Proposition 8.2, so let us prove part (b).
We introduce a 6-dimensional vector spaceV and the space Alt(V)of bilinear al-

ternate forms onV;we will view S3 as an open subset of Alt(V)6 = Alt (V)⊗k k6.

The map pf :S3→ |OP5(3)|associates to a sextuple(ϕ0, . . . , ϕ5) the hypersurface
pf
(∑

i X iϕi
) = 0. The group GL(6)acts onS3 through its action onk6; this action

commutes with the action of GL(V), and the map pf :S3/GL(V)→ |OP5(3)| is
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GL(6)-equivariant. The orbits of GL(6) in S3 correspond to 6-dimensional sub-
spaces L⊂ Alt (V); to such a subspace is associated the isomorphism class of the
cubic hypersurface XL of degenerate forms inP(L). Since the action of GL(6) is
generically free on|OP5(3)|, it is sufficient to prove that the isomorphism class of
X L determines L (up to the action of GL(V)).

The orthogonal L⊥ of L in Λ2V is 9-dimensional; the locus of rank-2 bivec-
tors inP(L⊥) is a K3 surface S of genus 8 [BD]. By [M], a general K3 surface
of genus 8 is obtained in this way, and this representation is unique: the surface S
determines the space L⊥ ⊂ Λ2V (and therefore also the space L⊂ Alt (V)) up to
the action of GL(V). So what we need to prove is thatthe cubicX L determines
theK3 surfaceS up to projective isomorphism.

We proved in [BD] that the variety F of lines contained in XL is a (complex) sym-
plectic manifold, isomorphic to the Hilbert scheme S[2] . In particular, the group
H2(F,Z) carries a canonical quadratic form, and there is a Hodge isometry

H2(F,Z) ∼−→H2(S,Z)
⊥⊕ Zδ,

where H2(S,Z) is endowed with the intersection form andδ is a class of type
(1,1) and square−2. The polarization of F given by the embedding in the Grass-
mannianG(2,6) corresponds to the class 2l − 5δ, wherel is the polarization on
S deduced from the embedding S⊂ P(L⊥).

Let L and L′ be two subspaces of Alt(V) that produce isomorphic cubics; let
(S, l ) and (S′, l′) be the corresponding polarized K3 surfaces. We then have a
Hodge isometry

ϕ : H2(S,Z)
⊥⊕ Zδ ∼−→H2(S′,Z)

⊥⊕ Zδ ′,

which maps the class 2l − 5δ to the corresponding class 2l′ − 5δ ′. Assume
that Pic(S) = Z l. Then we have Pic(S′) = Z l′, and ϕ induces an isometry
Z l ⊕ Zδ ∼−→Z l′ ⊕ Zδ ′, which maps 2l − 5δ onto 2l′ − 5δ ′; an easy computa-
tion shows that this impliesϕ(δ) = ϕ(δ ′). Thusϕ induces a Hodge isometry of
H2(S,Z) onto H2(S′,Z)mappingl to l′. By the Torelli theorem for K3 surfaces,
this implies that(S, l ) and(S′, l′) are isomorphic.

Appendix:
Hypersurfaces Are Generically Pfaffian in the Expected Range

Frank-Olaf Schreyer

We prove by a Macaulay 2 computation that a generic surface of degreed ≤ 15
in P3, as well as a general threefold of degreed ≤ 5 in P4, can be defined by the
pfaffian of a skew-symmetric 2d×2d matrix with linear entries (Propositions 7.6
and 8.9 in the text). As explained in the text, it is sufficient to prove that, for some
matrix M of this type, the space of homogeneous forms of degreed is equal to
m ·pfaffians (2d−2,M),wherem is the ideal spanned by the coordinates and
pfaffians (2d−2,M) the ideal of submaximal pfaffians of M. We compute the
dimension of the latter space at randomly chosen skew symmetric matrices over a



62 Ar naud Beauville

finite field using Macaulay 2 [GS]. The computation is within the range of contem-
porary computers. On the computer “alice” of the Mathematical Science Research
Institute at Berkeley, the following code was executed in about two hours of cpu
time. The output verifies the result.

isPrime(31991)

kk=ZZ/31991 – this is a field

randomSkewMatrix = (e,S) -> (

-- returns a rando m e x e skew symmetric matrix

-- with linear entries in the ring S

N:=binomial(e,2);

R:=kk[t 0..t (N-1)];

G:=genericSkewMatrix(R,t 0,e);

substitute(G,random(S ˆ{0},Sˆ{N:-1 }))
) -- end randomSkewMatrix

subPfaffiansViaSyzygies = (M) -> (

-- This is an alternative to the command pfaffians(2d-2,M).

-- It returns the generators of the ideal of the 2d-2 pfaffians

-- of the linear 2d x 2d skew symmetric matrix M computed

-- using the structure theorem of [B-E]:

-- Under a mild genericity condition on the submatrix M1

-- the syzygies of the 2d-1 x 2d-1 skew matrix M1 are its 2d-1

-- principal pfaffians.

-- If the computation fails, then the standard way is used.

d:=lift((rank source M)/2,ZZ);

syzygiesGivePfaffians=true; i:=0; S:=ring M;

J:=generators ideal0 S;

while syzygiesGivePfaffians==true and (i<(2*d)) do (

-- take i-th 2d-1 x 2d-1 skew submatrix

M1:=transpose((transpose(M {0..(i-1),(i+1)..(2*d-1) }))
{0..(i-1),(i+1)..(2*d-1) });

N1:=syz(M1,DegreeLimit=>d);

syzygiesGivePfaffians=((degrees source N1) == { {d } });
if syzygiesGivePfaffians==true then

J=(J|flatten(N1));

i=i+1;

);

if syzygiesGivePfaffians then (mingens image J)

else (mingens image pfaffians(2*d-1,M))

) -- end subPfaffiansViaSyzygies

isDominant=(r,d) -> (

S:=kk[x 0..x r]; M:=randomSkewMatrix(2*d,S);

J:=subPfaffiansViaSyzygies(M);
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N=syz(J,DegreeLimit=>d);

-- DegreeLimit=> d is carefully chosen to compute only

-- linear sysygies. From this the number of kk-linear

-- independent elements of degree d in the ideal

-- with generated by J can be computed:

cd=binomial(d+r,r)-(r+1)*rank(target N)+(rank source N);

cd==0) -- end isDominant

lowerBoundForDominantDegree = (r) -> (

dominant:=true; d:=2;

while dominant do

(d=d+1;dominant=isDominant(r,d););

d-1)

isDominant(5,3)

cd

time d4=lowerBoundForDominantDegree(4)

time d3=lowerBoundForDominantDegree(3)

Note that we used the method to compute pfaffians via syzygies, since this
is faster than the commandpfaffians(2*d-2,M) . The reason is that syzygy
computations are fast whereas thepfaffian command does not utilize much
special structure. For comments on the commands and the Macaulay 2 language,
refer to the on-line help.

Notice that the computation also shows that the closure of the scheme of pfaff-
ian cubic fourfolds form a hypersurface in|OP5(3)|.

References

[AR] A. Adler and S. Ramanan,Moduli of Abelian varieties,Lecture Notes in Math.,
1644, Springer-Verlag, Berlin, 1996.

[B1] A. Beauville,Variétés de Prym et jacobiennes intermédiaires,Ann. Sci. École
Norm. Sup. (4) 10 (1977), 309–391.

[B2] , Le groupe de monodromie des familles universelles d’hypersurfaces
et d’intersections complètes,Lecture Notes in Math., 1194, pp. 8–18, Springer-
Verlag, Berlin, 1986.

[B3] , Jacobiennes des courbes spectrales et systèmes hamiltoniens complète-
ment intégrables,Acta Math. 164 (1990), 211–235.

[BD] A. Beauville and R. Donagi,La variété des droites d’une hypersurface cubique
de dimension 4,C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 703–706.

[BE] D. Buchsbaum and D. Eisenbud,Algebra structure on finite free resolutions and
some structure theorem for ideals of codimension 3,Amer. J. Math. 99 (1977),
447–485.

[Bo] N. Bourbaki,Algèbre,ch. 10 (algèbre homologique), Masson, Paris, 1980.
[C1] F. Catanese,Babbage’s conjecture, contact of surfaces, symmetric determinantal

varieties and applications,Invent. Math. 63 (1981), 433–465.
[C2] , Homological algebra and algebraic surfaces,Proc. Sympos. Pure

Math., 62, pp. 3–56, Amer. Math. Soc., Providence, RI, 1997.



64 Ar naud Beauville

[Ca] A. Cayley,A memoir on quartic surfaces,Proc. London Math. Soc. 3 (1869–
71), 19–69.

[CT] R. J. Cook and A. D. Thomas,Line bundles and homogeneous matrices,
Quart. J. Math. Oxford Ser. (2) 30 (1979), 423–429.

[DGO] E. D. Davis, A. V. Geramita, and F. Orecchia,Gorenstein algebras and the
Cayley–Bacharach theorem,Proc. Amer. Math. Soc. 93 (1985), 593–597.

[D] L. E. Dickson,Determination of all general homogeneous polynomials
expressible as determinants with linear elements,Trans. Amer. Math. Soc. 22
(1921), 167–179.

[Di] A. C. Dixon, Note on the reduction of a ternary quantic to a symmetric
determinant,Proc. Cambridge Phil. Soc. 11 (1902), 350–351.

[Dr] S. Druel, Espace des modules des faisceaux semi-stables de rang 2 et de
classes de Chernc1 = 0, c2 = 2 et c3 = 0 sur une hypersurface cubique
lisse deP4. Internat. Math. Res. Notices (to appear).

[F] G. Fano,Sulle forme cubiche dello spazio a cinque dimensioni contenenti
rigate razionale del 4◦ ordine,Comment. Math. Helv. 15 (1943), 71–80.

[G] H. Grassman,Die stereometrischen Gleichungen dritten grades, und die
dadurch erzeugten Oberflächen,J. Reine Angew. Math. 49 (1855), 47–65.

[GS] D. Grayson and M. Stillman,Macaulay 2,http://www.math.uiuc.edu/
Macaulay2/.

[GH] P. Griffiths and J. Harris,Residues and zero-cycles on algebraic varieties,Ann.
of Math. (2) 108 (1978), 461–505.

[H] O. Hesse,Ueber determinanten und ihre anwendung in der geometrie, insbe-
sondere auf Curven vierter ordnung,J. Reine Angew. Math. 49 (1855), 243–
264.

[IM] A. Iliev and D. Markushevich,Quartic 3-fold: Pfaffians, instantons and half-
canonical curves,Doc. Math. 5 (2000), 23–47.

[L] L. Le Bruyn, Centers of generic division algebras, the rationality problem
1965–1990,Israel J. Math. 76 (1991), 97–111.

[MT] D. Markushevich and A. Tikhomirov,The Abel–Jacobi map of a moduli compo-
nent of vector bundles on the cubic threefold,J. Algebraic Geom. (to appear).

[M] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus≤ 10, Algebraic
geometry and commutative algebra I, pp. 357–377, Kinokuniya, Tokyo, 1988.

[Mu] D. Mumford, Lectures on curves on an algebraic surface,Ann. of Math. Stud.,
59, Princeton Univ. Press, Princeton, NJ, 1966.

[S] F. Schur,Ueber die durch collineare Grundgebilde erzeugten Curven und
Flächen,Math. Ann. 18 (1881), 1–32.

[Se] B. Segre,On the rational solutions of homogeneous cubic equations in four
variables,Math. Notae 11 (1951), 1–68.

[T] R. P. Thomas,A holomorphic Casson invariant for Calabi–Yau 3-folds, and
bundles on K3 fibrations,preprint, www.arXiv.org/math/9806111.

A. Beauville F.-O. Schreyer
DMA – École Normale Supérieure Fakultät für Mathematik und Physik
45 rue d’Ulm Universität Bayreuth
F-75230 PARIS Cedex 05 D-95440 Bayreuth
France Germany

schreyer@btm8x5.mat.uni-bayreuth.de


