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The Bergman Metric in the Normal Direction:
A Counterexample

K. Diederich & G. Herbort

1. Introduction

LetD ⊂⊂ Cn be a bounded domain. ByBD(z;X) we denote its Bergman met-
ric and bydB(z,w) the distance function associated toBD. The question of the
completeness ofD with respect todB has found much interest. Kobayashi [13;
14] proved criteria for the Bergman completeness of a bounded domainD that are
based on a representation ofdB by means of the Fubini–Study metric in the projec-
tive spaceP(H 2(D)) over the Hilbert spaceH 2(D) of all holomorphic functions
onD that are square integrable with respect to Lebesgue measure. Almost all qual-
itative completeness results for the Bergman metric were obtained by means of
this criterion (see e.g. [1; 11; 12; 16]).

Another interesting (yet more refined) method for studying the Bergman com-
pleteness ofD consists of looking for quantitative estimates fordB andBD im-
plying it. In this direction, a very general result was obtained by Diederich and
Ohsawa [8], who proved that—for those hyperconvex domains admitting a pluri-
subharmonic exhaustion functionρ satisfying

c dist(·, ∂D)m ≤ |ρ| ≤ C dist(·, ∂D)1/m
with suitable constantsc, C,m > 0—the Bergman distance grows at least like a
constant times log log(1/dist(z, ∂D)) for z sufficiently close to∂D. This result ap-
plies in particular to all finite intersections ofC2-smooth pseudoconvex domains.

Let nowD = {r < 0} be a bounded pseudoconvex domain with smooth bound-
ary and letz0 ∈ ∂D. In this paper we study the following related question on the
boundary behavior of the Bergman metricBD nearz0:

Does there exist a constantC > 0 and an open neighborhoodU 3 z0

such that, for all directionsX ∈Cn, one has the lower bound

BD(z;X) ≥ C |(∂r(z),X)||r(z)| (1)

onD ∩ U?

Here(∂r(z),X) =∑n
j=1Xj∂r/∂zj(z).

The inequality (1) has long been known to be true under certain additional hy-
potheses on the domainD. It holds for example whenz0 is strongly pseudoconvex
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(shown for the first time in [5]) or if there exists an open neighborhoodV 3 z0 and
a continuous functionF : V × (V ∩ ∂D)→ C such thatF(·, ζ) is holomorphic,
F(ζ, ζ) = 0, and ReF(·, ζ) ≤ 0 onD̄ ∩ V for anyζ ∈ V ∩ ∂D. (This condition
is, for instance, trivially satisfied on convex domains.)

If the boundary pointz0 is supposed to be of finite type in the sense of D’Angelo,
a situation where local holomorphic supporting surfaces need not exist in general,
then the question of whether (1) is satisfied is settled only in some cases: for ex-
ample, ifn = 2 (see [3]); or forn ≥ 3 if the Levi form of ∂D has at most one
degenerate eigenvalue atz0 [4; 10]. If, however, the approach of the pointz ∈D
to z0 is restricted to be nontangential, then positive results are obtained ifz0 is of
finite semiregular type (see [2; 6; 9]).

Many people have asked whether (1) holds on any bounded smooth pseudo-
convex domain, and it is often conjectured that an affirmative answer should be
possible. However, by the following theorem, the estimate (1) does not hold, in
general, on a smooth bounded pseudoconvex domainD ⊂ Cn.
1.1. Theorem. Let 1 > a > 0 be arbitrary. Then there exists a pseudoconvex
domainD ⊂⊂ C2, having smooth boundary with0∈ ∂D, that is described by a
defining functionr of the form

r(z, w) = Rew + b|w|2 + ρ(z), (2)

whereρ denotes a subharmonic function withρ(0) = 0 and whereb > 0 is suit-
ably chosen, such that:

(i) ∂D is regular, as the weakly pseudoconvex points are of the form(0, w),
wherew lies on a circle; and

(ii) there is no constantC > 0 such that

BD(z;X) ≥ C |(∂r(z),X)|
|r(z)|(log1/|r(z)|)1/1+2a

(3)

holds forz∈D ∩ U with any open neighborhoodU of 0.

The construction of the counterexample given in Section 2 is inspired by ideas of
Krantz, who indicated in [15] how to construct a smooth bounded pseudoconvex
domain inC2 for which the corresponding lower bound

FKD (z;X) ≥ C
|(∂r(z),X)|
|r(z)| (4)

does not hold for the infinitesimal Kobayashi metricFKD of D.

2. Construction of the Example

We start with the construction of the functionρ appearing in Theorem1.1. Forthis
we will modify the ingredients going into the construction of the corresponding
functionρ from [15, pp. 8, 9] in order to be able to control the Bergman kernel
function. For the reader’s convenience, we give all main details.
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2.1. Proposition. There exists onC, for any number0 < a < 1, a subhar-
monic smooth functionρ and sequences(δn)n and(rn)n tending to zero such that:

(i) for anyz∈C with |z| ≤ rn,
ρ(z) ≤ (1+ c0a

−1(n+ 1)3e−n
a

)δn + nδn
rn

Rez (5)

with an unimportant constantc0 > 0; and
(ii) the Laplacian ofρ is positive outside the origin, and all derivatives ofρ van-

ish at the origin.

Proof. Forν ≥ 100 andα < 1/48, let

wν(z) := 1

2
− 4α + Rez+ α |z|

2

ν 2
+ 1

2Cν
log(|z|2 + e−2Cν )

with
Cν = 2 log(ν +1). (6)

We proceed in five steps as follows.

Step 1: Definition of certain auxiliary functions.We define the functions

Rν(z) :=
{

max{wν(z),0} if Rez > − 1
4,

wν(z) if Rez ≤ − 1
4,

and we claim thatRν has the following properties:

(a) Rν is subharmonic;
(b) Rν(z) = 0 for |z| < 3

2e
−Cν ;

(c) Rν(z) ≤ 1+ Rez for z∈C with |z| ≤ ν + 1
2 .

For the proof of (a), we observe at first thatwν is subharmonic. Hence we need
only show that the definition ofRν is consistent. This follows from the fact that
wν(z) ≥ 0 for anyz∈C with Rez = − 1

4. Namely, for Rez = − 1
4 we have

wν(z) ≥ 1

4
− 4α − log 4

Cν
= 1

4
− 4α − log 2

log(ν +1)
≥ 0,

since
log(ν +1) ≥ log 64= 6 log 2≥ log 2

1
4 − 4α

.

For the proof of (b), letz∈C and|z| < 3
2e
−Cν . Then, in particular, Rez > − 1

4;
henceRν(z) = max{wν(z),0}. We check thatwν(z) ≤ 0. Namely:

wν(z) = 1

2
− 4α + Rez+ α |z|

2

ν 2
+ 1

2Cν
log(|z|2 + e−2Cν )

≤ 1

2
− 4α + 3

2
e−Cν + 9αe−2Cν

4ν 2
+ 1

2Cν
log

((
9

4
+1

)
e−2Cν

)
≤ 1

2
− 4α + 3

2(ν +1)2
+ 9

192ν 2(ν +1)4
−1+ log13/4

4 log(ν +1))

< 0,

sinceν was chosen sufficiently large.
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In order to prove (c), we choosez∈C such that|z| < ν + 1
2 . Then we have

wν(z)−1− Rez = −1

2
− 4α + α |z|

2

ν 2
+ 1

2Cν
log(|z|2 + e−2Cν )

≤ −1

2
+ 1

2Cν
log(|z|2 + e−2Cν )

≤ −1

2
+ 1

2Cν
log

((
ν + 1

2

)2

+ e−2Cν

)

= −1

2
+ 1

4 log(ν +1)
log

(
(ν +1)2

((
ν + 1

2

)2
(ν +1)2

+ 1

(ν +1)6

))

= 1

4 log(ν +1)
log

((
ν + 1

2

)2
(ν +1)4 +1

(ν +1)6

)
< 0,

because(
ν + 1

2

)2
(ν +1)4 +1= (ν +1− 1

2

)2
(ν +1)4 +1

= (ν +1)6− (ν +1)5+ 1
4(ν + 1)4 +1

= (ν +1)6+ 1
4(ν +1)4(1− 4(ν +1))+1

< (ν +1)6

for ν ≥ 2.
This proves (c) for allz with Rez ≤ − 1

4 and for allz with Rez > − 1
4 and

wν(z) > 0. If Rez ≥ − 1
4 andwν(z) ≤ 0, then one has trivially that 1+ Rez >

0= max{wν(z),0} = Rν(z). Hence, (c) holds in each case.

Step 2: Smoothing of the functionsRν . We fix a radially symmetric nonnega-
tive smooth functionφ1, with support in the unit discD in C, such that‖φ1‖L1 =
1. For ε > 0 we putφε(z) = ε−2φ1(z/ε). Then we define smooth subharmonic
functionsuν by

uν = Rν ? φεν , where εν = 1

4(ν +1)2
= 1

4
e−Cν . (7)

Our claim is now that

uν(z̃) = 0 if |z̃| ≤ e−Cν . (8)

Indeed, for such points̃z we have

uν(z̃) =
∫
|ζ|<εν

Rν(z̃− ζ)φεν(ζ) d2ζ = 0,

since forζ ∈ supp(φεν ) = 1
(
0, 1

4e
−Cν ) and |z̃| < e−Cν we have that̃z − ζ ∈

1
(
0, 5

4e
−Cν ), whereRν is identically zero.
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Furthermore, we have

uν(z̃) ≤ 1+ Rez̃ if |z̃| ≤ ν. (9)

Namely, one can estimate

uν(z̃) =
∫
|ζ|<εν

Rν(z̃− ζ)φεν(ζ) d2ζ

≤
∫
|ζ|<εν

(1+ Re(z̃− ζ))φεν(ζ) d2ζ(
since|z̃− ζ| ≤ ν + 1

2 for ζ ∈ supp(φεν )
)

= 1+ Rez̃,

owing to the harmonicity of̃z 7→ Rez̃.
Next we estimate the derivatives of the functionsuν. For an integerk ≥ 0, let

D(k) denote somekth-order derivative. Then one has

D(k)uν(ζ) = Rν ? D(k)φεν(ζ);
this vanishes for|ζ| ≤ e−Cν .

For any pointw, we have

|Rν(w)| ≤ |wν(w)|

≤ 1

2
+ |w| + |w|

2

ν 2
+ 2Cν + log(1+ |w|2)

2Cν
;

this follows because, for|w|2 < 1− e−2Cν , the log term can be estimated by

−2Cν ≤ log(|w|2 + e−2Cν ) ≤ 0.

Hence|log(|w|2 + e−2Cν )| ≤ 2Cν and, for|w|2 ≥ 1− e−2Cν ,

0 ≤ log(|w|2 + e−2Cν ) ≤ log(1+ |w|2).
If now ζ ∈C is arbitrarily chosen andw ∈ supp(φεν(ζ − ·)), then

|Rν(w)| ≤ 1

2
+ |w| + |w|

2

ν 2
+ 2Cν + log(1+ |w|2)

2Cν

≤ 3

4
+ |ζ| + 2

|ζ|2 + e−2Cν

ν 2
+1+ log(2+ |ζ|2)

2Cν
and therefore

|Rν ? D(k)φεν(ζ)| =
∣∣∣∣∫|ζ−w|<εν Rν(w)D(k)φεν(ζ − w) d2w

∣∣∣∣
≤
∫
|ζ−w|<εν

|Rν(w)||D(k)φεν(ζ − w)| d2w

≤
(

2+ |ζ| + 2
|ζ|2
ν 2
+ log(2+ |ζ|2)

2Cν

)
‖D(k)φεν‖L1

≤
(

2+ |ζ| + 2
|ζ|2
ν 2
+ log(2+ |ζ|2)

2Cν

)
ε−kν ‖D(k)φ1‖L1.



520 Klas Diederich & Gregor Herbort

Step 3: Scaling of theuν . For numbers 0< sν < 1 to be chosen later, we put

vν(z) = uν(z/sν).
From the considerations in Step 2, we obtain immediately that

vν(z) = 0 for |z| ≤ e−Cνsν (10)

and

|D(k)vν(z)| ≤
(

2+ |z|
sν
+ 2
|z|2
ν 2s2

ν

+ log(2+ |z/sν |2)
2Cν

)
(sν εν)

−k‖D(k)φ1‖L1 (11)

for anykth-order derivativeD(k).

If, furthermore,|z| ≤ rν := νsν, then|z/sν | ≤ ν and hence

vν(z) ≤ 1+ 1

sν
Rez = 1+ ν

rν
Rez. (12)

With the functionsvν just constructed, we can now come to the decisive step.

Step 4: Definition of the functionρ. With positive numbersδν (to be chosen
shortly and depending onsν), we put

ρ(z) =
∞∑

ν=100

δνvν(z).

Assume now that thesν andδν have been chosen such that the following require-
ments (13)–(15) are satisfied (we will show that this is indeed possible):

sn ≤ 1

n
min

100≤ν≤n−1
sνe
−Cν for n ≥ 101. (13)

For any integerk, the following series converges:
∞∑

ν=100

δν

sk+2
ν εkν

< +∞; (14)

furthermore, there is a constantc∗ > 0 such that, for anyn ≥ 100,
∞∑

ν=n+1

δν

s lν
≤ c∗ 1

a
(n+1)e−n

a δn

s ln
(15)

for l = 0,1,2.

Claim: The series with the termsδνvν converges together with all its derivatives
uniformly on compact subsets ofC.

In order to show this, we choose an arbitrary radiusR > 0. Then, from (11) we
obtain

sup
|z|≤R
|D(k)vν(z)|

≤ (εν sν)−k‖D(k)φ1‖L1

(
2+ R

sν
+ 2R2

ν 2s2
ν

+ 1

2Cν
log

(
2+ R

2

s2
ν

))
. (11a)
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From (14), we conclude that the series
∞∑

ν=100

δν sup
|z|≤R
|D(k)vν(z)|

converges. In particular, it now follows thatρ is smooth and subharmonic through-
outC.

Next we prove property (5). Suppose that|z| ≤ rn for somen ≥ 100. We split
the seriesρ into

ρ(z) =
n−1∑
ν=100

δνvν(z)+ δnvn(z)+
∞∑

ν=n+1

δνvν(z).

Because of (13), for the terms of the first sum we have

|z|
sν
≤ rn
sν
= nsn

sν
≤ e−Cν ;

hence, by (10),vν(z) = 0 for ν < n. From (12) forν = n we obtain

δnvn(z) ≤ δn + nδn
rn

Rez.

Assume now thatν > n. Then, for|z| ≤ rn, using first (11a) withR = rn and then
(15) for l = 0,1,2, we can estimate

∞∑
ν=n+1

δνvν(z) ≤
∞∑

ν=n+1

δν

(
2+ rn

sν
+ 2r 2

n

ν 2s2
ν

+ 1

2Cν
log

(
2+ r

2
n

s2
ν

))

≤ 2
∞∑

ν=n+1

δν +
∞∑

ν=n+1

δν
rn

sν
+

∞∑
ν=n+1

δν
2r 2
n

ν 2s2
ν

+
∞∑

ν=n+1

δν
r 2
n

2Cν s2
ν

≤ c ′0
( ∞∑
ν=n+1

δν + rn
∞∑

ν=n+1

δν

sν
+ r 2

n

∞∑
ν=n+1

δν

s2
ν

)

≤ c0
1

a
(n+1)3e−n

a

δn,

becausern = nsn by definition. This implies (5).
Also, Proposition 2.1(ii) holds forρ. By construction, all the derivatives ofρ

vanish at the origin. If nowz ∈ C \ {0}, then there exists an indexν for which
Rν = wν in a disc with centerz/sν and radiusεν. Because of the appearance of
the termα(1/ν 2)|z|2 in the definition ofwν, this implies that also the Laplacian of
vν is positive nearz.

We still have to show that the parameters going into the construction of the func-
tion ρ can indeed be chosen such that the inequalities (13)–(15) are satisfied.

Step 5: Choice of the parameters.We putsν = 1/(ν!)3 andrν = νsν. Further-
more, for a positive number 0< a < 1, let

δν = s2
ν exp(−ν1+a) (16)

We will now check that (13)–(15) are satisfied.
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The proof of (13) is easy:

1

n
min

100≤ν≤n−1
sνe
−Cν = 1

n
min

100≤ν≤n−1

sν

(ν +1)2

= 1

n
min

100≤ν≤n−1

1

(ν!)3(ν +1)2

≥ 1

n

1

((n−1)!)3n2

= sn.
The proof of (14) is also not difficult:

δν

εkν s
k+2
ν

= 4k(ν +1)2k(ν!)3ke−ν
a+1

≤ 4k exp(−νa+1+ 2k log(ν +1)+ 3kν logν).

The latter terms belong to a convergent majorant of the series
∑

ν δν/ε
k
ν s
k+2
ν .

Inequality (15) also holds. In fact, letl ∈ {0,1,2}. Then, forν ≥ n+1 we have

δν

s lν
· s

l
n

δn
=
(
sν

sn

)2−l
e−ν

1+a+n1+a ≤ e−ν1+a+n1+a
.

We now estimate the difference−ν1+a + n1+a:

−ν1+a + n1+a = −ν(νa − na)− na(ν − n)
≤ −ν(νa − na)− na
≤ −ν((n+1)a − na)− na

≤ −aν
∫ n+1

n

xa−1dx − na

≤ −a(n+1)a−1ν − na.
Altogether, these estimates give

s ln

δn

∞∑
ν=n+1

δν

s lν
≤ e−na

∞∑
ν=n+1

exp(−a(n+1)a−1ν)

= e−na exp(−a(n+1)a−1(n+1))

1− exp(−a(n+1)a−1)

≤ e−naa−1(n+1)1−a

≤ 1

a
(n+1)e−n

a

,

showing (15).
Together with the arguments from Step 4, Proposition 2.1 is now proved.
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We now can define the pseudoconvex domainD, which will serve as a counter-
example to (3).

2.2. Lemma. Let

r(z, w) = Rew + b|w|2 + ρ(z) =
∣∣∣∣√bw + 1

2
√
b

∣∣∣∣2 − 1

4b
+ ρ(z),

whereρ is as in Proposition 2.1 andb > 0 is such that1/4b is not a critical value
of ρ. Then the pseudoconvex domain

D = {(z, w)∈C2 : r(z, w) < 0}
is smoothly bounded and is regular near0. The Levi degeneracy set is given by{

(0, w)
∣∣∣ ∣∣∣∣√bw + 1

2
√
b

∣∣∣∣ = 1

2
√
b

}
.

Proof. This can be seen immediately from the properties ofρ. The boundedness
of D follows from the observation thatρ(z) & |z|2 for large |z|. Furthermore,
if rw(z,w) = 0 andr(z, w) = 0, thenρ(z) = 1/4b; henceρz(z, w) 6= 0. This
proves the smoothness of∂D. The Levi function of∂D is

λD = |rw|2ρzz̄ + b|rz|2 =
∣∣ 1

2 + bw̄
∣∣2ρzz̄ + b|ρz|2.

If (z, w)∈ ∂D andz 6= 0, thenρzz̄(z) > 0. If now 1
2 + bw̄ = 0, thenρ(z) = 1/4b

and hence|ρz(z)|2 > 0. The only weakly pseudoconvex points in∂D must there-
fore be of the form(0, w). This proves the claim.

2.3. Lemma. Let (rn)n, (δn)n be as defined in(16) and letpn = (0,−5δn/4).
Then the Bergman kernelKD of D (on the diagonal) at pn can be estimated by

1

C
(δnrn)

−2 ≤ KD(pn) ≤ C(δnrn)−2

with some unimportant constantC.

Proof. We denote byfn the following change of coordinates:

fn(z,w) =
(
z,w + nδn

rn
z

)
. (17)

Its inverse is given by

f −1
n (z ′, w ′) =

(
z ′, w ′ − nδn

rn
z ′
)
.

The mappingfn leavespn fixed and transformsD into the domainDn = fn(D) =
{ψn < 0}, with

ψn(z
′, w ′) = r(f −1

n (z ′, w ′))

= Rew ′ + ρ(z ′)− nδn
rn

Rez ′ + b
∣∣∣∣w ′ − nδnrn z ′

∣∣∣∣2. (18)
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The upper bound forKD then can be deduced as follows. The bidisc

1n := 1(0, rn)×1
(
−5δn

4
,
δn

8

)
(19)

is, for sufficiently largen, contained inDn. This follows from property (5) of the
functionρ. Namely, for(z ′, w ′)∈1n we have

Rew ′ + b
∣∣∣∣w ′ − nδnrn z ′

∣∣∣∣2 < −9δn
8
+ b

(
11

8
+ n

)2

δ2
n < −

17

16
δn if n� 1.

Moreover,

ρ(z ′)− nδn
rn

Rez ′ ≤ (1+ c0a
−1(n+1)3e−n

a

)δn.

Inserting this, we obtainψn(z ′, w ′) < 0; hence1n ⊂ Dn if n� 1.
The Bergman kernel increases if the domain is shrunk. This gives us the upper

bound:

KD(pn) = KDn(pn) ≤ K1n
(pn) = 1

Vol(1n)
= 64

π
(δnrn)

−2.

We now come to the proof of the lower bound forKD.
Let us first recall a result of Ohsawa from [17]: If� ⊂ Cd is a pseudocon-

vex domain, ifE ⊂ Cd is a hyperplane with�′ = � ∩ E 6= ∅, and if ϕ : � →
R ∪ {−∞} is a plurisubharmonic function such that

Cϕ := sup
�

(ϕ(z)+ 2 log dist(z, E)) < +∞

(these weights are callednegligible), then any holomorphic functionf satisfying

Iϕ(f ) :=
∫
�′
|f |2e−ϕ dλd−1 < +∞

admits a holomorphic extensioñf : �→ Cwith anL2-norm controlled byIϕ(f ),
namely, ∫

�

|f̃ |2 dλd ≤ CdeCϕIϕ(f )
with an unimportant constantCd. (Here, bydλk we denote the Lebesgue measure
in complex dimensionk.)

If we apply this to the Bergman kernel (see [7]), we obtain

K�(p) ≥ C−1
d e
−CϕK�′,ϕ(p) (20)

for p ∈ �′. HereK�′,ϕ(p) denotes the weighted Bergman kernel of�′ atp for
the space of all holomorphic functionsf on�′ with Iϕ(f ) < +∞.

We want to apply this to� = Dn andE = {z ′ = 0}, in which case we have

D ′n = Dn ∩ E =
{
w ′
∣∣∣ ∣∣∣∣√bw ′ + 1

2
√
b

∣∣∣∣ < 1

2
√
b

}
.

If ϕ is plurisubharmonic onDn, then we obtain (using [7, Thm. 3.5]) that
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KD ′n,ϕ(p) ≥ (dist(p, ∂D ′n))
−2eϕ(p) (21)

for anyp ∈D ′n.
What we need to find is, for each sufficiently largen, a negligible weightϕ =

ϕn onDn (with Cϕn ≤ 0) for which

ϕn(pn) ≥ C + 2 log
1

rn
(22)

with some unimportant constantC. If we have found this then, combining and
applying (20) and (21) top = pn, we are done (note that dist(pn, ∂D ′n) ≈ δn).

Choice of a suitable negligible weight.Let n ≥ 100 be arbitrary. From the def-
inition of the functionun we haveun ≥ Rn, so

vn(z
′) = un

(
z ′

sn

)
≥ Rn

(
z ′

sn

)
≥ wn

(
z ′

sn

)
and (noting that log(|z ′|2 + e−2Cn) ≥ −2Cn)

wn

(
z ′

sn

)
≥ −1

2
− 4α + Re

z ′

sn
+ α

∣∣∣∣ zrn
∣∣∣∣2.

We choose a smooth functionχ : R→ (−∞,1] with χ(t) = t for t ≤ 1/2 and
χ(t) = 1 for t ≥ 3/4. Then, for a small enough constantc1 > 0, the function
z ′ 7→ |z ′|2 + c1 logχ(|z ′|2) becomes subharmonic. This implies the subharmon-
icity of the functions

v̂n(z
′) = −1

2
− 4α + Re

z ′

sn
+ α

(∣∣∣∣ z ′rn
∣∣∣∣2 + c1 logχ

( |z ′|2
r 2
n

))
and

ṽn(z
′) := v̂n(z ′)− αc1 log|z ′|2.

From the choice ofχ, it also follows that

vn ≥ v̂n.
We now claim that

ϕn(z
′, w ′)

:= 1

αc1δn

(
Rew ′ +

n−1∑
ν=100

δνvν(z
′)+ δnṽn(z ′)− nδn

rn
Rez ′ +

∞∑
ν=n+1

δνvν(z
′)
)

is the desired negligible weight. In fact, for any(z ′, w ′)∈Dn one has

αc1δn(ϕn(z, w
′)+ 2 log|z ′|) = Rew ′ +

n−1∑
ν=100

δνvν(z
′)

+ δn v̂n(z ′)︸ ︷︷ ︸
≤vn(z ′ )

−nδn
rn

Rez ′ +
∞∑

ν=n+1

δνvν(z
′)

≤ Rew ′ + ρ(z ′)− nδn
rn

Rez ′

≤ ψn(z ′, w ′) < 0.
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We therefore obtainCϕn ≤ 0. The functionϕn is obviously plurisubharmonic and
has the right behavior atpn, namely,

ϕn(pn) = 1

αc1

(
−5

4
+ ṽn(0)

)
= 1

αc1

(
−5

4
− 1

2
− 4α + αc1 logr−2

n

)
≥ C + logr−2

n

with an unimportant constantC.
Lemma 2.3 is thus proved.

3. Final Proof of Theorem 1.1

For a vectorX ∈C2, we compute

f ′n(pn)X =
(

1 0
nδn
rn

1

)
X =

(
X1

nδn
rn
X1+X2

)
.

From the Bergman theory we recall that, for(z, w)∈D andX ∈C2, the func-
tional

bD((z,w);X) := √KD((z,w))BD((z,w);X)
increases ifD is replaced by a subdomain ofD. Let us now assume that a lower
bound of the form (3) would exist with a suitable constantC > 0. This would
yield

C
|(∂r(pn),X)|

|r(pn)||log|r(pn)||1/1+2a
≤ BD(pn;X)
= BDn(pn; f ′n(pn)X)

= bDn(pn; f ′n(pn)X)√
KDn(pn)

≤ b1n(pn; f
′
n(pn)X)√

KD(pn)

=
√
K1n(pn)√
KD(pn)

B1n
(pn; f ′n(pn)X)

≤ C ′B1n
(pn; f ′n(pn)X) (by Lemma 2.3)

= C ′
2
|X1|2
r 2
n

+128

∣∣ nδn
rn
X1+X2

∣∣2
δ2
n

1/2

.

Now we choose

X = X(n) :=
(

1
− nδn

rn

)
and insert this into the previous estimate. Then
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(∂r(pn),X(n)) = −nδn
2rn

.

With some new constantC∗, we obtain

n

rn
(
log 1

δn

)1/1+2a ≤ C∗
1

rn
;

in particular,

n ≤ C∗
(

log
1

δn

)1/1+2a

. (23)

On the other hand, by the definition ofδn (see (16)) we have

δn = s2
ne
−n1+a = e−n1+a−6 logn! ≥ e−n1+a−6n logn ≥ e−2n1+a

for n� 1; hence logδn ≥ −2n1+a and

n ≥
(

1

2
log

1

δn

)1/1+a
,

which contradicts (23).
This proves the theorem.
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