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Boundary Values and Mapping Degree

Edgar Lee Stout

Introduction

This note is an addendum to the paper of Alexander and Wermer [2], in which the
authors relate the theory of linking numbers to the question of finding an analytic
variety bounded by a given real, odd-dimensional submanifold ofCN.

We give a characterization of the boundary values of holomorphic functions on
certain domains inCN in similar terms. In fact, the work of Alexander and Wer-
mer contains such a characterizationin the case of functions of classC 1. It seems
that the methods used in [2] require this degree of smoothness, but we have found
that it is possible to obtain a result that characterizes thecontinuousfunctions that
are boundary values of holomorphic functions that is entirely in the spirit of [2].
Specifically, we shall prove the following result.

Main Theorem. Let� be a bounded domain inCN with boundary of classC 2,

and assume that̄� has a Stein neighborhood basis. A continuous functionf on
b� is of the formF

∣∣
b�

for a functionF ∈ C (�̄) that is holomorphic on� if and
only if the following condition is met.

(∗) With 0f the graph{(z, f(z)) : z ∈ b�}, a compact subset ofCN+1, if Q is
a CN -valued holomorphic map defined on a neighborhood of�̄ × C with
Q−1(0) ∩ 0f = ∅, then the degree of the mapb�→ CN \ {0} given byz 7→
Q(z, f(z)) is nonnegative.

Recall that a closed setE in CN is said to have a Stein neighborhood basis if it is
the intersection of a sequence of domains of holomorphy inCN. If E is the clo-
sure of a strictly pseudoconvex domain or a polydisc inCN, then it has a Stein
neighborhood basis.

The case of the main theorem in whichf is of classC 1 is contained in [2] as a
very special case of the main results of that paper.

The main theorem seems to be new, even in the setting of classical function
theory, where a version of the result is the following. LetU denote the open unit
disc in the complex plane.

Corollary. A continuous functionf on bU extends holomorphically through
U if and only if, for each polynomialp(z) = p(z1, z2) in two complex variables
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such that, withψf,p(ζ) = p(ζ, f(ζ)), if ψf,p is zero-free onbU then the change
in argument aroundbU of the functionψf,p is nonnegative.

In particular, if the functionf is smooth then the condition is that (withp andψf,p
as in the corollary) the integral(1/2πi)

∫
bU(dψf,p/ψf,p) be nonnegative.

The proof of the Main Theorem proceeds by induction on dimension. The case
of planar domains is based on some results on polynomial convexity; the higher-
dimensional case depends on a suitable slicing argument. The arguments make
systematic use of the Bochner–Martinelli kernels.

We preface the proof with a section that assembles some information on degree
theory.

1. Degree Theory

Our discussion draws essentially on the theory of the degree of mappings. We will
restrict attention to the theory of the degree of mappings from sets in manifolds to
Euclidean spaces.

Fix an oriented smooth manifoldN of dimensionN. To each triple(f,�, y)
consisting of a relatively compact open set� in N , a continuous mapf from �̄

intoRN, and a pointy ∈RN \ f(b�), there is assigned an integerd(f,�, y), the
degree off. The functiond has the following properties:

(d1) d(id, �, y) = 1 if y ∈�;
(d2) d(f,�, y) = d(f,�1, y) + d(f,�2, y) whenever�1 and�2 are disjoint

open subsets of� such thaty /∈ f(�̄ \ (�1∪�2));
(d3) d(h(t, ·),�, y(t)) is independent oft ∈ [0,1] wheneverh : [0,1]× �̄→ RN

is continuous, andy : [0,1]→ RN is continuous and satisfiesy(t) /∈ h(t, b�)
for all t ∈ [0,1];

(d4) given(f,�, y) and(g,�, y) as before, iff
∣∣
b�
= g∣∣

b�
thend(f,�, y) =

d(g,�, y);
(d5) if �1⊂ � (�1 open), thend(f,�, y) = d(f,�1, y) if y /∈ f(�̄ \�1).

Property (d4) implies that one can assign a degree to(f,�, y) when the continu-
ous mapf toRN is defined only onb� and satisfies the condition thaty /∈ f(b�).

Degree theory in the form that we shall need is developed in [3] and [17]. An
axiomatic development (for maps fromRN to itself ) is given in [4].

If � is a domain in the plane with boundary a finite collection of mutually dis-
joint simple closed curves and iff ∈C (�̄), then

d(f,�,0) = 1

2πi
1b� logf = 1

2π
1b� Arg f.

Given a bounded domain� in N with smooth boundary, iff : b�→ RN \{0} is
a smooth map then the degree is given by an integral formula,

d(f,�,0) = 1

SN−1

∫
b�

f ∗τ,

with SN−1 = 2πN/2/0(N/2) (the area of the unit sphereSN−1 in RN) and withτ
the form given by
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τ = 1

|x|N
N∑
j=1

(−1)N−1xjdx1∧ · · · ∧ [j ] ∧ · · · ∧ dxN,

where the expression [j ] indicates the omission of thej th term; see [17]. The
(N − 1)th de Rham cohomology group with complex coefficients ofRN \ {0} is
isomorphic toC and so, ifϑ is any closed smooth(N − 1)-form onRN \ {0} that
is not exact, then

d(f,�,0) = c(ϑ)
∫
b�

f ∗ϑ

for a constantc(ϑ) that depends only on the formϑ, not on the domain� or on the
mapf. The constantc(ϑ) is determined by the condition that the formτ − c(ϑ)ϑ
be exact. Givenϑ,we can determinec(ϑ) by taking� to be the unit ball inRN and
f the identity map. It follows thatc(ϑ) is determined by the equationc(ϑ)−1 =∫
SN−1 ϑ.

It will be convenient to use the following notation: Ifg = (g1, . . . , gr) is a vector
of complex-valued functions onCN, thenω(g) = ω(g1, . . . , gr) = dg1∧· · ·∧dgr
and

ω ′(g) = ω ′(g1, . . . , gr) =
r∑
j=1

(−1)j−1gjdg1∧ · · · ∧ [j ] ∧ · · · ∧ dgr .

In particular, withgj = zj this yieldsω(z) = dz1∧ · · · ∧ dzr . Similarly,

ω ′(z̄) =
r∑
j=1

(−1)j−1z̄j dz̄1∧ · · · ∧ [j ] ∧ · · · ∧ dz̄r .

Recall that the Bochner–Martinelli kernelβN is the (N,N − 1)-form onCN
defined by

βN =
(

1

2πi

)N
|z|−2N ∂̄|z|2 ∧ (∂̄∂|z|2)N−1

= cN |z|−2Nω ′(z̄1, . . . , z̄N ) ∧ ω(z1, . . . , zN),

wherecN denotes the constant(−1)(1/2)N(N−1)(N−1)!/(2πi)N. This form is closed
and∂̄-closed onCN \{0}. It is not exact. The Bochner–Martinelli kernel gives an
integral formula: If� is a bounded domain inCN with smooth boundary, and if
g is a function holomorphic on a neighborhood of�̄, then∫

b�

gβN =
{
g(0) if 0 ∈�,
0 if 0 /∈ �̄.

As follows from the preceding remarks, the Bochner–Martinelli kernel can be
used to compute the degree of certain maps inCN. Given a bounded domain�
in CN with smooth boundary and given a smooth mapf : b� → CN \ {0}, the
degree off is given by

d(f,�,0) =
∫
b�

f ∗βN.
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2. A Theorem in the Plane

ForX a compact subset ofC, we shall useR(X) to denote the uniform closure
in the spaceC (X) of complex-valued, continuous functions onX of the space of
rational functions onC that have no poles onX. For a given setX, this space
may or may not coincide with the spaceA(X) of functions that are continuous
onX and holomorphic on its interior. (For a systematic discussion of the ques-
tion of the equality ofR(X) andA(X) for compactaX in the plane, see [7] and
[18].) We shall also use the notation that, for a closed setE ⊂ CN, QE is the
space of functions defined and holomorphic on a neighborhood ofE×C inCN+1.

The neighborhood depends on the particular function; it is not assumed to be a
product set.

The result to be established in this section is the following.

Theorem. Let� be a bounded connected open set inC. Assume that each point
of b� is a peak point for the algebraR(�̄). If f ∈ C (b�), then there is a func-
tionF that is continuous on̄� and holomorphic on� withF

∣∣
b�
= f if and only

if the following condition holds.

(†) For everyp ∈ Q�̄ such that for noζ ∈ b� does the quantityψf,p(ζ) =
p(ζ, f(ζ)) vanish, the degree of the mapζ 7→ ψf,p(ζ) fromb� toC \ {0} is
nonnegative.

The theorem applies in particular to all domains� for whichb� consists of a fi-
nite number of mutually disjoint simple closed curves. (No regularity is required
in this case beyond that imposed by the condition of being a simple closed curve;
in particular, each of the curves might have locally finite area.) The condition is
satisfied also by certain infinitely connected domains—for example, one obtained
by excising from the open unit disc the union of countably many mutually disjoint
closed subdiscs whose centers cluster only on the unit circle. Other (more exotic)
examples can be found in [7] and [18].

Proof. We assume, as we can without loss of generality, that the origin lies in the
domain�.

It is evident that, in the geometric situation of the theorem, iff ∈C (�̄) is holo-
morphic in� and if p ∈ Q�̄ has the property thatψf,p does not vanish onb�,
then the degree ofζ 7→ ψf,p(ζ) from b� to C \ {0} is nonnegative. Let�o b
� be a domain with smooth boundary and withψf,p zero-free on� \ �o. Then
d(ψf,p,�,0) = d(ψf,p,�o,0) by property (d5) of the mapping degree. However,
sinceψf,p is holomorphic in�, it follows thatd(ψf,p,�o,0) is the nonnegative
integer(1/2πi)1b�o Argψf,p.

Denote by0f the graph0f = {(z, f(z)) : z ∈ b�}. By Q�̄(0f) we denote the
uniform closure inC (0f) of the (restrictions to0f of the elements of the) algebra
Q�̄. This is auniform algebraon the set0f .

We denote the hull of the set0f with respect to the algebraQ�̄ byQ�̄−hull0f .
By definition, a pointz ∈ �̄× C is not in Q�̄ − hull0f if and only if there exists
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aq ∈Q�̄ with q(z) = 1> supp0f |q|. The setQ�̄ − hull0f is a compact set; it is
the spectrum (or maximal ideal space) of the algebraQ�̄(0f).

Defineπ1, π2 : C2 → C to be the projections given byπ1(z1, z2) = z1 and
π2(z1, z2) = z2, respectively. Thenb� ⊂ π1(Q�̄ − hull0f) ⊂ �̄.

We begin by showing that the setQ�̄ − hull0f is not contained inπ−1(b�).

Suppose it is. Letδo = inf {1/|z| : z ∈ b�}, and leth ∈ C (b�) be the function
given byh(z1, z2) = 1/z1. BecauseQ�̄ − hull0f is the spectrum of the algebra
Q�̄(0f),we have thatπ1(Q�̄−hull0f) is the spectrum of the elementπ1

∣∣
0f

of the

algebraQ�̄(0f). Consequently, ifg ∈O(π1(Q�̄−hull0f)), theng B π1 ∈Q�̄(0f).

As each point ofb� is a peak point forR(b�), it follows thatR(b�) = C (b�)
(see [7, p. 543]), whence there is a functionq ∈Q�̄ with |q(z)− h(z)| < 1

2δo for
all z∈0f . As maps from0f toC \{0}, the functionsq andh are homotopic. Con-
sequently, the degrees of the mapsζ 7→ q(ζ, f(ζ)) andζ 7→ h(ζ, f(ζ)) from b�

toC \ {0} are the same. However, the former degree is nonnegative (by hypothe-
sis), and the latter is−1, a contradiction. Thus,π1(Q�̄ − hull0f) must meet the
connected open set�. The maximum principle then implies thatπ1(Q − hull0f)
contains�.

Next, the set(Q�̄ − hull0f) ∩ π−1
1 (b�) coincides with the set0f . To see this,

supposezo to be a point in((Q�̄ − hull0f) ∩ π−1
1 (b�)) \ 0f . There is then a

regular Borel probability measureµ on0f with
∫
0f
q dµ = q(zo) for all q ∈Q.

(The measure is arepresenting measurefor the pointzo with respect to the alge-
braQ�̄(0f).) Because each point ofb� is a peak point forR(�̄), the measureµ
is supported on the set({zo1} × C) ∩ 0f . This set is a singleton, for0f is a graph.
It follows thatµ is a point mass, whencezo must lie in0f—a contradiction.

We shall show thatπ1 carriesQ�̄ − hull0f injectively onto�̄. In order to do
this, we use the notion ofmaximum-modulus algebra.(See [1] and [13].) SetA =
{f | Q�̄ − hull0f \ 0f : f ∈Q�̄(0f)}, an algebra of continuous, complex-valued
functions on the locally compact spaceX = Q−hull0f \0f . Letp = π1

∣∣
X
. Then

(A , X,�, p) is a maximum-modulus algebra onX over� with projectionp in
the sense of [1].

Introduce the functionδ : �→ [0,∞) by

δ(ζ) = diameterπ2(π
−1
1 (ζ) ∩Q�̄ − hull0f).

The compactness ofQ�̄− hull0f implies the boundedness of the functionδ. The
functionδ tends to 0 atb�. Otherwise, there is a sequence{ζk}∞k=1 of points in�
with ζ → b� ask → ∞ and with diameterπ2π

−1
1 (ζ) > η for some positiveη

and allk. If ζk → ζo ∈ b�, thenπ1 carries two distinct points of0f onto the point
ζo. However, the mapπ1 is injective over0f .

According to [1, Thm. 11.7], the function logδ is subharmonic on�. As it
tends to−∞ at b�, it must be identically−∞ on�. That is,π1 is injective on
Q�̄ − hull0f . Thus, there is a continuous functionF : �̄ → C whose graph is
Q�̄ − hull0f ; F agrees withf onb�.

The theory of maximum-modulus algebras implies thatF is holomorphic on
�. To see this, we can invoke the general theory of maximum-modulus algebras
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as given in [1]. Alternatively, we can appeal to Rudin’s treatment [13] of local
maximum-modulus algebras. If we setB = {ϕ ∈ C (�) : ϕ(z) = f(z, F(z)) for
somef ∈A and allz ∈�}, thenB is a local maximum-modulus algebrain the
sense of [13]. It contains the identity map—namely, the mapz 7→ π1(z, F(z))—so
each element ofB is holomorphic on�. In particular, sinceF(z) = π2(z, F(z)),

we find thatF is holomorphic, as we wished to show. The theorem is proved.

Remark. By construction, the functionF is holomorphic on� and continuous
on �̄. Nothing we have done implies thatF ∈R(�̄).

Remark. The hypothesis in the preceding theorem that each point ofb� be a
peak point for the algebraR(�̄) cannot be completely abandoned. LetI be the
closed interval

[− 1
2,

1
2

]
and let� = U \ I ; thus,b� = bU ∪ I. Let f : bU→ C

be given by

f(z) =
{
z if z∈ bU,
0 if z∈ I.

The functionf is not the boundary value of any function holomorphic on�, con-
tinuous on�̄. However, it does satisfy the condition that, ifp(z1, z2) is a polyno-
mial in two complex variables such that the functionψf,p(z) = p(z, f(z)) has no
zero onb�, then the degree of the mapψf,p onb� is nonnegative. The points of
the intervalI are not peak points for the algebraR(�̄).

3. The Induction Step

We have proved the Main Theorem, and somewhat more, in the 1-dimensional
case; we now show that theN -dimensional case is a consequence of the(N −1)-
dimensional case. Thus, we assume that the Main Theorem has been established
in the case of domains inCN−1 and continuous functions on their boundary.

Let� be a bounded domain inCN with boundary of classC 2, and letf be a
continuous function onb� that satisfies the hypotheses of the Main Theorem. As
in the statement of that theorem, let0f denote the graph of the functionf, a subset
of CN+1.

Let 5 be a complex affine hyperplane inCN that meetsb� transversely. We
will show that the restrictionf

∣∣
(b�∩5) satisfies the hypotheses of the theorem

(in the (N − 1)-dimensional case) and so extends holomorphically into the slice
� ∩5. For notational convenience, we assume that5 isCN−1 = CN−1× {0} =
{zN = 0} ⊂ CN.

LetQ1, . . . ,QN−1 be functions defined and holomorphic on a neighborhoodW ′
of (CN−1∩ �̄)×C such that their set of common zeros is disjoint from the graph

0 ′f = {(z1, . . . , zN−1,0, f(z1, . . . , zN−1,0)) : (z1, . . . , zN−1,0)∈ b�}.
Since �̄ has a Stein neighborhood basis, there is a Stein neighborhoodW of
�̄×C such thatW ∩ (CN−1×C) ⊂W ′. Each of the functionsQ1, . . . ,QN−1 ex-
tends to be holomorphic onW ;we denote these extensions also byQ1, . . . ,QN−1.

Denote byQ′ the mapQ′ = (Q1, . . . ,QN−1) fromW ′ to CN−1. We must show
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that, if 9 ′ : CN−1 → CN−1 is given by9 ′(z1, . . . , zN−1) = Q′(z1, . . . , zN−1,

f(z1, . . . , zN−1,0)), then the degree of9 ′ as a map fromb� ∩ 5 to CN−1 is
nonnegative.

LetQ be theCN -valued map defined for(z, ζ) in a neighborhood of̄�×C by
Q(z, ζ) = (Q′(z1, . . . , zN−1, ζ), zN). The setQ−1(0) is disjoint from0f . By hy-
pothesis, the map9 : b�→ CN \ {0} given by9(z1, . . . , zN) = Q(z, f(z)) has
nonnegative degree.

The point is thatthe degree of the map9 ′ is the same as the degree of the map
9. This fact is contained in [2, Lemma1.1]. There is a derivation of the fact, based
on the Bochner–Martinelli integral, as follows.

Because the functionf is only continuous, a preliminary step is required. Let
% be a defining function of classC 2 for the domain� so that% is defined on a
neighborhood of�̄, d% 6= 0 on b�, and� = {% < 0}. We suppose that the
functionf has been extended to a continuous function defined on�̄ and smooth
in �. For example,f might be harmonic in� with the given values onb�.
If δ > 0 is small then, with�δ = {% < −δ}, the setb�δ is again a mani-
fold of classC 2, as isb�δ ∩ CN−1. Moreover, given thatδ is small enough, the
function f will not assume the value 0 in the set� \ �̄δ. Thend(9,�,0) =
d(9,�δ,0) andd(9 ′, � ∩ CN−1,0) = d(9 ′, �δ ∩ CN−1,0). The upshot of this
is that, for the purpose of verifying that the degree of9 is the same as the de-
gree of9 ′, we can assume the functionf to be of classC 2. Thus, we must prove
that

∫
b�
9∗βN =

∫
b�∩5 9

′∗βN−1. This is equivalent to proving that
∫
0f
Q∗βN =∫

0 ′
f

Q′∗βN−1. Note that the last two formulas cannot be written without the as-

sumption thatf be smooth.
We need a fact about the Bochner–Martinelli kernelβN onCN : It is exact in

CN \ CN−1. This is well known and due originally to Martinelli [12]. It is a con-
sequence of a simple, direct calculation. If4 is the(N,N − 2)-form onCN \ {0}
given by

4 = |z|−2(N−1)ω ′(z̄1, . . . , z̄N−1) ∧ ω(z1, . . . , zN)

thend4 = ∂̄4 = (−1)N−1(N −1)zN |z|−2Nω ′(z̄1, . . . , z̄N )∧ω(z1, . . . , zN). From
this it follows that, on the set inCN wherezN 6= 0, if γN denotes the constant
(−1)N−1(−1)(1/2)N(N−1)(N − 2)!/(2πi)N, then

βN = d
(
γN

1

zN
4

)
.

If we pull this formula back toCN+1 by way of the mapQ, we obtain

Q∗βN = d
(
γN−1

1

(2πi)N−1

1

zN
Q∗4

)
.

Since

Q∗4 = ω ′(Q̄1, . . . , Q̄N−1) ∧ ω(Q1, . . . ,QN−1) ∧ dzN
{|Q1|2 + · · · + |QN−1|2 + |zN |2}N−1

,

it follows that
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Q∗βN = d
(
γN−1ω

′(Q̄1∧ · · · ∧ Q̄N−1)

∧ ω(Q1, . . . ,QN−1){|Q1|2 + · · · + |QN−1|2 + |zN |2}−(N−1)

∧ dzN

2πizN

)
.

Now apply Stokes’s theorem and Fubini’s theorem (in the form given, e.g., in
[17]):∫
0̃

Q∗βN = lim
ε→0+

∫
0̃∩{|zN |>ε}

Q∗βN = lim
ε→0+
−γN−1∫

{|zN |=ε}

(∫
0̃∩{z∈CN :ζ=zN}

ω ′(Q̄1, . . . , Q̄N−1) ∧ ω(Q1, . . . ,QN−1)

{|Q1|2 + · · · + |QN−2|2 + |zN |2}N−1

)
dzN

2πizN
.

The negative sign in the last equation arises from considerations of orientation.
As ε → 0+, the last quantity tends to

∫
0̃ ′ Q

′∗βN−2. Thus, we have the desired
equality of the two degrees in question.

The inductive hypothesis now implies that the functionf continues holomorphi-
cally into the domain5∩�. That is, we have shown thatif 5 is a complex-affine
hyperplane inCN that meetsb� transversely, thenf

∣∣
(5∩b�) extends holomorphi-

cally into the slice5 ∩�.
If N = 2, we are in the situation of the 1-dimensional extension property con-

sidered in [15] (cf. [8]). The result of [15] implies that, as desired,f extends
holomorphically through�. If N > 2, a simpler argument is possible. Given a
pointw ∈ �, let5 be a complex-affine hyperplane inCN throughw that meets
b� transversely. DefineF5(w) to be the value of the holomorphic extensionF5
of f

∣∣
(5∩�) through5∩�. SinceN ≥ 3, the value ofF5(w) does not depend on

the choice of5; denote this value byF(w). This gives a well-defined functionF
on� that is holomorphic and assumes the valuesf on b�. The Main Theorem
is proved.

4. Extensions

We shall now consider certain extensions of the work just given.

A. The Convex Case

It is more or less evident that an analog of the Main Theorem can be established in
the setting whereD is a bounded convex domain inCN andf ∈C (bD) is a con-
tinuous function that satisfies condition(∗) of the Main Theorem. (We consider
arbitrary convex domains, not only those with smooth boundaries; thus, we admit
polydiscs or convex polyhedra among other examples.)

The basis for this assertion is as follows. The compact setD̄ does have a neigh-
borhood basis that consists of Stein domains. The slices ofD by complex lines are
convex1-dimensional domains, so the result of Section 2 applies to them. The nec-
essary 1-dimensional extension result, tailored to the setting of convex domains,
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is contained in [8, Thm. 3.2.1]. Thus, the only point that needs to be verified in
this case is a fact about degrees.

Precisely put, what has to be established is the following. Let1 be a bounded
convex domain inCN. If f ∈ C (b1) satisfies condition(∗) and if5 is a com-
plex hyperplane that meets1, thenf5, the restriction off to b1 ∩ 5, has the
corresponding property.

This implication can be established as follows. Without loss of generality,
we suppose5 to be the coordinate axis{z ∈ CN : zN = 0}. Let 1N denote
the intersection1 ∩ 5. Fix a holomorphic mappingQ′ from a neighborhood
of 1̄N × C into CN−1 such that the zero locus of the map9 ′ given by9 ′ =
(Q ′(z1, . . . , zN−1,0, f(z1, . . . , zN−1,0)) is disjoint from the graph off5. We are
to prove that the degree of the map9 ′ from b1 ∩5 toCN−1 is nonnegative.

The mapQ′ can be extended to a holomorphicCN−1-valued map (still denoted
byQ′) defined on a neighborhood of1̄×C. LetQ be theCN -valued map defined
on a neighborhood of̄1× C by (z, ζ) 7→ ((Q′(z1, . . . , zN−1,0, ζ), zN). Then the
CN -valued map9 defined onb1 by 9(z) = Q(z, f(z)) is zero-free; its degree
as a map toCN \ {0} is nonnegative. Note that we can extend the mapf through
1 as a smooth function.

Consider a smoothly bounded convex domainD that is a relatively compact
subset of1 and that is large enough for the quantityQ(z, f(z)) to be zero-free
on the compact set̄1 \D. Then the degree of the map9 from b1 toCN \ {0} is
the same as the degree of the map9D : bD → CN \ {0}. Also, the degree of the
map9 ′ from b1∩5 toCN−1 \ {0} is the same as the degree of the map9 ′D from
bD ∩5 toCN−1 \ {0}.

The analysis using the Bochner–Martinelli integral invoked in Section 3 shows
the degree of9D to be the same as the degree of9 ′D. Thus, a result analogous to
the Main Theorem is established in the case of arbitrary bounded convex domains.

B. The Manifold Case

The work carried out in Sections 2 and 3 is set in the context of domains inCN.
But little effort is required to extend it to certain manifold situations.

Toward this end, ifR is an open Riemann surface and ifX is a compact sub-
set ofR, then we defineR(X) to be the closure inC (X) of the (restrictions to
X of) functions defined and holomorphic on various neighborhoods ofX in R.
Runge’s theorem implies that, whenR is the complex plane, this notion ofR(X)
coincides with that used in Section 2.

If D is a relatively compact domain inR for which each point ofbD is a peak
point for the algebraR(D̄), then the continuous functionsf on bD that extend
holomorphically throughD admit a characterization precisely parallel to that given
in the Theorem of Section 2:They are those functions satisfying the condition(†R)
that, ifp is a function holomorphic on a neighborhood inR×C of the setD̄×C
such thatp−1(0) is disjoint from the graph0f = {(z, f(z)) : z ∈ bD}, then the
degree of the mapz 7→ ϕp(z) = p(z, f(z)) from bD into C is nonnegative.The
argument of Section 2 applies, mutatis mutandis, to deal with the present situation.
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Once we have this, we can formulate and prove a result on domains in mani-
folds as follows. Fix a complex manifoldM of dimensionM and in it a relatively
compact domainD with bD of classC 2. We assume that̄D has a Stein neighbor-
hood basis. It then entails no loss of generality to suppose thatM is itself a Stein
manifold and so, by the embedding theorem, thatM is a closed submanifold of
CN for some suitably largeN. In this setting, we have the following result.The
continuous functionf onbD extends holomorphically throughD if and only if it
satisfies the condition(∗M): For every holomorphicCM -valued mapQ defined
on a neighborhood of̄D×C in M ×C such thatQ−1(0) is disjoint from the graph
0f = {(z, f(z)) : z ∈ bD}, the mapz 7→ Q(z, f(z)) from bD into CM \ {0} has
nonnegative degree.

Unlike our proof of the Main Theorem, the proof we give for this is not based
on induction on dimension. Rather, we shall apply some information about the
Bochner–Martinelli kernel to show that it follows from the hypotheses that, for
every nonsingular 1-dimensional complex submanifold6 of a neighborhood of
D̄ in M that meetsbD transversely, the restrictionf

∣∣
(6∩bD) extends holomorphi-

cally into the slice6 ∩D. Having established this point, by [16] we can conclude
thatf extends holomorphically throughD. We establish the stated 1-dimensional
extension property first in the particular case that the curve6 is a complete inter-
section, so that there exists a mapϕ = (ϕ1, . . . , ϕM−1) from a neighborhood of̄D
in M toCM−1 whose zero locus is6 and whose differential has maximal rank at
each point of6.

Consider a functionG defined and holomorphic on a neighborhood ofD̄ × C
that satisfies the condition that the zero locus ofG be disjoint from the partial
graph{(z, f(z)) : z ∈ (6 ∩ bD)}. We want to show that the mapz 7→ G(z, f(z))

from6∩bD toC \{0} has nonnegative degree. Having fixedG, there is no loss in
assuming thatf is smooth onbD. (This follows from arguments we have already
used.) Hence, we must prove that the winding number(1/2πi)

∫
6∩bD(dG/G) is

nonnegative.
By construction, the holomorphic map8 : D̄ × C→ CM given by

8(z, ζ) = (ϕ(z),G(z, ζ)) = (ϕ1(z), . . . , ϕM−1(z),G(z, ζ))

does not vanish at any point of the graph0f off (on the whole ofbD).Accordingly,
the integral

∫
0f
8∗βM is nonnegative.

The map8 is constructed so that it carries̄D \ 6 into CM \ λ, whereλ is
the complex line{z ∈ CM : z1 = · · · = zM−1 = 0}. In Section 6, a primitive
for the Bochner–Martinelli kernel is constructed in the domainCM \ λ; if 2 ∈
E 2M−2(CM \ λ) is the form given in Section 6 (withM here replacing theN of
Section 6), then

8∗βM = d8∗(cM2),
where (as in Section 1)cM denotes the constant(−1)(1/2)M(M−1)(M −1)!/(2πi)M.
We shall write|ϕ| for the quantity

√|ϕ1|2 + · · · + |ϕM−1|2. Let ε > 0 be a small
positive number. By Stokes’s theorem,
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0f

8∗βM

= lim
ε→0+

∫
0f ∩{|ϕ(z)|>ε}

8∗βM = lim
ε→0+

∫
b({0f ∩{|ϕ|>ε})

cM2

= lim
ε→0+

∫
0f ∩{|ϕ|=ε}

(
cM

2(M −1)(|ϕ|2 + |G|2)M−1

×
M−2∑
r=0

(
M −1

r

)
|G|2M−2r−4|ϕ|2r−2M+2

)
× [(−1)M(GdḠ− ḠdG) ∧ ω ′(ϕ̄) ∧ ω(ϕ)+ (−1)M−1|G|2ω(ϕ̄) ∧ ω(ϕ)].

Since|ϕ| = ε on the path of integration, it follows from Stokes’s theorem and
Fubini’s theorem for forms that∫
0f

8∗βM = lim
ε→0+

∫
{ζ∈CM−1:|ζ|=ε}

(∫
0f ∩ϕ−1(ζ)

cM

2(M −1)(ε2 + |G|2)M−1

×
M−2∑
r=0

(
M −1

r

)
G2M−2r−4|ε|2r−2M+2(−1)M(GdḠ− ḠdG)

)
ω ′(ζ̄) ∧ ω(ζ).

Observe that the term in the primitive8∗2 for8∗βM that containsω(ϕ̄)∧ω(ϕ)
contributes nothing to the integral: It is a(2M −2)-form in dϕ and so induces the
0-form on theζ -path of integration (on which|ϕ| = ε).

Theζ -path of integration is the(2M − 3)-dimensional sphere of radiusε; its
volume is(2πM−1/(M − 2)!)ε2M−3, and the coefficient of each term in the form
ω ′(ϕ̄) is one of the coordinates ofϕ and hence isO(ε). Consequently, the only
term in the sum under the last integral that (in the limit) can make a nonzero con-
tribution is the one corresponding tor = 0. Thus, by using the equalitycM =
((−1)M−1(M −1)/2πi)cM−1, we reach∫
0f

8∗βM = lim
ε→0+

∫
{ζ∈CM−1:|ζ|=ε}

(∫
0f ∩ϕ−1(ζ)

cM(−1)M |G|2M−4(GdḠ− ḠdG)
2(M −1)(ε2 + |G|2)M−1

)
× ε−2M+2ω ′(ζ̄) ∧ ω(ζ)

= 1

4πi

∫
0∩ϕ−1(0)

{
dG

G
− dḠ
Ḡ

}
.

Observe that the quantity(1/2πi)
∫
ϕ−1(0)(dG/G) is the degreed of the mapping

z 7→ G(z, f(z)) from 6 ∩ bD to C \ {0}. The quantity(1/2πi)
∫
ϕ−1(0)(dḠ/Ḡ)

is−d.
We have established that∫

0f

8∗βM = 1

2πi

∫
6∩bD

dQ

Q
.

By hypothesis, the former number is nonnegative. Consequently, the latter degree
is, too. We may conclude that the restrictionf

∣∣
(6∩bD) extends holomorphically

into the slice6 ∩D.
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This has been done under the assumption that the curve6 is a complete inter-
section. In dimension≥ 3, this condition is not restrictive, as follows from work
of Forster and Ramspott [5; 6]. That work is not simple, and we prefer to pro-
ceed without appeal to it. Moreover, it is not true that every nonsingular curve is
a complete intersection in the 2-dimensional case: There are unsolvable Cousin
II problems on certain 2-dimensional Stein manifolds.

However, it is true that, in every dimension≥ 2, a nonsingular curve can be
approximated by a collection of irreducible branches of nonsingular complete in-
tersections. This device allows us to obtain the desired 1-dimensional extension
property in the general case.

To do this, fix a nonsingular analytic curve6 in a Stein neighborhoodW of the
compact set̄D in M . The first observation is that, although6 may not be a com-
plete intersection inW, there is a neighborhoodV of 6 (V ⊂W) in which6 is a
complete intersection. This follows because a neighborhood of6 inW is biholo-
morphically equivalent to a neighborhood of the zero section of the normal bundle
of the embedding6 ↪→W. (See [10, p. 257].) This normal bundle is a holomor-
phic vector bundle over the noncompact Riemann surface6 and so is trivial. (See
[9, p. 303].) Thus, ifV is a sufficiently small neighborhood of6 in W, then6
is a complete intersection inV. Let F be a holomorphic map from a neighbor-
hood ofV̄ to CM−1 that defines6 as an analytic set. (We may have to shrinkV
a little to haveF be defined onV̄.) Let W1 b W be a Stein domain whose clo-
sure isO(W )-convex. The set6 ∩ W̄1 is thenO(W )-convex. Consequently, ifV
is chosen to be sufficiently thin and to be a Stein domain, then there will exist a
sequence{Fn}n=1,2, ... of holomorphic maps fromW toCM−1 that converges uni-
formly on V̄ ∩ W̄1 to f. The mapsFn can be chosen such that (a) for eachn, 0 is
a regular value ofFn, and (b)6n = F −1

n (0) is transverse tobD.
For eachn, the restrictionf

∣∣
(6n∩bD) extends holomorphically into the slice

6n∩D.We are to deduce from this thatf
∣∣
(6∩bD) extends holomorphically through

the slice6 ∩D.
For this, sinceV is a Stein domain it will suffice to show that, for every holo-

morphic 1-formα onV, the integral
∫
6∩bD∩V fα vanishes. (See [11].) We already

know that, for eachn, the integral
∫
6n∩bD∩V fα vanishes. Hence, we must prove

that

lim
n→∞

∫
F−1
n (0)∩bD∩V

fα = lim
n→∞

∫
F −1(0)∩bD∩V

fα.

By a device already used several times, it entails no loss of generality for
us to suppose that the functionf is smooth and defined onW. Then, by Stokes’s
theorem,

lim
n→∞

∫
F−1
n (0)∩bD∩V

fα = lim
n→∞

∫
F−1
n (0)∩D

df ∧ α
and also ∫

F −1(0)∩bD∩V
fα =

∫
F −1(0)∩D

df ∧ α.

We shall show that the right-hand sides of the last two equations are the same.
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In this, we need the following remark. Letω denote the fundamental area form
onCN: ω = (−i/2)

∑N
j=1 dzj ∧ dz̄j . Thus, the area of a 1-dimensional varietyE

in an open subset ofCN is
∫
E
ω.

Let T andT ′ be thin tubes inCN over the system of curves6 ∩ bD with T ′b
T . Letχ be a nonnegative function of classC∞ onCN with χ = 1 on a neighbor-
hood ofT̄ ′ and withχ = 0 on a neighborhood ofCN \ T ′. Then

lim
n→∞

∫
T ′∩6n

χ df ∧ α =
∫
T ′∩6

χ df ∧ α.

If T ′ is sufficiently small, then the latter quantity is small.
It follows that ifT ′ is chosen so that the area of the part ofF −1(0) in T ′ is small,

then in ∫
F−1
n (0)∩D

df ∧ α −
∫
F −1(0)∩D

df ∧ α

=
∫
F−1
n (0)∩D

χ df ∧ α −
∫
F −1(0)∩D

χ df ∧ α

+
∫
F−1
n (0)∩D

(1− χ) df ∧ α −
∫
F −1(0)∩D

(1− χ) df ∧ α

we have that the first summand on the right is small uniformly inn for sufficiently
largen while the second summand tends to zero asn → ∞. It follows that, as
desired,

lim
n→∞

∫
F−1
n (0)∩D

df ∧ α =
∫
F −1(0)∩D

df ∧ α,

which completes the proof.

5. Two Open Questions

In this work we have repeatedly imposed the hypothesis that the closure of our
domainD have a Stein neighborhood basis. It is not at all obvious that this hy-
pothesis is necessary for the conclusion, and we ask whether it can be replaced
by something weaker. In particular, might it suffice for the boundary of the do-
main to be connected? (The hypothesis that the closure of the domain has a Stein
neighborhood basis implies that the boundary of the domain is connected.) The
Stein neighborhood basis hypothesis is stable under passage to intersections by
lower-dimensional hypersurfaces; the hypothesis of having connected boundary
is not.

The second open question arises in connection with the classical description of
the boundary values of holomorpic functions on the unit discU. From classical
function theory, a continuous functionf onbU extends holomorphically through
U if and only if the Fourier coefficientŝf(n) = (1/2π)

∫ π
−π f(e

iϑ )e−inϑ dϑ van-
ish for n = −1,−2, . . . . The vanishing of these integrals for alln = −1,−2, . . .
is equivalent to the vanishing of the integral
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1

2πi

∫
|z|=1

f(z)

z− w dz

for all w ∈ C with |w| > 1. Accordingly, we ask for a simple, direct proof of the
equivalence—in the case of functions on the unit circle—of these classical condi-
tions to the positivity conditions given by the Main Theorem and its corollary.

6. Appendix: A Primitive for the Bochner–Martinelli Kernel

In this appendix we shall determine an explicit primitive for the Bochner–Martin-
elli kernel in the complement of a complex line through the origin inCN.

In order to avoid dealing with constants in some calculations, we shall not work
initially with the Bochner–Martinelli kernelβN itself but rather with the form

k = |z|−2Nω ′(z̄) ∧ ω(z),
defined and of bidegree(N,N −1) onCN \{0}. The kernelk differs fromβN only
by the constant factorcN = (−1)(1/2)N(N−1)(N −1)!/(2πi)N.

Denote byλ the complex line

λ = {z∈CN : z1= · · · = zN−1= 0},
and defineH : (CN \ λ)× [0,1]→ CN \ λ by

H(z, t) = H(z1, . . . , zN−1, zN , t) = (z1, . . . , zN−1, tzN).

The mapH is a homotopy inCN \ λ between the identity map onCN \ λ and the
projectionz 7→ (z1, . . . , zN−1,0).

The formk is smooth onCN \ λ and so (sincek is a closed form) the homo-
topy formula for forms [14, p. 8-53] provides the formulak = d2, where2
denotes the(2N − 2)-form obtained as follows. WriteH ∗k = dt ∧ ϑ + η with
η a (2N − 1)-form on (CN \ λ) × [0,1] that does not have a factordt and with
ϑ a (2N − 2)-form on the same manifold that does not have a factordt. (To be
sure, the coefficients ofϑ andη will depend ont.) Then2 is the form given by
2 = ∫ 1

0 ϑ dt. (In connection with the homotopy formula, note that the range of
the mapz 7→ H(z, 0) is of complex dimensionN −1, so that the formk induces
on it the zero form.)

We determine2 explicitly as follows. In this it will be convenient to writez ′
for (z1, . . . , zN−1)∈CN−1 if z = (z1, . . . , zN−1, zN)∈CN. We have

H ∗k = (|z ′|2 + t 2|zN |2)−Nω ′(z̄1, . . . , z̄N−1, tz̄N ) ∧ ω(z1, . . . , zN−1, tzN).

Then
ω(z1, . . . , zN−1, tzN) = tω(z)+ zNω(z ′) ∧ dt

and

ω ′(z̄1, . . . , z̄N−1, tz̄N ) =
N−1∑
j=1

(−1)j−1z̄j dz̄1∧ · · · ∧ [j ] ∧ · · · ∧ d(tz̄N )

+ (−1)N−1tz̄N ω(z̄1, . . . , z̄N−1).
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From this it follows (after some computation) that

2 =
{

1

2(N −1)(|z ′|2 + |zN |2)N−1

N−2∑
r=0

(
N −1

r

)
|zN |2N−2r−4|z ′|2r−2N+2

}
× [(−1)N(zNdz̄N − z̄NdzN) ∧ ω ′(z̄ ′) ∧ ω(z ′)
+ (−1)N−1|zN |2ω(z̄ ′) ∧ ω(z ′)].

This is the desired primitive—ad-primitive—for k onCN \ λ. We then have that

βN = d [cN2]

onCN \ λ. (In this formula,cN denotes the constant introduced in Section 1 in
connection withβN.)
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