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1. Introduction

We construct real-valued finite energy solutions of the dissipative nonlinear wave
equation

�u+ |ut |h−1ut = 0, � := ∂2
t −1x, 1< h∈R, (1.1)

which have singularities that are partially smoothed after a focus. Here{t, x} ∈
R1+d , with spatial dimensiond ≥ 2.

A striking classical result of Lions and Strauss [LS] shows that(1.1) is awell-
behaved evolution equation int ≥ 0 in all dimensions. Two underlying estimates
are used in establishing this result. The first is that solutions have nonincreasing
energy. With

E(u, t) :=
∫
Rd

u2
t

2
+ |∇xu|

2

2
dx, (1.2)

one has

E(u, t) = E(u, 0)−
∫ T

0

∫
Rd

|ut |h+1

h+1
dx dt ≤ E(u, 0). (1.3)

More generally, one has a contractivity estimate that relies on the monotonicity of
the nonlinear function

Fh(s) := |s h−1|s.
Precisely,

E(u− v, t) = E(u− v,0)−
∫ T

0

∫
Rd
(ut − vt )(Fh(ut )− Fh(vt )) dx dt

≤ E(u− v,0). (1.4)

The energy dissipation identity is the casev = 0 of the contractivity identity.
These estimates lead to the following fundamental results of Lions and Strauss.

Theorem 1.1 [LS]. If {f, g} ∈H1(Rd)×L2(Rd) then there is a unique solution
u to (1.1)with
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u∈C([0,∞[;H1(Rd)
)
, ut ∈C

(
[0,∞[;L2(Rd)

) ∩ Lh+1([0,∞[×Rd),
with Cauchy data

u
∣∣
t=0 = f, ut

∣∣
t=0 = g. (1.5)

In addition, the energy laws(1.3)and (1.4)are satisfied by pairs of such solutions
as well as by the local versions in the truncated cones0(x,R, T ) := {|x − x| <
R − t, 0< t < T ≤ R}.
The energy law in0(x,R,R) shows that two solutions whose Cauchy data agree
on |x − x| ≤ R must also agree on cone|x − x| ≤ R − t.

Regularity results follow from this by applying the contractivity estimate (1.4)
to the solutionsu(t, x) andv = u(t, x + ξ). TheH1 modulus of continuity is de-
fined by

ω(u, t, h)2 := sup
0<|ξ|≤h

‖∇xu(t, x)−∇xu(t, x + ξ)‖2L2(Rd )

+ ‖ut(t, x)− ut(t, x + ξ)‖2L2(Rd ). (1.6)

Corollary 1.2 [LS]. If u is one of the solutions from Theorem 1, then theH1

modulus of continuityω(u, t, h) is a decreasing function oft. It follows that, if
f, g ∈H σ+1×H σ with σ ∈ ]0,1], then

u∈L∞([0,∞[;H σ+1(Rd)
)

and ut ∈L∞
(
[0,∞[;H σ(Rd)

)
.

For σ ∈ ]0,1[ one has continuity in time; that is,

u∈C([0,∞[;H σ+1(Rd)
)

and ut ∈C
(
[0,∞[;H σ(Rd)

)
.

This shows thatHs regularity for 1≤ s ≤ 2 propagates forward in time.
The major interest of these results is that they define a strongly nonlinear evo-

lution. By any known measure, these problems are supercritical whend is large.
These problems can not be attacked by using the basic estimates and then treating
the nonlinear term as a perturbation, writingu = −�−1(uht ). In particular, ford
large andh∈Zodd, the nonlinearity is polynomial and it is not known whether the
solutions with data inC∞0 areC∞. Equivalently, it is not known if such solutions
are locally Lipshitzean.

Our main result is the construction of compactly supported solutions that are
smoother in{t ≥ 1} than they are in{0 ≤ t < 1} (see Figure 1). This includes an
explicit solution in closed form computed in Section 5.

The examples cannot be locally Lipshitzean because the result of [GR] shows
that if a solution has∇t,xu∈L∞loc then itsHs

loc regularity does not change with time.
In particular, in the 1-dimensional case, if the Cauchy data satisfies∇t,xu(0, x) ∈
L∞loc then the solution is Lipshitzean and hence theHs regularity is independent
of t ≥ 0. This Lipshitz bound is proved by an argument needed later, so we recall
the estimates. Introduce the characteristic combinations

u± := ∂∓u := (∂t ∓ ∂x)u.
Whend = 1, the differential equation(1.1) takes thecharacteristic form
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MORE THAN 1.5 DERIVATIVES

1.5 DERIVATIVES

x

t

t=1

Figure 1 Rough regularity

(∂t ± ∂x)u± + Fh(u+ + u−)
2h

= 0.

Multiplying by pup−1
± with even integerp, adding and then integratingdx shows

that

∂t

∫
R
u
p
+ + up− dx = − p2h

∫
R
(u
p−1
+ + up−1

− )Fh(u+ + u−) dx.

Since for abitrary reala, b one has(ap−1+ bp−1)Fh(a + b) ≥ 0, it follows that∫
u
p
++up− dx is a nonincreasing function oft. Passing to the limitp→∞ shows

that supR max{|u+|, |u−|} is a nonincreasing function oft. Thus, if∇t,xu(0, ·) is
initially L∞ then it remains so int ≥ 0.

Assumption1.3. Suppose that the initial dataf, g are piecewiseC2, radial, com-
pactly supported, vanish for|x| ≤ 1, and have singularities only on|x| = 1. In
addition,f is assumed to be continuous andg + ∂rf is not continuous.

When this assumption is satisfied,∂rf andg are radial piecewise smooth and the
locus of singularities isr = 1. Sinceg + ∂rf is not continuous, at least one ofg
and∂rf must jump atr = 1. This implies that

{f, g} ∈H σ(Rd)×H σ−1(Rd) ⇐⇒ σ < 3/2. (1.7)

Assumption 1.4. In addition to Assumption 1.3, suppose that(∂t − ∂r)u(0, r) =
g − ∂rf is continuous atr = 1.

Sinceg − ∂rf does not jump, it follows that the jumps ofg and∂rf are equal
and nonzero. Assumption 1.4 ensures that a jump discontinuity in∇u propagates
along the focusing cone{|x| = 1− t} and that the first derivatives are continuous
across the outgoing cone. See Figure 2.
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Figure 2 The main singularity for 0< t < 1 is a focusing spherical front

Main Theorem 1.5. Assume that Assumptions 1.3 and 1.4 are satisfied and that
u is the solution from Theorem1.1. Then

u, ut ∈L∞
(
[0,1[; H σ(Rd)×H σ−1(Rd)

) ⇐⇒ σ < 3/2

andu is more regular fort ≥ 1 in the following senses.

(i) If d > 2h/(h− 1), then

u∈L∞([1,∞[;H 2(Rd)
)

and ut ∈L∞
(
[1,∞[;H1(Rd)

)
. (1.8)

(ii) If 2h/(h−1)−1< d ≤ 2h/(h−1), let α := (2h/(h−1)− d)/2∈ [0,1/2[.
Then, for allε > 0,

u∈C([1,∞[;H 2−α−ε(Rd)
) ∩ C1

(
[1,∞[;H1−α−ε(Rd)

)
. (1.9)

Remarks. (1) Forh fixed, the regularity of the solution fort ≥ 1 increases lin-
early fromH 3/2 toH 2 as the dimension increases fromd1(h) := 2h/(h−1)−1 to
d2(h) = 2h/(h−1). For dimensions higher thand2(h), the wave isH 2 in t ≥ 1.

(2) Theorem 1 of [GR] shows that, in order for this smoothing to take place,
the solutions must not be Lipshitzean. For anyt ∈ ]0,1[, the solution is uniformly
Lipshitzean on [0, t ]×Rd , but the sup norm of the derivatives diverges to infinity
ast → 1.

(3) What is happening is that an incoming spherical wave focuses att = 1, x =
0. Approaching the focus, the amplitudes ofut anduht diverge to infinity. The
nonlinear term acts in a dissipative manner. Ford > 2h/(h − 1) − 1, the non-
linearity is sufficiently large that the effect of the dissipation is so strong that the
solution grows more slowly than it would have in the linear case. The idea of the
proof in case (i) is to use the classical energy estimate for the second derivates of
u in the domain outside the incoming light cone, that is,{{t, x} : |x| ≥ 1− t}. The
energy identity involves a boundary term on the incoming light cone|x| = 1− t.
This term is finite for the nonlinear problem and would have been infinite for the
linear problem. In this way one shows that the second derivatives at timet = 1
are square integrable. In case (ii), one shows that they are square integrable with
weightr α, 1> α ≥ 0. Then an inequality of Hardy type finishes the proof.



Nonlinear Hyperbolic Smoothing at a Focal Point 299

(4) There are at least two other circumstances where supercritical damping for
the same family of equations has been shown to have a regularizing effect on solu-
tions. The first involves families of oscillatory solutionsuε whose angular deriva-
tives∂ω∇t,xuε are uniformly bounded inL2 at the same time as∇t,xuε is bounded
inL2 [JMR2; JMR3; JMR5]. If the initial data is supported in|x| < 1, is not com-
pact in energy, and has prinicipal oscillations that initially move toward the origin
in the sense that(∂t − ∂r)uε is compact inL2, then fort > 1 the family∇t,xuε is
compact inL2(Rd). The noncompactness has been absorbed at the focus.

(5) A similar phenomenon was described in[RR3] for familiesuε of uniformly
dissipative first-order systems whend = 1 and the intial data are the regulariza-
tions jε ∗ µ of finite measures. TheL1(R) norm of uε(t) decreases in time. It
is proved that, fort > 0, the solutions converge to the solution with initial data
given by the nonsingular parts (in the sense of the Lebesgue decomposition) of
the measuresµj . The singular part is absorbed. In particular, if the singular part is
nonzero thenuε(t, x) is compact inL1(Rx) for t > 0 even though the initial data
are not.

(6) The explicit example of Section 5 shows that the result of the Main Theorem
is sharp whenh = 2 andd = 4.

(7) These results were first described in [JMR4].

2. Analysis of the Singularities

The most important step in the proof of the Main Theorem is to analyze the jump
discontinuities in the derivatives of the solution for times 0≤ t ≤ 1. The singu-
larities come from the initial jump discontinuities on the sphere|x| = 1.

The finite speed of propagation implies that the solutionu in the Main Theorem
satisfiesu = 0 in the truncated cone|x| < 1− t. Uniqueness implies thatu is ra-
dial. With the usual abuse of notation we writeu = u(t, r), and the differential
equation in{r > 0} becomes

utt − urr − d −1

r
ur + Fh(ut ) = 0. (2.1)

This is a hyperbolic equation, and the coefficient(d − 1)/r is smooth in{r > 0}.
The solution we are looking at vanishes in{r < 1− t} and so is supported in the
smooth coefficient region for 0≤ t < 1.

Lemma 2.1. (See Figure 3.)

(i) (Piecewise Continuity fort < 1) If Assumption 1.3 is satisfied then, for0 ≤
t < 1, u is continuous and piecewiseC2 with jumps in the first derivatives
restricted to the cones{|x| = 1± t}.

(ii) (Piecewise Continuity up tot = 1 away fromx = 0) For any δ > 0, u is
continous and piecewiseC2 in the regions{r ≥ δ+ t, 0 ≤ t ≤ 1},with jumps
in the first derivatives restricted to the cones{|x| = 1± t}.
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Figure 3 The singularity locus for 0< t < 1

Proof. (i) Fix 0 < T < 1. Finite speed shows that, for 0≤ t ≤ T, u is supported
in r ≥ 1− T > 0, where the coefficient(d −1)/2r in (2.1) is smooth.

The first step is to show that the solution is uniformly Lipshitzean on [0, T ]×Rd.
Write (2.1) in the characteristic form

(∂t ± ∂r)u± + d −1

2r
(u+ − u−)+ Fh(u+ + u−)

2h
= 0, u± := (∂t ∓ ∂r)u. (2.2)

The standard local existence theorem for hyperbolic equations in space dimension
d = 1 shows thatu is uniformly Lipshitzean on [0, T1]× [1−T,∞[ with T1 small
positive. The same result shows that, in order to prove thatu is Lipshitzean up
to timeT, it suffices to prove an a priori estimate for‖∇t,ru(t)‖L∞(R). Precisely,
it suffices to show that there is anM < ∞ depending only onf, g, so that, if
0 ≤ t ≤ T2 ≤ T andu is a Lipshitzean solution on [0, T2] × [1− T,∞[, then
‖∇t,ru‖L∞([0,T2]×[1−T,∞[) ≤ M.

Multiply (2.2) bypup−1
± with even integerp and add the resulting identities to

find that

∂t(u
p
+ + up−)+ ∂r(up+ − up−)+ p(d −1)

2r
(u− − u+)(up−1

+ + up−1
− )

= − p
2h
(u
p−1
+ + up−1

− )Fh(u+ + u−) ≤ 0. (2.3)

Define

ψ(t, p) :=
∫ ∞

1−T
u
p
+ + up− dr. (2.4)

Integrate (2.3) over [0, t ]× [1−T,∞]. Integrating by parts and using the fact that
r ≥ 1− T > 0, so no boundary terms arise, yields

ψ(t)− ψ(0) ≤
∫ t

0

∫ ∞
1−T

p(1− d )
2r

(u+ − u−)
(
u
p−1
+ + up−1

− ) dr dt

≤ cp
∫ t

0
ψ(t) dt, (2.5)

where
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c = c(d, T ) := d −1

1− T max
p∈Neven

max
{u+,u−}∈R2\0

(u− − u+)(up−1
+ + up−1

− )

u
p
+ + up−

<∞. (2.6)

Therefore,

ψ(t, p) ≤ ψ(0, p)+ c(d, T )p
∫ t

0
ψ(t, p) dt, (2.7)

and Gronwall’s inequality yields

ψ(t, p) ≤ ψ(0, p)ecpt (2.8)

with c independent ofp. Taking thepth root gives a bound on theLp norm of
u± that is independent oft ≤ T2 andp. Passing to the limitp → ∞ bounds
‖u±(t)‖L∞([0,T2]×[0,∞[) ≤ M(f, g). This estimate completes the proof thatu is a
uniformly Lipshitzean solution of(1.1) on [0, T ] supported in{r ≥ 1− t}.

WhenFh is a smooth function (i.e., whenh ∈ Zodd), Theorem 1 of [RR1] ap-
plied to the first-order system (2.2) implies thatu is piecewise smooth with singu-
larities restricted to the two cones.

If one is interested in showing only that Lipshitz continuous solutions are piece-
wiseC2, then the argument of[RR2] requires only that the nonlinear functionF
beC1, which it is in our problem. More generally, ifF ∈Ck then the argument of
[RR] can be carried out to study discontinuities in derivatives of orderk +1. The
details for completeing this part of the proof of part (i) are left to the reader.

The proof of (ii) is similar. It suffices to prove an a priori estimate

‖∇t,ru‖L∞([0,T2]×{r≥δ+t}) ≤ M(f, g)
with M independent ofT2 ≤ 1. Introduce

9(t, p) :=
∫ ∞
δ+t

u
p
+ + up− dr.

Integrating (2.3) over the region{r ≥ δ + t} ∩ {0 ≤ t ≤ t} yields

9( t, p)−9(0, p)+ 2
∫ t

0
u
p
−
∣∣
r=δ+t dt

≤
∫ t

0

∫ ∞
δ+t

p(1− d )
2r

(u+ − u−)(up−1
+ + up−1

− ) dr dt

≤ c(d, δ)p
∫ t

0
9(t, p) dt.

There is now a boundary term onr = δ + t that is nonnegative and so improves
the estimate. As before, this yields an estimate

9(t, p) ≤ 9(0, p)ec(d,δ)pt (2.9)

with c independent ofp. Taking thepth root and then the limitp → ∞ yields
the desired Lipshitz estimate.
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The next three lemmas prepare for the application of an energy estimate. That es-
timate is applied tow := ∂u, and one needs to control the growth of the boundary
values of(∂t −∂r)∂u on the shrinking spherer = 1− t ast increases to 1. In order
to do this, we take advantage of the piecewise smoothness.

The main estimate (2.10) of the next lemma is very important. If the problem
had been linear, one would have found that the energy densityr(d−1)(u2− + u2+)
was constant on the incoming characteristic. If(d − 1)(h − 1) > 2 then the en-
ergy density tends to zero asr → 0, which is a result of the nonlinear dissipative
mechanism. For linear dissipation, the energy density would converge to a strictly
positive quantity.

In comparing the conditions of this lemma with those of the Main Theorem, it
is useful to keep in mind the relation

2h

h−1
−1= h+1

h−1
.

Lemma 2.2 (Analysis of the Incoming Jump).On the incoming characteristic
r = 1− t, one hasu+ = 0. If d > (h+ 1)/(h− 1) then, ast increases to1,

|u−(t,1− t)| = c

r1/(h−1)
(1+ o(1)), (2.10)

where the values ofu− are the limits from above(i.e., fromt > 1− r) and the con-
stantc = c(d, h) is given in(2.13). In addition, the tangential derivative satisfies

|(∂t − ∂r)u−(t,1− t)| = C

rh/(h−1)
(1+ o(1)),

C = C(d, h) = c(d, h)(d − 1)

2
− c(d, h)

h

2h
.

(2.11)

Proof. By finite speed of propagation, bothu+ andu− vanish inr < 1− t. Also,
by the plus equation in (2.2),u+ is continuous acrossr = 1− t, which proves that
u+ vanishes on the incoming characteristic.

Next estimate the boundary valuesb of u−:

b(t,1− t) := lim
δ→0+ u−(t,1− t + δ).

Note thatb is defined only on the characteristic line{r = 1− t}.
Sinceu− = 0 below the characteristic, the jump inu− from under to over the

characteristic is equal tob. Sinceu− = 0 belowr = 1− t andu+ vanishes on
both sides, the minus equation of (2.2) reads

(∂t − ∂r)b − d −1

2r
b + Fh(b)

2h
= 0. (2.12)

Let γ := r(d−1)/2b = (1− t)(d−1)/2b(t,1− t). Then

(∂t − ∂r)γ = r(d−1)/2

(
(∂t − ∂r)b − d −1

2r
b

)
= −r(d−1)/2Fh(g)

2h
= −Fh(γ )

2hr(d−1)(h−1)/2
.
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Then, since(d −1)(h−1)/2 6= 1,

(∂t − ∂r) |γ |
−h+1

−h+1
= (∂t − ∂r)γ

Fh(γ )
= −1

2hr(d−1)(h−1)/2

= (∂t − ∂r) r1−(d−1)(h−1)/2

2h(1− (d −1)(h−1)/2)
.

Thus, alongr = 1− t, the quantity

1

(h−1)|γ |h−1
− 1

2h−1((d −1)(h−1)− 2)r(d−1)(h−1)/2−1

is constant.
The hypothesis(d −1)(h−1) > 2 guarantees that the exponent ofr in the sec-

ond term is positive; hence, ast increases to 1, the radiusr shrinks to 0 and the
second term grows without bound. To compensate for this, the first term tends to
infinity. Thus,

|γ | = cr(d−1)/2−1/(h−1)(1+ o(1)),

c = c(d, h) := 2

(
(d −1)(h−1)− 2

h−1

)1/(h−1)

.
(2.13)

In terms of the original variableb, the estimate (2.13) is equivalent to (2.10).
To prove (2.11), insert the estimate (2.10) into the identity (2.12).

The energy density along the characteristic is therefore

r d−1|u−|2 = O(rd−1r−2/(h−1)) = O(rd−1−2/(h−1)),

which iso(1) precisely when the hypothesis of Lemma 2.2 is satisfied.

Lemma 2.3. If d satisfies the conditiond > (h+1)/(h−1) from Lemma 2.2 and
if α satisfiesα + d > 2h/(h− 1), then for each∂ ∈ {∂/∂t , ∂/∂x1, . . . , ∂/∂xd} the
limits of the derivatives(∂t − ∂r)∂u from above the incoming light cone satisfy∫

|x|=1−t
0<t<1

r α
(|(∂t − ∂r)∂u|2 + |∇ω∂u|2) dσ <∞, (2.14)

where |∇ωw| is the length of the angular derivative, given by|∇ωw|2 :=
|∇xw|2 − |∂rw|2, anddσ is the element of surface area.

Proof. In |x| ≥ 1− t, write

∂u

∂xj
= ∂u

∂r

∂r

∂xj
= xj

r

∂u

∂r
.

Since∂ru is spherically symmetric, its angular gradient vanishes and so

∇ω ∂u
∂xj
=
(
∇ω xj

r

)
∂u

∂r
.

Since 2∂ru = u− − u+ and since the second summand vanishes on the incoming
light cone, it follows that on|x| = 1− t we have
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∇ω xj

r

)
u−
2
=
(
∇ω xj

r

)
u− − u+

2
= O(r−1r−1/(h−1)) = O(r−h/(h−1)).

Similarly, by the product rule,

(∂t − ∂r) ∂u
∂xj
=
(
(∂t − ∂r)xj

r

)
∂u

∂r
+ xj
r
(∂t − ∂r)∂u

∂r

=
(
(∂t − ∂r) xj

2r

)
u− + xj

2r
(∂t − ∂r)u−.

Equations (2.10) and (2.11) show that each summand isO(r−h/(h−1)).

Thus,∫
|x|=1−t
0<t<1

r α
(∣∣∣∣(∂t − ∂r) ∂u∂xj

∣∣∣∣2 + |∇ω∂u|2) dσ ≤ C ∫ 1

0
r α

1

r 2h/(h−1)
r d−1dr.

This integral is finite if and only ifα − 2h/(h−1)+ d −1> −1, recovering the
condition in the lemma.

The remaining derivative(∂t − ∂r)∂tu = (∂t − ∂r)∂ru on the incoming cone,
so the square integrability follows from the previous estimates.

Lemma 2.4 (Analysis of the Outgoing Jump).If Assumption 1.4 is satisfied then
u is continuously differentiable on a neighborhood of the outgoing cone{|x| =
1+ t, t > 0}. In particular, u is locallyH 2 on the complement of the incoming
light cone,u∈H 2

loc

(
(]0,1[×Rd) \ {|x| = 1− t}).

Proof. From Lemma 2.1(ii),u is continuous; on a neighborhood of{r = 1+ t,
t > 0}, u is piecewise smooth with singularities onr = 1+ t. It is sufficient to
prove that theu± are continuous across{r = 1+ t, t > 0}. Foru−, this follows
from equation(2.2)− and the fact that theu± are locally bounded.

Next we show that the continuity ofu+(0, r) at r = 1 from Assumption 1.4 im-
plies the continuity ofu+ across the outgoing characteristicr = 1+ t. The jump
in u+ is defined as

[u+](t,1+ t) := u+(t+,1+ t)− u+(t−,1+ t),
u+(t±,1+ t) := lim

δ→0+ u(t ± δ,1+ t).
The first step is to show that the limt→0[u+](t,1+ t) = 0.

Equation(2.2)+ shows that(∂t+∂r)u+ is locally bounded. Thus, with 0< δ <

t � 1, integrating this equation shows that

u+(t + δ,1+ t)− u(0,1− δ) = O(t), u+(t − δ,1+ t)− u(0,1+ δ) = O(t).
Letting δ→ 0 and subtracting shows that

[u+](t,1+ t) = O(t)+ lim
δ→0

(u+(0,1− δ)− u+(0,1+ δ)).
The limit on the right is equal to zero, thanks to Assumption 1.4, and therefore

lim
t→0+[u+(t,1+ t)] = 0. (2.15)
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Define a smooth functionk(t) by

k(t) := u+(t − 0,1+ t)+ u−(t,1+ t) = 2ut(t − 0,1+ t).
The transport equation satisfied by the jump [u+] along the outgoing characteris-
tic is derived by taking the difference between the equation(2.2)+ on the upper
and lower sides of the characteristic to find

(∂t + ∂r)[u+] + d −1

r
[u+] + Fh([u+] + k(t))− Fh(k(t))

2h
= 0.

Now define aC1 function

Gh(t, s) := d −1

r
s + Fh(s + k(t))− Fh(k(t))

2h
with Gh(t,0) = 0

to find the nonlinear transport equation

(∂t + ∂r)[u+] +Gh(t, [u+]) = 0. (2.16)

The initial value problem defined by (2.15) and (2.16) has the unique solution
[u+] = 0, which proves the desired continuous differentiability.

3. Proof of Part (i) of the Main Theorem

The next step in the proof is an energy estimate, which begins with the energy
identity

wt�w = ∂t
(
w2
t

2
+|∇xw|

2

2

)
−

d∑
j=1

∂j(wt∂jw) := ∂te(t, x)−
d∑
j=1

∂j(wt∂jw). (3.1)

Lemma 3.1 (Energy Estimate). For 0 < T < 1, define�T := {(t, x) : 1+ t >
|x| > 1− t, 0 < t < T } and suppose thatw ∈ C1(�T ), �w ∈ L1(�T ), and
wt�w ≤ 0 in �T . Define2e(w, t, x) := w2

t + |∇xw|2. Then∫
1+T>|x|>1−T

e(w, T, x) dx ≤
∫
|x|=1−t
0<t<T

((wt − wr)2 + |∇ωw|2) dσ
2
√

2

+
∫
|x|=1+t
0<t<T

((wt + wr)2 + |∇ωw|2) dσ
2
√

2
. (3.2)

Proof. Choose a smooth radial functionj(t, r) compactly supported in�T , and
define the mollified functions

wε(t, x) :=
∫
w(x + εz)j(z) dz.

Integrate (3.1) applied towε over�T−δ and then integrate by parts to find
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1+t>|x|>1−t

eε(t, x) dx
∣∣t=T−δ
t=0 =

∫
�T−δ

wε
t �wε dx dt

+
∫
|x|=1−t
0<t<T−δ

(eε(t, x)− wε
t (t, x)w

ε
r(t, x))

dσ√
2

+
∫
|x|=1+t
0<t<T−δ

(eε(t, x)+ wε
t (t, x)w

ε
r(t, x))

dσ√
2
.

Passing to the limitε→ 0 yields∫
1+t>|x|>1−t

e(t, x) dx
∣∣t=T−δ
t=0 =

∫
�T−δ

wt�w dx dt

+
∫
|x|=1−t
0<t<T−δ

(e(t, x)− wt(t, x)wr(t, x)) dσ√
2

+
∫
|x|=1+t
0<t<T−δ

(e(t, x)+ wt(t, x)wr(t, x)) dσ√
2
.

Note that the integral over�T−δ is nonnegative and that the contribution to the
left-hand side fromt = 0 vanishes; this yields∫

1+T−δ>|x|>1−T+δ
e(T − δ, x) dx ≤

∫
|x|=1−t
0<t<T−δ

(e(t, x)− wt(t, x)wr(t, x)) dσ√
2

+
∫
|x|=1+t
0<t<T−δ

(e(t, x)+ wt(t, x)wr(t, x)) dσ√
2
.

Simplifying the boundary terms by using the identities

2(e ∓ wtwr) = (wt ∓ wr)2 + |∇ωw|2
and passing to the limitδ→ 0 proves the lemma.

End of Proof of Main Theorem 1.5(i).For ∂ ∈ {∂t , ∂/∂x1, . . . , ∂/∂xd}, let w :=
∂u. Lemma 2.1(i) proves thatw ∈ C1(�T ) for anyT < 1. Applying ∂ to equa-
tion (1.1) showsthat�w = −F ′h(wt )wt , sowt�w = −F ′h(w)(wt)2 ≤ 0 because
of the monotonicity ofFh. Thus Lemma 3.1 can be applied to thisw.

Next consider the terms on the right-hand side of (3.2) in the limitT → 1.
Lemma 2.1(ii) implies that the second term is bounded independently ofT . Sim-
ilarly, Lemma 2.3 withα = 0 shows that the integral of the first summand in the
first integral on the right of (3.2) is bounded independently ofT . This is where the
hypothesisd > 2h/(h−1) is used.

Taking the limitT → 1 in (3.2) implies that

lim sup
T→1

∫
1+T>|x|>1−T

e(w, T, x) dx <∞.

Inserting the definitionw = ∂u, this reads
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lim sup
T→1

∫
1+T>|x|>1−T

(∂t∂u(T, x))
2 + |∇x∂u(T, x)|2 dx <∞.

Lemma 2.1(ii), together with the continuous differentiability from Lemma 2.4,
implies that

lim sup
T→1

∫
|x|>δ+T

(∂t∂u(T, x))
2 + |∇x∂u(T, x)|2 dx <∞.

Combining the last two estimates shows that

lim sup
T→1

∫
|x|>1−T

(∂t∂u(T, x))
2 + |∇x∂u(T, x)|2 dx <∞. (3.3)

Corollary 1.2 and (1.7) together imply that

∂u(t, x)∈C([0,∞[;H1/2−ε(Rd)
)
,

∂t∂u(t, x)∈C
(
[0,∞[;H−1/2−ε(Rd)

)
.

(3.4)

Estimate (3.3), together with the continuity (3.4), implies that the restriction of
∂t,x∂u(1, x) to {Rd \ 0} is a square integrable function; that is,∫

Rd\0
(∂t∂u(1, x))

2 + |∇x∂u(1, x)|2 dx <∞. (3.5)

Define G(x) to be the square integrable function that is the restriction of
∂t,x∂u(1, x) toRd \ 0, and let

R(x) := G(x)− ∂t,x∂u(1, x), so suppR ⊂ {0}. (3.6)

The regularity (3.4) implies that

R ∈H−1/2−ε(Rd). (3.7)

Since there are no nonzero elements of this space with support at the origin, it fol-
lows thatR = 0 and hence that∂t,x∂u(1, x) ∈ L2(Rd). Corollary 1.2 withσ = 1
implies that (1.8) is satisfied, so the proof of Main Theorem 1.5(i) is complete.

4. Proof of Part (ii) of the Main Theorem

The difference in the analysis comes from the square integrability near the focus
at t = 1, r = 0. For the second part of the Main Theorem, one needs the weights
r α from Lemma 2.3. In order to take advantage of the weighted estimates from
Lemma 2.3, we use the following weighted energy estimate, which reduces to
Lemma 3.1 whenα = 0.

Lemma 4.1 (Weighted Energy Estimate).For 0< T < 1, define�T := {(t, x) :
1+ t > |x| > 1− t, 0< t < T }, and suppose thatw ∈C1(�T ) and0 ≤ wt�w ∈
L1(�T ). Define2e(t, x) := w2

t + |∇xw|2. Then, for allα ≥ 0,
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1+T>|x|>1−T

(|x| + 1− T )αe(T, x) dx

≤
∫
|x|=1−t
0<t<T

(|x| + 1− t)α((wt − wr)2 + |∇ωw|2) dσ
2
√

2

+
∫
|x|=1+t
0<t<T

(|x| + 1− t)α((wt + wr)2 + |∇ωw|2) dσ
2
√

2
. (4.1)

Proof. We give a proof assuming thatw ∈ C2(�T ). A regularization as in the
proof of Lemma 3.1 shows that this is sufficient.

Multiplying (3.1) by a continuous functionφ(t, x) with integrable first deriva-
tives yields

∂t(φe(t, x))−
d∑
j=1

∂j(φwt∂jw) = φte −
d∑
j=1

(∂jφ)(wt∂jw)

≤ φte + |∇xφ||wt ||∇xw| ≤ (φt + |∇xφ|)e.
If φ satisfiesφt + |∇xφ| ≤ 0, then an integration by parts in�T yields

0 ≥
∫

1+t>|x|≥1−t
φ(t, x)e(t, x) dx

∣∣t=T
t=0

−
∫
|x|=1−t
0<t<T

φ(t, x)(e(t, x)− wt(t, x)wr(t, x)) dσ√
2

−
∫
|x|=1+t
0<t<T

φ(t, x)(e(t, x)+ wt(t, x)wr(t, x)) dσ√
2
. (4.2)

Takingφ(t, x) := (|x| + 1− t)α ≥ 0 and using the identities 2(e ∓ wtwr) =
(wt ∓ wr)2 + |∇ωw|2 yields (4.1).

Proof of Main Theorem 1.5(ii).Using Lemma 2.1(ii), Lemma 2.4, and estimates
(2.14) and (4.1), and reasoning as in the proof of Theorem 1.5(i), yields the fol-
lowing weighted estimates onRd \ 0. Defineα ∈ ]0,1/2] by

α := 1

2

(
2h

h−1
− d

)
. (4.3)

Then, for allε > 0 and∂ ∈ {∂/∂t, ∂/∂xj },∫
Rd\0
|x|2α+2ε

(
(∂t∂u(1, x))

2 + |∇x∂u(1, x)|2
)
dx <∞. (4.4)

An application of Hölder’s inequality shows that the function defined forx 6= 0
by ∂x∂u(1, x) is absolutely integrable on compact subsets ofRd and so defines
a distribution. As in the sentence before equation (3.6), this distribution is called
G(x). DefineR as in (3.6). Then
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R ∈L1
loc(R

d)+H−1/2−ε(Rd) and suppR ⊂ {0}.
It follows thatR = 0. Thus,G is equal to∂x∂u(1, x), where the derivatives are
taken in the sense of distributions. Thus,

8 := ∂u H⇒ |x|α−ε∇x8∈L2(Rd). (4.5)

Lemma 4.2 (Hardy Inequality). If β ∈ ]0, d/2[ then there is ac = c(d, β) such
that, for all8∈S(Rd),∥∥|D|1−β8∥∥

L2(Rd ) ≤ c
∥∥|x|β∇x8∥∥L2(Rd ). (4.6)

Proof. Inequality (4.6) follows from the inequality∥∥|D|−βψ∥∥
L2(Rd ) ≤ c

∥∥|x|βψ∥∥
L2(Rd ), 0< β <

d

2
, (4.7)

applied to the first derivatives of8. Inequality (4.7) is, in turn, a consequence of
the boundedness onL2 of the integral operator with kernel

1

|x − y|d−β
1

|y|β , 0< β <
d

2
. (4.8)

(A proof of this boundedness can be found in [SW].) This completes the proof of
Lemma 4.2.

Applying (4.6) to the regularizations8ε := jε ∗ ∂u and passing to the limitε→ 0
yields

|D|1−α−ε∂u(1, ·)∈L2(Rd). (4.9)

An application of Corollary 1.2 completes the proof of the Main Theorem.

5. An Explicit Example

In this section we compute an explicit example that exhibits smoothing of a sin-
gularity. The example is self-similar, so the partial differential equation int, r

becomes a nonlinear equation with singularities of Fuchs type. Whenh = 2, this
equation is explicitly solvable.

If v is a solution of(1.1) andλ > 0, then

uλ = uλ(t, x) := λαv(λt, λx) (5.1)

is also a solution, provided thatα andh satisfy the equivalent conditions

α = 2− h
h−1

, h = α + 2

α +1
. (5.2)

For the case of quadratic nonlinearity,

h = 2 and α = 0, (5.3)

we seek radial self-similar solutions—that is, solutions satisfying
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u(t , r) := u(λt , λr).
Settingλ = 1/r shows that

u(t, r) = u(t/r,1) := U(t/r). (5.4)

Then

ut = 1

r
U ′
(
t

r

)
, utt = 1

r 2
U ′′
(
t

r

)
,

ur = −t
r 2
U ′
(
t

r

)
, urr = t 2

r 4
U ′′
(
t

r

)
+ 2t

r 3
U ′
(
t

r

)
.

Therefore, equation (2.1) may be written as

0= �u+ Fh(ut ) =
[

1

r 2
− t 2

r 4

]
U ′′ +

[
(d −1)t

r 3
− 2t

r 3

]
U ′ + 1

r 2
U ′|U ′|. (5.5)

Multiply by r 2, and set

s := t/r and V := U ′ (5.6)

to find
(1− s2)V ′ + (d − 3)sV + V |V | = 0. (5.7)

Consider solutions with

U = V = 0 for −∞ < s < −1,

which corresponds to solutionsu that vanish on the incoming cone{t < −r}.
For−1< s < 1, use the change of variable

V := (1− s2)(d−3)/2W

to find that (5.7) is transformed to

(1− s2)W ′ + (1− s2)(d−3)/2W |W | = 0. (5.8)

Thus,W never changes sign in{−1< s < 1} and−W is a solution wheneverW
is a solution.

Separating variables in (5.8) yields the positive solution

W(s) = 1

F(s)
, where F(s) :=

∫ s

−1
(1− t 2)(d−5)/2 dt.

This integral is finite ford > 3, and approachings = −1 from above yields

F(s) = (1− s2)(d−3)/2

d − 3
(1+ o(1)).

The right-hand limit ofV(s) at s = −1 is therefore given by

lim
s↘−1

V(s) = (d − 3).

HenceU ′ = V has a jump discontinuity ats = −1, so the first derivative of the
self-similar solution has a jump discontinuity on the incoming light cone.
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Whens increases to+1 from below, one has

V(s) ∼ c(1− s2)(d−3)/2.

ExtendV to vanishing fors > 1,

V := 0 for s ≥ 1. (5.9)

The resulting self-similar solution is constant inside the outgoing light cone{r =
t > 0}. In addition, the first derivatives ofu are continuous across this cone.

Near the outgoing cone,

∇t,ru ∼ (r − t)(d−3)/2

and so, for allε > 0,
u∈H (1+(d−3)/2+1/2−ε)

loc . (5.10)

For d = 4, this example shows that the result of the Main Theorem is sharp. For
d > 4, the regularity on the outgoing cone increases linearly withd as if the result
of the second part of the Main Theorem were true for alld > 2h/(h−1).
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