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Stable Compactifications of Polyhedra

STEVEN C. FERRY

1. Introduction
To set the stage, we begin with some definitions.

DeriNITION 1.1. (i) If X is a compact metric space aldC X is closed, then
Z is said to be &-setif there is a homotopy:,: X — X (0 <t < 1) such that
ho(x) = x for all x andh,(X) C X — Z for all t > 0. The model case is that in
which X is a topological manifold and = 9X. Another interesting case is the
visual compactification of a CAD) space.

(i) A separable metric spaceéis said to be aANRIf X can be embedded in sep-
arable Hilbert space in such a way that there is an open neighbothobd that
retracts toX. All locally contractible finite-dimensional metric spaces are ANRs.

(ii) The Hilbert cube* is defined to be the produg;-,[0, 1]. A Hilbert
cube manifoldX is a separable metric space such that each poixittias an open
neighborhood that is homeomorphic to an open subset of the Hilbert cube. Funda-
mental work of Chapman and West shows that every Hilbert cube manifold is the
product of a locally finite polyhedron with>® and that, for a given Hilbert cube
manifold, the polyhedron is unique up to simple homotopy.

(iv) If X is a locally compact ANR, then a compact metric sp&ceontaining
X is said to be &-compactificatiorof X if Z = X — X is aZ-setinX. It fol-
lows easily from the definition of-set and Hanner’s criterion for ANR-ness [10]
that, in this caseX is also an ANR.

(V) If {(K;, @)}22, is a sequence of finite CW complex€sand maps; : K; —
K;_1, then theénverse mapping telescofel(K;, «;) is obtained from the disjoint
union of the mapping cylinders of the by identifying the top of the mapping
cylinder ofw; with the base of the mapping cylinder @f, ;.

In [4], Chapman and Siebenmann gave necessary and sufficient conditions for a
noncompact Hilbert cube manifold to admit aZ-compactification. Stated geo-
metrically, their condition was thaf admits aZ-compactification if and only ik

is homeomorphic to the product of an inverse mapping telescope with the Hilbert
cube. Inthe same paper it was asked whether a locally finite polyhédaaimits

a Z-compactification wheneve¥ x Q admits aZ-compactification.
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In [9], Guilbault gave an example of a locally finite 2-dimensional polyhe-
dron X such thatX x Q is Z-compactifiable but such that itself admits naz-
compactification. In that paper, he asked whetkiex I* was Z-compactifiable
for any finitek. Our theorem answers his question in the affirmative. We note that
there has been a good deal of interesgihtompactifications, particularly in the
case of compactifications of universal covers of finite aspherical polyhedra. See
[1] for a nice discussion of this topic.

TueoreM. If X is a locally finiter-dimensional polyhedron andl x Q admits
a Z-compactification, the x 72*+5 admits aZ-compactification.

DEerINITION 1.2. Letf: X — Y be a proper map witlk andY locally com-
pact finite-dimensional ANRs. If = Y U B is a compactification of, we define
f: X =XUB — Y tobef]]idand giveX the topology generated by the open
subsets o together with sets of the forni—(U), whereU cC Y is open. By a

slight abuse of notation, we will usé to denotex U, B.
The theorem is a consequence of the following three propositions.

ProrosiTion 1.3. If P is alocally finite polyhedron of dimensign» such that
P x Q admits a boundary, the® is simple-homotopy equivalent to an inverse
mapping telescope afdimensional polyhedra.

ProposiTion 1.4, If f: X — Y is a proper CE map between locally compact
ANRs and ifY = Y U B is a Z-compactification of, thenX = X U, B is a
Z-compactification of(.

ProrosiTiON 1.5. If P" is a locally finiten-dimensional polyhedroin > 3)
and if P collapses to a locally finite subpolyhedrgh thenQ x 12"+ collapses
to P. Infact, ifc: P — Q is a proper PL surjection with contractible point-
inverses, then given any functien Q9 — (0, oco) we can find a proper PL surjec-
tion with contractible point-inversds. Q x 1?"+1 — P such that the composition
cok: Q x I?"*1 5 Qs e-close to projection.

Given these propositions, here’s the proof of our theorem.

Proof. If X is alocally finiten-dimensional polyhedron such th¥itx Q admits a
boundary, then Proposition 1.3 states tKias simple-homotopy equivalent to an
inverse mapping telescoffe= Tel(K;, «;), where theX; are finiten-dimensional
polyhedra and the; are PL maps.

In [16], Wall showed that, ifK and L are simple-homotopy equivalent finite
CW-complexes of dimensiog n (n > 3), then there is a finite CW-complek
of dimension< (n + 1) such thatP collapses to bottk and L. Using the sim-
ple homotopy theory of [8], Wall's proof carries over to locally finite polyhedra.
Given the PL version of this result for locally finite complexes, we obtain a locally
finite polyhedronP of dimensiom + 2 with CE-PL maps t& and to7. By the
cylinder completion theorem [4, p. 180],admits aZ-compactification. Sinc®
has a CE map t@, P also admits &-compactification. Sinc® has a CE map to
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X, Proposition 1.5 shows thaf x 7?"+° collapses taP and, by Proposition 1.4,
thatX x 7?*+5 admits aZ-compactification. O

We now proceed with the proofs of Propositions 1.3-1.5.

Proof of Proposition 1.3Except for the dimension estimate, this is the geo-
metric characterization theorem of [4], which states thak Q admits aZ-
compactification if and only ifX is infinite simple-homotopy equivalent to an
inverse mapping telescope. We obtain the dimension estimate by examining the
proof in [4]. If X is a locally finitern-dimensional polyhedron such th&tx Q
admits aZ-compactification, choose a nested collectignof cocompact sub-
polyhedra ofX with bicollared boundaries so tha};Z, V; = #. SinceX x Q
admits aZ-compactification, each of thg has the homotopy type of some fi-
nite n-dimensional polyhedroi;. The inclusion map%;,; — V; induce maps
aiv1: Kir1 — K; that are well-defined up to homotopy. The argument of [4,
pp. 204—-206] shows that is simple-homotopy equivalent near infinity to the in-
verse mapping telescope T&l, «;) and infinite simple-homotopy equivalent to
a telescope that agrees with &, «;) everywhere except at the first stage. At
the end of this paper, we will sketch a proof of this result. O

We begin the proof of Proposition 1.4 with a useful homotopy invariance result for
Z-sets.

ProrosiTiON 1.6. Let (X, Z) and (Y, Z) be compact metric pairs that are ho-
motopy equivalentel Z by maps and homotopies which are the identityZosind
which take the complement @fto the complement &f. ThenZ is a Z-set inX

if and only if Z is a Z-set inY.

Proof. We start the proof of this proposition by giving a more precise statement
of the properties of the maps and homotopies described in its statement. Here is
what we are given:

(i) amapf: (X, Z) — (¥, Z) with |, =idandf(X — Z) C Y — Z;
(i) amapg: (¥, Z) —> (X, Z)with g| , =idandg(Y — Z) C X — Z;
(iii) a homotopyh,: X — X with kg =id andh,\z = id for all ¢; also,
h(X—-2)c X —Zforallt;

(iv) a homotopyk,: Y — Y with kg = id andkt|Z = id for all #; also,
k(Y —2Z)cCcY— Zforallt;

(v) ahomotopyy,: Y — Y withag =id ande,(Y) C Y — Zforallt > 0.

Our goal is to produce a homotogy: X — X so thatBg = id andg,(X) C
X — Z forallz > 0. This will show thatZ is a Z-set inX when it is aZ-set inY.
The other half of the argument is completely symmetric.

We first show that we can constriéchaving property (v) and such that(y) =
y wheneverd(y, Z) > t. In order to do so, we define: Y x [0, 1] — [0, 1] by
the formula
t—d(y,Z) fdy,Z)<t,

o(y,t)={0 if d(y,Z)>t,
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and then let,(y) = as(y,n(y). To conserve notation, we will drop the bar and
assume that,;(y) = y whend(y, Z) > t.

Next, letg,(x) = goa,o f: X — X. We seethaB,(x) Cc X — Zforallt > 0
and thatg,(x) = g o f(x) whend(f(x),Z) >t. Letz: X x (0,1] — [0, 1] be
defined by the formula

0 if d(f(x),Z)>2t,
tx,)={ 2 YOD it 4 < 4(f(x), Z) < 21,
1 if d(f(x),Z)<t.

Let/,(x) = h...n(x). Strictly speaking, this functioh is defined only for > 0,
but it extends over = 0 by settingio(x) = x for all x. To prove continuity, we
need to show that ifx;, ;) — (x*, 0) then}_z,l. (x;) — x*. We consider two cases:
if x* € X — Z, thenh, (x;) = x; for largei andh,, (x;) — x*; if x* € Z, then for
everye > Othereis & > 0 such that, it/(x, x*) < 8, thend (h;(x), x*) < ¢ for
all ¢. It follows immediately thaﬁ,i (x;) — x*inthis case, as well.

Finally, we defines,(x) by the formula

h(x) if d(f(x),Z)>1t,
Bi(x) if d(f(x),Z) <t.

It is easy to check thag,(x) is well-defined and satisfies property (v). When
d(f(x),Z) = t, we havei,(x) = B.(x) = g o f(x). Whenr = 0, we have
Bo(x) = ho(x) = x for all x; for r > 0, we have either

Bi(x)=goa,of(x)Cgl¥Y —2)CcX—-Z

or Bi(x) = hyx.n(x). We haves,(x) € X — Z in this last case, since¢ Z. (To
clarify this last assertion, note that Z andr > 0 guarantee that, (x) = 8,(x).)
It follows thatB,;(x) c X — Zforallt > 0, soZ isaZ-setinX. O

Bi(x) = {

We are now in a position to prove Proposition 1.4.

Proof of Proposition 1.4 This follows immediately from Proposition 1.6 using a
general property of cell-like maps between ANRsf tf X — Y is a cell-like map
between locally compact ANRs, then for any open cavef Y there is a map
g: Y — X such thatf o g is a-homotopic to the identity and o f is f («)-
homotopic to the identity. (A homotopy,: Z — Z is al{-homotopyl/ an open
cover of Z, if for eachz € Z we have{h;(z) | 0 <t < 1} C U, for someU, €
U; if U is an open cover of and f: X — Y is continuous, therf ~X(Z{) is the
cover of X consisting of sets ~}(U) with U € U4.) See [12] for a proof in the
finite-dimensional case and [11] for an extension to the infinite-dimensional case.
Adopting the notation of Proposition 1.4, it is not hard to use this general prop-
erty to produce a map: ¥ — X and homotopieg,: X — X andk,: ¥ — ¥
which are the identity orB and which send complements Bfto complements
of B. Since we have given ourselves tiiais a Z-set inY, it follows that B is a
Z-setinX (and thatX is an ANR). O

Finally, we prove Proposition 1.5.
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Proof of Proposition 1.5Letc: P" — Q be a PL map with contractible point-
inverses. For simplicity, we will assume thatthe dimension ofP, is at least 3.
Choose a one-to-one PL mapP — int 7?**1 and consider the diagram

cxiuP— QxS Q,

where the last map is the projection. To conserve notation, we will ideRtifjth
its image undet x ¢.

Leto be a simplex o0 in some (fixed) triangulation and denote By the in-
tersection ofP with 9, = o x I°**%; of course P, is justclo. Now let N, be a
regular neighborhood a?, U (30 x 1?"*1) in Q,. The inclusionN, — Q, is a
homotopy equivalence and so, by excision, the inclusial > (Q, —int(N,))
is a homology equivalence. Sin@g is codimension-3 i x 2"+ it follows
that FrN, — (Q, — int(N,)) is also a homotopy equivalence. By the relative
h-cobordism theoren(Q,, — int(N,)) is homeomorphic to FN,, x [0, 1]. Hence
there is a PL collapse from@, to P, U (3o x 1?"*1). Inducting down from the
top-dimensional simplices aP gives a PL collapse fron® x I?**1to P. The
g-estimate in the statement of Proposition 1.5 follows immediately by taking a tri-
angulation ofQ with e-small simplices. O

ReEMARK 1.7. (i) For experts, the estimates—both the dimension estimate and the
&(x)-estimate—in Proposition 1.5 will probably be the most interesting novelties
in this paper. Dierker’s original idea was to note tha&if 7 Y thenY c X x [0, 1]

andX x [0,1] N\, Y. Iterating this construction, one derives a proof that iand

Y are finite polyhedra an® “\ Y thenY x 17 N\ X for someg. There is no es-
timate on the; in terms of dimX and dimY and there is no hint as to whether a
similar result should hold for locally finite polyhedra. Brown and Cohen [2] mod-
ified Dierker’s construction to obtain a somewhat differgnt)-estimate for finite
polyhedra. Dierker’s dimension estimate remained unchanged. They used their
improved Dierker’s lemma to give a short proof of the followingXifandY are
simple-homotopy equivalent polyhedra, thEnx Q andY x Q are homeomor-

phic Hilbert cube manifolds. Proposition 1.5 leads to such a proof for locally finite
polyhedra.

(i) Proposition 1.6 gives a quick proof that, & and L are homotopy equiv-
alent finite aspherical polyhedra akdadmits aZ-structure in the sense of [1],
then so doed. This is also proven in [1]—it’s a design criterion for the definition
of Z-structure—but it is occasionally useful (e.g., one might someday want a pa-
rameterized version of the theorem) to have proofs of such facts that come directly
from formulas, rather than relying on Hurewicz- and Whitehead-type theorems.

2. An Expanded Proof of Proposition 1.3

We begin with some further discussion of Proposition 1.3.

If X is a finite-dimensional polyhedron such théat Q admits aZ-compacti-
fication, choose cocompact subpolyhediftac X so thatX = V; > Vo O ---
and(Z, Vi = ¥. The compactification oX x Q induces compactifications of
all theV; x Q. These are compact ANRs, so by West’s theorem [17] they have
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the homotopy types of finite complex&s. Forn > 3, Wall [15] showed that an
n-dimensional complex that is homotopy equivalent to a finite complex is homo-
topy equivalent to a finite-dimensional complex, so we may assume that each
K; has dimension equal to max 3). Leta;: K; — K;_1andj;: K; — V; be
maps such that the diagrams

o1

Ki<—Kin1

;lji Eljﬂrl

Vi<—)Vi+l

homotopy commute for ail Then there is an obvious map from &}, «;) to X

that is equal tgj; on eachk;. It is easy to verify that this map satisfies the con-
ditions of the proper Whitehead theorem of [7], so the map is a proper homotopy
equivalence. This uses the finite dimensionality of btand Tel(X;, «;). It re-

mains to show that this homotopy equivalence is a simple-homotopy equivalence
near infinity.

By the geometric characterization theorem of [4], we know tias proper-
homotopy equivalentto Tél;, 8;) for some finite polyhedra; and mapg;, so it
suffices to prove that proper-homotopy equivalent telescopes are simple equivalent
near infinity. Our argument is extracted from an old argument of Siebenmann [13].

First, note that ifX Lyt Zisa sequence of finite polyhedra and maps,
then there is a simple homotopy equivalenceXdl] Z from M (f) Uy M(g) to
M(go f). Here,M(f) denotes the mapping cylinder ¢fAlso, if f,g: X - Y
are homotopic maps, then there is a simple homotopy equivalengd et from
M(f) to M(g). These lemmas can be found in [5]. One consequence of this is
that an inverse mapping telescope is infinite simple-homotopy equivalent to a tele-
scope obtained by “passing to subsequences” (i.e., by passing to a subsequence of
the polyhedra and composing the appropriate bonding maps).

If Tel(K;, «;) and TelL;, B;) are proper-homotopy equivalent, we can pass to
subsequences and, retaining our original notation, obtain a homotopy commuting
diagram:

o2 a3 a4

K K, K3 Ky
lf:\\ii if:\\ii\if:\\f\ iﬁ
L B2 L B3 Ls Ba La

Using the simple-homotopy lemmas mentioned previously, one can see that
Tel(K;, ;) is infinite simple-homotopy equivalent to the inverse telescope of the
sequence

K]_(ﬁ[Q(ﬁKz(ﬁLg(ﬁK?,(—---
andthat TelL;, 8;) is infinite simple-homotopy equivalent to the inverse telescope
of the sequence

L1<£K1<EL2<£K2£L3<£K3<—
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The mapf; is a homotopy equivalence, sinég and L; are both homotopy
equivalent taX. The last mapping telescope is therefore infinite simple-homotopy
equivalent to the mapping telescope of the sequence

g . .
K£<—2L2<£K2<£L3<£K3<—

whereK] is ann-dimensional complex that is simple-homotopy equivalert o
This, in turn, is infinite simple-homotopy equivalent to the mapping telescope of
the sequence

830/2 g3ofa~as gao far~ag

K K, K3 K4 _—

which shows both thaX is infinite simple-homotopy equivalent to the mapping
telescope of a sequence of finitedimensional polyhedra, as desired, and that the
telescope can be taken to be (I€l, «;), except for a possible change in the first
term of the sequence. O

In [4, p. 207], the authors refer to an unpublished theorem of Ferry. Since the re-

sult has never been published, it seems reasonable to include the original proof in
this paper. The result is also an immediate corollary of Torunczyk’s characteriza-

tion [14] of Hilbert cube manifolds.

Tueorem. If M is a Hilbert cube manifold and/ = M U B is a Z-compactifi-
cation of M, thenM is a Hilbert cube manifold.

Proof. M is e-dominated byM for everys > 0 and so, by Hanner’s criterion
[10], M is an ANR. By a well-known theorem of Edwards [3}, x Q is a Hilbert
cube manifold. ByZ-set unknotting, we see that the cell-like mépx Q0 —
(M x Q)/~ obtained by shrinking out factors @ in B x Q is shrinkable, so
(M x Q)/~ is a Hilbert cube manifold. But the projectidd x Q — M can be
approximated arbitrarily closely by homeomorphismsjgoc Q is homeomor-
phic to M andM is a Hilbert cube manifold. 0O

3. A Proper-Homotopy Question

Recently, there has been a resurgence of interest in the probl&rtompactify-
ing polyhedra. Much of this interest involves the case in which the polyhedron
in question is the universal cover of a finite aspherical polyhedron. (Recall that a
polyhedronk is asphericalif its universal cover is contractible.) There is a nice
discussion of this in [1].

The goal of this section is to remind interested readers that a locally finite poly-
hedron that admits &-compactification must satisfy a certain tameness condition
due to Chapman and Siebenmann. Here is the statement of the condition.

DerINITION 3.1. A locally finite polyhedrorX is tame at infinityif, for every
compactA C X, there is a larger compadt such that the inclusioX — B —
X — A factors up to homotopy through a finite complex. Thus, we require that
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there exist a finite complek and mapg: X — B — K andp: K - M — A so
that 8 o @ is homotopic to the inclusion.

QuesTioN. If K is a finite aspherical polyhedron, mutbe tame at infinity?
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