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Cα-Compactness and the Calabi Flow on
Kähler Surfaces with Negative Scalar Curvature

Shu-Cheng Chang

1. Introduction

Let M be a compact Kählerm-manifold that has a Kähler metricds2 =
gαβ̄ dz

α ⊗ dz̄β . Then it is known that, for the Ricci curvature tensorRαβ̄ =
−(∂2/∂zα∂z̄β) log det(gλµ̄),

√−1
2π Rαβ̄ dz

α ∧ dz̄β is a closed(1,1)-form and its co-
homology class is equal to the first Chern classC1(M). Conversely, it was Calabi
who asked if, for any closed(1,1)-form

√−1
2π R̃αβ̄ dz

α ∧ dz̄β that is cohomologous

toC1(M), can one find a Kähler metric̃gαβ̄ onM such thatR̃αβ̄ is the Ricci cur-
vature tensor of̃gαβ̄? As a consequence of Aubin and Yau’s results, one can find
a Kähler–Einstein metric onM with C1(M) = 0 orC1(M) < 0. WhenC1(M) >

0, the space of Kähler–Einstein metrics are invariant under automorphism group.
However, the existence does not always hold in general [F; M; T; TY].

Instead of the Kähler–Einstein metric, we consider the notion of extremal met-
rics due to Calabi [C1]. Namely, fix a Kähler class�0 = [ω0] on a compact
Kähler manifoldM and denote byH� 0 the space of all Kähler metrics with the
same fixed Kähler class�0. Now consider the functional8 : H� 0 → R,

8(g) =
∫
M

R2 dµg,

whereR denotes the scalar curvature ofg. A critical point of8 is called anex-
tremal metric.In particular, any Kähler–Einstein metric is an extremal metric that
also minimizes

∫
M
R2 dµg inH�0. Furthermore, if�0 = C1(M) > 0 and if there

exist no nonzero holomorphic vector fields onM, then an extremal metric is a
Kähler–Einstein metric. On the other hand, there exist some obstructions to the
existence of extremal metrics due to Calabi [C2], LeBrun [L], Levine [Le], and
Burns and deBartolomeis [BB]. However, so far there is no known example of a
compact Kähler manifoldM with C1(M) > 0 and no nonzero holomorphic tan-
gent vector field that does not carry any extremal metric. Concerning the existence
of extremal metrics, Calabi has asked whether one can always minimize the8 in
H� 0 onM if there exist no nonzero holomorphic tangent vector fields and if the
tangent bundle ofM is stable (see [C1; D; SY; UY]).

Throughout this note, we consider a compact Kähler surfaceM (see Remark 2.2)
with a fixed Kähler class�0 = [ω0] for ω0 =

√−1
2π

0
gαβ̄ dz

α ∧ dz̄β . For any metric
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g ∈H�0, there exists a real-valued scalar functionϕ, globally defined onM, such
that

gαβ̄ = 0
gαβ̄ + ϕαβ̄,

whereϕαβ̄ = ∂2ϕ/∂zα∂z̄β .

Now consider the following Calabi flow on(M, [ω0]):
∂gαβ̄ (z,z̄,t)

∂t
= ∂2R(g(t))

∂zα∂z̄β
,

gαβ̄(z, z̄, t) = 0
gαβ̄(z, z̄)+ ϕαβ̄(z, z̄, t), t ≥ 0,

(1.1)

where

R = R(gαβ̄) = −1 log det(
0
gαβ̄ + ϕαβ̄), R0 = R( 0

gαβ̄) = −1 log det(
0
gαβ̄),

andgαβ̄(z, z̄,0) = 0
gαβ̄(z, z̄)+ ϕαβ̄(z, z̄,0) is positive definite. An interesting ob-

servation is that, if there exist no nonzero holomorphic tangent vector fields onM,

then the functional8 decays along the Calabi flow on(M, [ω0]) (Lemma 2.1). If
we let

F(z, z̄, t) = log det(
0
gαβ̄(z, z̄)+ ϕαβ̄(z, z̄, t))− log det(

0
gαβ̄(z, z̄)),

then

Rαβ̄ =
0
Rαβ̄ − Fαβ̄

and

∂F

∂t
= ∂

∂t
(log detg)

= gαβ̄ ∂gαβ̄
∂t

= gαβ̄ ∂
2R(g(t))

∂zα∂z̄β

= 1R.
We can then reformulate the Calabi flow as follows to yield the so-called modified
Calabi flow on Kähler manifolds:

∂F
∂t
= 1R = −12F +1(gαβ̄ 0

Rαβ̄),

gαβ̄(z, z̄, t) = 0
gαβ̄(z, z̄)+ ϕαβ̄(z, z̄, t), t ≥ 0,∫

M
eF0 dµ0 =

∫
M
dµ0, F0(z, z) = F(z, z̄,0).

(1.2)

HereF : M × [0,∞) → R is a smooth function,1 = 1gαβ̄
, dµ0 = dµ 0

g
, and

dµ = eFdµ0.

Form = 1, the Riemann surface,(1.1) and (1.2) areequivalent. More precisely,

in this case let(6,
0
g) be a Riemann surface with a given conformal class [

0
g] on6.

In the author’s previous paper [Ch3] we considered the Calabi flow on(6, [
0
g]):
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∂λ
∂t
= 1

21R,

λ(p,0) = λ0(p),

gij = e2λ0
gij,∫

6
e2λ0 dµ0 =

∫
6
dµ0,

(1.3)

whereλ : 6× [0,∞)→ R is a smooth function and1 = 1gij . Then we have the
following.

Proposition 1.1. Let (6,
0
g) be a closed Riemann surface. For any given smooth

initial value λ0, there exists a smooth solutionλ(t) of (1.3) on 6 × [0,∞).
Furthermore, there exists a subsequence of solutions that converges to one of
constant curvature metric.

Remark 1.1. If 6 is a 2-sphere then Proposition 1.1 holds up to the conformal
group. The crucial points for theC 0-estimate of the conformal factorλ (and then
the higher-order estimates as well) are the bounds on the

∫
6
R2 dµg and Bondi

mass
∫
6
e3λ dµ0. For details, see [Chr] and [Ch3].

In this paper, we will investigate similar properties of the flow(1.1) form = 2
as we did in the flow (1.3). First, we will show someCα-compactness properties
for F (Theorem 1.2, Corollary 1.3); then we will apply those results to the Calabi
flow. In fact, we prove some kind of Harnack estimate for the Calabi flow(1.1). As
consequences, under condition(∗∗) we show the long-time existence and asymp-
totic convergence of solutions of(1.1) oncompact Kähler surfaces with no nonzero
holomorphic tangent vector fields andR0 < 0 on(M, [ω0]) (Theorem 1.4, Theo-
rem1.5). Finally, combining with the results of [L], we show the blow-up behavior
of the Calabi flow on the ruled surface (Corollary 1.6).

We shall follow the notation of [G] and [Ch3] (see also Section 4). First, for a
sequence of smooth Kähler metrics{gi} on a compact Kähler surface(M, [ω0])

in a fixed Kähler classH�0, let gi = 0
gαβ̄(z, z̄)+ ϕiαβ̄(z, z̄) and consider

F i(z, z̄) = log
detgi

det
0
g

= log
det(

0
gαβ̄(z, z̄)+ ϕiαβ̄(z, z̄))

det(
0
gαβ̄(z, z̄))

.

Definition 1.1. We saythatF i satisfies the property(∗) if there is a pointx ∈M
and if there exist positive constantsρ, ε,H independent ofF i such that∫

B(x,ρ)

e−εF
i

dµ0 ≤ H. (∗)

Using results of [G] for the case of Riemannian manifolds with fixed conformal
class then yields the following theorem.

Theorem 1.2. Let {gi} be a sequence of smooth Kähler metrics on a compact
Kähler surface(M, [ω0]) in a fixed Kähler classH�0 such that:
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(i) F i(z, z̄) satisfies the property(∗); and
(ii) for fixed positive constantsK andp,∫

M

|Ric(gi)|p dµgi ≤ K, p > 2. (∗∗)

HereRic(gi) is the Ricci curvature tensor with respect togi.

Then there is a constantC such that

‖F i‖W2,p ≤ C.
Hence a subsequence of{F i} converges inCα with 0< α <

2p−4
p
.

Remark 1.2. It is worthy to note that the role ofF in a fixed Kähler class corre-
sponds to the role of the conformal factorλ in a fixed conformal class. We refer
to [Ch3; ChW; G] for details.

As a consequence, under condition(∗∗), property(∗) holds for a compact Kähler
surface withR0 < 0 (Lemma 4.2) and so we have the following.

Corollary 1.3. Let {gi} be a sequence of smooth Kähler metrics on a compact
Kähler surface(M, [ω0]) withR0 < 0 in a fixed Kähler classH� 0 such that(∗∗)
holds. Then there is a constantC such that

‖F i‖W2,p ≤ C.
Hence a subsequence of{F i} converges inCα with 0< α <

2p−4
p
.

With applications,F i(z, z̄)will be replaced byF(z, z̄, t) as in (1.2). Then we have
our next theorem as follows.

Theorem 1.4. Let (M, [ω0]) be a compact Kähler surface admitting no nonzero
holomorphic tangent vector fields. Under the flow(1.1),letF satisfy(1.2)on[0, T )
with the property(∗) and condition(∗∗); that is,∫

M

|Ric|p dµ ≤ K, p > 2

for the positive constantsH,K,p that are independent oft. Then the solution
of (1.1)exists onM × [0,∞). Moreover, there exists a subsequence of solutions
{g(t)} of (1.1) onM × [0,∞) that converges smoothly to one of constant scalar
curvature metric.

As a consequence of Theorem 1.4, under condition(∗∗), property(∗) holds when
(M, g0) is a Kähler surface withR0 < 0 (Lemma 4.2). Hence we have the fol-
lowing theorem.

Theorem 1.5. Let (M, [ω0]) be a compact Kähler surface admitting no nonzero
holomorphic tangent vector fields and withR0 < 0. Given the Calabi flow with
condition (∗∗) on [0, T ), the solution of(1.1) exists onM × [0,∞) and there
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exists a subsequence of solutions{g(t)} of (1.1) onM × [0,∞) that converges
smoothly to a negative constant scalar curvature metricg∞.

Remark 1.3. (i) If m = 1 then, under the flow (1.3), condition(∗∗) holds for
p = 2> 1. Then we have Proposition 1.1 without condition(∗∗).

(ii) If m = 2 then, under the flow(1.1) onM admitting no nonzero holomorphic
tangent vector fields, we have bounds on theL2-norm of scalar curvature, Ricci
curvature, and Riemannian curvature in the fixed Kähler class (Corollary 2.2).

(iii) LeBrun [L] proved the following. LetE → 6 be a rank-2 holomorphic
vector bundle over a compact Riemann surface6, and let(M, J ) = P(E) be the
total space of the associatedCP 1-bundle. Let [ω] be a Kähler class onM with
C1(M) · [ω] < 0 (e.g., genus(6) ≥ 2). Then [ω] contains a Kähler metric of neg-
ative constant scalar curvature if and only ifE is a semistable vector bundle; that
is,E =⊕Ej, where theEj are stable vector bundles in the sense of Mumford–
Takemoto [K; Lü; UY]. On the other hand, in [BB] the authors constructed a
rank-2 non-semistable holomorphic vector bundleE ′ over6 of genus≥ 2 such
thatP(E ′) admits no nonzero holomorphic tangent vector fields and does not ad-
mit an extremal Kähler metric in the fixed Kähler class (and then does not admit
a constant scalar curvature either).

In view of these results of [L] and [BB], we have the following corollary.

Corollary 1.6. Let E → 6 be a rank-2 holomorphic vector bundle over a
compact Riemann surface6 of genus≥ 2, whereE is not a semistable vector
bundle andP(E) admits no nonzero holomorphic tangent vector fields. Let[ω]
be a Kähler class onP(E) admitting a metric of negative scalar curvature(and
thenC1(P(E)) · [ω] < 0). Then the Calabi flow does blow up onP(E)× [0, T )
in the sense that, for anyp > 2,∫

P(E)

|Ric|p dµ→∞ as t → T .

Remark 1.4. (i) We may easily modify the example of [BB] so that the ruled
surfacesP(E) as in Corollary 1.6 do exist.

(ii) It may be possible forT = ∞.
It is difficult to estimate theC 0-bound of the fourth-order parabolic equation(1.1)
owing to a lack of the maximum principle.

We briefly describe the methods used in our proofs. In Section 2 we derive
the key estimate of equation(1.1) (Theorem 2.3). In Section 3—based on the
Green formula, [Cao] and [Y]—we have the Harnack estimate for the equation
(1.1). Then we obtain theC 0-bound for solutionF(t) of (1.2) and the higher-order
Wk,p-estimates of the solution for(1.1). Furthermore, if we assume the condition
(∗∗) and the uniformly lower bound for solutionF(t) of (1.2), then we have the
long-time existence and convergence of solutions of(1.1).
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In view of Section 3, we reduce the proof of our main theorems to finding a
uniformly lower bound ofF(t) in Section 4. In fact, following Theorem 3.2 and
the condition(∗∗), we have the uniformly lower bound for the solutionF of (1.2)
if R0 < 0. Finally, in Section 5 we study the asymptotic behavior of solutions
of (1.1).

We would like to thank Professor S.-T.Yau for his constant encouragement dur-
ing our work on this problem and the referee for valuable comments.

2. The Mass Decay Estimates

In this section we consider the Calabi flow(1.1) onM admitting no nonzero holo-
morphic tangent vector fields. Under this flow, we have the following lemma.

Lemma 2.1. For t ≥ t0, ∫
M

R2 dµ
∣∣
t
≤
∫
M

R2 dµ
∣∣
t0
.

Proof. The lemma follows easily from [C1].

Corollary 2.2. There exists a positive constantC that is independent oft such
that ∫

M

R2 dµ ≤ C
for 0 ≤ T ≤ ∞.
Remark 2.1. From [C1], we also have bounds on theL2-norm of Ricci curvature
and Riemannian curvature in the fixed Kähler class.

Next, we will derive the following integral bound oneF. From now on,C denotes
a generic constant that may vary from line to line.

Theorem 2.3. Under the Calabi flow on a compact Kähler surface(M, [ω0]),∫
M

eαF dµ0 ≤ C(α)
for 0 ≤ α <∞.
Remark 2.2. (i) In the proof of Theorem 2.3, we need only the bound on the
L2-norm of the Ricci curvature tensor that is satisfied owing to the flow.

(ii) Under this flow,

d

dt

∫
M

dµ = d

dt

∫
M

eF dµ0 =
∫
M

(1R) dµ = 0;
then the volume is preserved and∫

M

eF dµ0 <∞.
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(iii) For m > 2, the inequality (2.3) does not hold. This is one of the reasons
why the theorem works form = 2 only.

Proof of Theorem 2.3.First, with respect tog0,we have the Sobolev constantA0.

That is, forN = 2n
n−2, n = 2m, andϕ ∈C∞(M),(∫

M

|ϕ|N dµ0

)2/N

≤ A0

(∫
M

| 0∇ϕ|2 dµ0 +
∫
M

ϕ2 dµ0

)
.

But for ϕ = eF/Nf,(∫
M

|f |N dµ
)2/N

=
(∫

M

|ϕ|Ne−F dµ
)2/N

=
(∫

M

|ϕ|N dµ0

)2/N

≤ A0

(∫
M

| 0∇ϕ|2 dµ0 +
∫
M

ϕ2 dµ0

)
. (2.1)

Now, for f = eαF with α > 0 we have

10e
(2/N+2α)F = e(2/N+2α)F

[(
2

N
+ 2α

)
10F +

(
2

N
+ 2α

)2

| 0∇F |2
]

and so∫
M

| 0∇ϕ|2 dµ0 +
∫
M

ϕ2 dµ0

=
∫
M

| 0∇e(1/N+α)F |2 dµ0 +
∫
M

e(2/N+2α)F dµ0

=
(

1

N
+ α

)2 ∫
M

e(2/N+2α)F | 0∇F |2 dµ0 +
∫
M

e(2/N+2α)F dµ0

= −
(

1

N
+ α

)∫
M

e(2/N+2α)F10F dµ0 +
∫
M

e(2/N+2α)F dµ0.

But
−10F = 0

gαβ̄Rαβ̄ − R0,

and this implies that∫
M

| 0∇ϕ|2 dµ0 +
∫
M

ϕ2 dµ0

=
(

1

N
+ α

)∫
M

e(2/N+2α)F(
0
gαβ̄Rαβ̄ − R0) dµ0 +

∫
M

e(2/N+2α)F dµ0

≤ C1

∫
M

e(4/N−1+4α)F dµ0 + C2

∫
M

|0gαβ̄Rαβ̄ |2 dµ+ C3

∫
M

e(2/N+2α)F dµ0

≤ C1

∫
M

e(4/N−1+4α)F dµ0 + C3

∫
M

e(2/N+2α)F dµ0 + C4. (2.2)
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Together, (2.1) and (2.2) imply(∫
M

e(1+Nα)F dµ0

)2/N

≤ C5

(∫
M

e(4/N−1+4α)F dµ0+
∫
M

e(2/N+2α)F dµ0

)
+ C6.

In particular, form = 2,(∫
M

e(1+4α)F dµ0

)1/2

≤ C5

(∫
M

e4αF dµ0 +
∫
M

e(1/2+2α)F dµ0

)
+ C6. (2.3)

Now, forα > 0 we have(1+4α) > 4α and(1+4α) >
(

1
2+2α

)
. On the other

hand,
∫
M
eF dµ0 is bounded. Thus, for (say)α = 1

4 we have(∫
M

e2F dµ0

)1/2

≤ C5

(∫
M

eF dµ0 +
∫
M

eF dµ0

)
+ C6 ≤ C;

α = 1
2 yields Young’s inequality,(∫

M

e3F dµ0

)1/2

≤ C5

(∫
M

e2F dµ0 +
∫
M

e(3/2)F dµ0

)
+ C6

≤ C
(∫

M

e2F dµ0 +
∫
M

eF dµ0

)
+ C6

≤ C.
Repeating this iteration, one then obtains∫

M

eαF dµ0 ≤ C(α)
for 0 ≤ α <∞.

3. A Priori Estimates

In this section (following [Cao; Ch1; Chr; Y]), under(∗) and(∗∗), we will de-
rive all Wk,p-norm bounds on the solutionF of (1.2); in particular, we have the
W2,p-norm bounds on{F i}. This, together with the local existence result, will
then show the long-time existence of solutions of(1.1) and (1.2).

First set

φ = ϕ − 1

Vol(M)

∫
M

ϕ dµ0.

Then, as shown in [Y], we have the following result.

Lemma 3.1. There exist constantC8 andC9, independent oft, such that

sup
M×[0,T )

φ ≤ C8, sup
M×[0,T )

∫
M

|φ| dµ0 ≤ C9.

Based on the Green formula and Theorem 2.3, we have the following uniformly
upper bound onF(t) (or {F i}).
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Theorem 3.2. Under the flow(1.2), if (∗∗) is satisfied then

F ≤ C10

for all t ∈ [0,∞].

Proof. From the Green formula, letG(X, ·) denote the Green’s function for10

with singularityX ∈ M. ThenG(X, ·) ≥ 0 and‖G(X, ·)‖Lq ≤ C for q < 2
(m = 2). Now

eF(X) =
∫
M
eF dµ0∫
M
dµ0

−
∫
M

G(X, ·)10e
F dµ0

=
∫
M
eF dµ0∫
M
dµ0

−
∫
M

G(X, ·)eF(10F + |
0∇F |2) dµ0

≤ C +
∫
M

G(X, ·)|0gαβ̄Rαβ̄ − R0| dµ

≤ C +
(∫

M

G(X, ·)q dµ
)1/q(∫

M

|0gαβ̄Rαβ̄ |p dµ
)1/p

≤ C + C
(∫

M

G(X, ·)q dµ
)1/q

for q < 2 (sincep > 2). But from Theorem 2.3, for 1/l1+ 1/l2 = 1 andql1 < 2
we have(∫

M

G(X, ·)q dµ
)1/q

=
(∫

M

G(X, ·)qeF dµ0

)1/q

≤
[(∫

M

G(X, ·)ql1 dµ0)
1/l1

(∫
M

el2F dµ0

)1/l2]1/q

≤ C.
Then

eF(X) ≤ C,
which completes the proof of the theorem.

Corollary 3.3. Under the flow(1.2), if (∗∗) is satisfied then

‖φ‖L∞ ≤ C11.

Proof. From Lemma 3.1, we can renormalizeφ such thatφ ≤ −1. Then use [Cao,
Lemma 3] except replace(1.14) in theproof [Cao, p. 364] by∫
M

(−φ)p−2| 0∇φ|2 dµ0 ≤ n!
∫
M

(−φ)p−1

p −1
(eF −1) dµ0 ≤ C

p −1

∫
M

(−φ)p−1dµ0.

Finally, use a Nash–Moser iteration argument to obtain theC 0-estimate forφ.
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Theorem 3.4. LetF(t) satisfy(1.2),and suppose that(∗) and (∗∗) hold. Then
there exists a constantC = C(l) > 0 (l ≥ 1) such that

‖ 0∇ lF(z, z̄, t)‖Lp ≤ C ∀t ∈ [0,∞].

Moreover, ifp > 2 then

‖F(t)‖W2,p ≤ C ∀t ∈ [0,∞].

Remark 3.1. For the sequence{F i}, under(∗) and(∗∗) we have only theW2,p-
norm bounds; that is,

‖F i‖W2,p ≤ C, p > 2.

Proof of Theorem 3.4.From Lemma 4.1, under condition(∗∗), the property(∗)
implies

F ≥ −C0.

This and Theorem 3.2 plus(∗∗) imply∫
M

(10F )
p dµ0 ≤ C, p > 2,

and so
‖F‖W2,p ≤ C. (3.1)

On the other hand, by [Chr, Sec. 4]—in particular, by the interpolation inequality
and Sobolev imbedding theorem for 4-manifolds—it follows that

d

dt
‖ 0∇ lF‖Lp ≤ −2‖ 0∇ l+2F‖Lp + C‖F − 〈F 〉‖W2,p

where〈F 〉 = ( ∫
M
F dµ0

)/( ∫
M
dµ0

)
. Together, these results imply that

‖ 0∇ lF‖Lp ≤ C.
We refer to [Ch1; Chr] for details.

Applying the results as in [Y] then yields the following.

Proposition 3.5. There exist constantsC12, C13 such that

0< m+10ϕ ≤ C13 exp
(
C12

(
ϕ − inf

M×[0,T )
ϕ
))

for all t ∈ [0, T ).

Then the higher-order estimates for(1.1) will be established. For details, see
[Cao; Y].

4. Find a Lower Bound

In view of Section 3, we reduce the proof of our main theorems to finding a uni-
formly lower bound onF(t) (or F i).
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Definition 4.1. We say thatF(t) (or F i) satisfies the property(∗) if there is a
pointx ∈M as well as positive constantsρ, ε,H such that∫

B(x,ρ)

e−εF dµ0 ≤ H . (∗)

Lemma 4.1. LetF satisfy(1.2)on a fixed Kähler class(M, [ω0]) with condition
(∗∗) and the property(∗). Then there exist positive constantsC ′0, δ0 such that∫

M

e−δ0F dµ0 ≤ C ′0. (4.1)

As a consequence, there is a constantC0 such that

F ≥ −C0. (4.2)

Remark 4.1. From Theorem 3.2, we have the upper bound

F ≤ C10.

This is the key point to have a lower bound onF.

Proof of Lemma 4.1.Consider∫
M

| 0∇e−δF |2 dµ0 = −
∫
M

e−δF10e
−δF dµ0

= −
∫
M

e−2δF(−δ10F + δ2| 0∇F |2) dµ0

≤ δ
∫
M

e−2δF(−0
gαβ̄Rαβ̄ + R0) dµ0

≤ δ
∫
M

e−2δFR0 dµ0 + δ
∫
M

e−2δF(−0
gαβ̄Rαβ̄) dµ0. (4.3)

Now fix t and letEb = {p ∈M :
0
gαβ̄Rαβ̄ ≤ b}. Then∫

M

e−2δF(−0
gαβ̄Rαβ̄) dµ0 ≤

∫
E0

e−2δF(−0
gαβ̄Rαβ̄) dµ0. (4.4)

From the computation of [Y, (2.23)], at the pointq where exp{−C14ϕ}{2+10ϕ}
achieves its maximum onE0, we have

e−F(q)(2+10ϕ)
2(q) ≤ C15(2+10ϕ)(q)−10F(q)+ C16. (4.5)

But onE0 we have−10F = 0
gαβ̄Rαβ̄ −R0 ≤ −R0 and, from Theorem 3.2,F ≤

C10 overM. This implies

(2+10ϕ)
2(q) ≤ C17(2+10ϕ)(q)+ C18

and then
(2+10ϕ)(q) ≤ C19.

These inequalities and Corollary 3.3 imply, as in [Y, (2.24)], that



228 Shu-Cheng Chang

0< (2+10ϕ) ≤ C19 exp{C14(ϕ − inf ϕ)} ≤ C20 (4.6)

onE0. Moreover, (4.6) and (4.5) imply

(2+10ϕ)
2(q) ≤ C21+ 0

gαβ̄Rαβ̄(q). (4.7)

Next considerEs ⊆ E0, s = −C21+ C22e
inf F ≤ 0 for some constantC22,

which is possible because ofF ≤ C10. Then use the same method as before, now
onEs, to obtain

(2+10ϕ)
2(q ′) ≤ C21+ 0

gαβ̄Rαβ̄(q
′) ≤ C22e

inf F ≤ C22e
F

for some pointq ′; from (4.6),

0< (2+10ϕ) ≤ C23e
(1/2)F (4.8)

onEs.
On the other hand, we may choose (as in [Y, (2.8)]) a coordinate system at a

point such that
0
gαβ̄ = δαβ̄ andϕαβ̄ = δαβ̄ϕαᾱ. Then, at that point we have

gαβ̄ = δαβ̄(1+ ϕαᾱ)−1 (4.9)

and, sinceeF = detg = (1+ ϕ11̄)(1+ ϕ22̄),

(2+10ϕ) = (1+ ϕ11̄)+ (1+ ϕ22̄) ≥ 2eF/2. (4.10)

Then, from (4.10) and (4.8) we have

C24e
−F/2 ≤ gαᾱ ≤ C25e

−F/2

and so
|R| ≥ C26e

−F/2|0gαβ̄Rαβ̄ | (4.11)
onEs.

From (4.4) and (4.11) it now follows that, for smallδ with
(

1
2 + 2δ

)
q ≤ 1,

1/q +1/p = 1, andp > 2,∫
M

e−2δF(−0
gαβ̄Rαβ̄) dµ0

≤
∫
E0

e−2δF(−0
gαβ̄Rαβ̄) dµ0

≤
∫
Es

e−F/2−2δF(−e−F/2 0
gαβ̄Rαβ̄) dµ+ C27

∫
M

e−2δF dµ0

≤
(∫

Es

e(−1/2−2δ)qF dµ

)1/q(∫
Es

(−e−F/2 0
gαβ̄Rαβ̄)

p dµ

)1/p

+ C27

∫
M

e−2δF dµ0

≤ C28+ C27

∫
M

e−2δF dµ0.

From (4.3) we may then conclude that∫
M

| 0∇e−δF |2 dµ0 ≤ C29+ δC30

∫
M

e−2δF dµ0.



Calabi Flow on Kähler Surfaces 229

Now letλ1 denote the first nonzero eigenvalue of10. By Rayleigh inequality,
we have∫

M

e−2δF dµ0 ≤
( ∫

M
e−δF dµ0

)2( ∫
M
dµ0

) + 1

λ1

∫
M

| 0∇e−δF |2 dµ0

≤
( ∫

M
e−δF dµ0

)2( ∫
M
dµ0

) + C29

λ1
+ δ

λ1
C30

∫
6

e−2δF dµ0. (4.12)

But for δ < ε, one has∫
M

e−δF dµ0 =
∫
Bρ

e−δF dµ0 +
∫
Bcρ

e−δF dµ0

≤ C +
(∫

Bcρ

e−2δF dµ0

)1/2(∫
Bcρ

dµ0

)1/2

and then, for anyη > 0,( ∫
M
e−δF dµ0

)2( ∫
M
dµ0

) ≤ C(η)+ (1+ η)
( ∫

Bcρ
dµ0

)( ∫
M
dµ0

) ∫
M

e−2δF dµ0.

This implies that∫
M

e−2δF dµ0 ≤ C(η)+ (1+ η)
( ∫

Bcρ
dµ0

)( ∫
M
dµ0

) ∫
M

e−2δF dµ0+ δ

λ1
C30

∫
M

e−2δF dµ0.

Then chooseη, δ small enough and takeδ0 = 2δ, which gives us (4.1).
To see that (4.2) follows from (4.1), apply the Green formula again. Now take

δ1� δ0 with δ1q2 ≤ δ0, 1/q1+1/q2 = 1, andq1 < 2; this yields

e−δ1F(x) =
∫
M
e−δ1F dµ0∫
M
dµ0

−
∫
M

G(x, ·)10(e
−δ1F ) dµ0

≤ C −
∫
M

G(x, ·)e−δ1F{−δ110F + δ2
1|

0∇F |2} dµ0

≤ C + δ1

∫
M

e−δ1FG(x, ·)[R0 − 0
gαβ̄Rαβ̄ ] dµ0

≤ C + C
∫
M

e−δ1FG(x, ·) dµ0 +
∫
M

e−δ1FG(x, ·)[−0
gαβ̄Rαβ̄ ] dµ0

≤ C + C
(∫

M

Gq1 dµ0

)1/q1
(∫

M

(e−δ1F )q2 dµ0

)1/q2

+
∫
E0

e−δ1FG(x, ·)[−0
gαβ̄Rαβ̄ ] dµ0

≤ C31+
∫
E0

e−δ1FG(x, ·)[−0
gαβ̄Rαβ̄ ] dµ0. (4.13)
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As before, chooseδ1 small with
(

1
2 + δ1

)
q < 1, 1/q + 1/p = 1, 1/q ′ +1/q ′′ = 1,

qq ′ < 2, andp > 2:∫
E0

e−δ1FG(x, ·)[−0
gαβ̄Rαβ̄ ] dµ0

≤
∫
Es

e−F/2−δ1FG(−e−F/2 0
gαβ̄Rαβ̄) dµ+ C27

∫
M

e−δ1FGdµ0

≤
(∫

Es

Gqe(−1/2−δ1)qF dµ
)1/q(∫

Es

(−e−F/2 0
gαβ̄Rαβ̄)

p dµ

)1/p

+ C31

≤ C
(∫

Es

Gqe [1−(1/2+δ1)q]F dµ0

)1/q

+ C31

≤ C
(∫

Es

Gqq ′ dµ0

)1/q ′(∫
Es

e [1−(1/2+δ1)q]q ′′F dµ0

)1/q ′′

+ C31

≤ C32.

Then
e−δ1F(x) ≤ C33,

which completes the proof of Lemma 4.1.

Lemma 4.2. LetF satisfy(1.2)on a fixed Kähler class(M, [ω0]) with condition
(∗∗) andR0 < 0. ThenF(t) satisfies(∗).
Proof. SinceR0 is negative, there exists a positive constantv > 0 with −R0 ≥
v > 0. From (4.3), one now obtains

δ−1
∫
M

| 0∇e−δF |2 dµ0

≤
∫
M

e−2δFR0 dµ0 +
∫
M

e−2δF(−0
gαβ̄Rαβ̄) dµ0

≤
∫
M

e−2δFR0 dµ0 +
∫
E0

e−2δF(−0
gαβ̄Rαβ̄) dµ0

≤ −v
∫
M

e−2δF dµ0 +
∫
E0

e−2δF(−0
gαβ̄Rαβ̄) dµ0

≤ −v
∫
M

e−2δF dµ0 −
∫
E0\Es

e−2δF 0
gαβ̄Rαβ̄ dµ0 + C28. (4.14)

Again as in [Y, (2.23)], at the maximum pointq we have

e−F(q)(2+10ϕ)
2(q) ≤ 2C34(2+10ϕ)(q)+ 4 inf

i 6=l
0
Riīll̄ −10F(q).

From [Y, (2.21)], we may chooseC33 + inf i 6=l
0
Riīll̄ = 1. BecauseR0 < 0 and

0
R11̄22̄ +

0
R22̄1̄1= R0 atq, it follows that infi 6=l

0
Riīll̄ < 0 and
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C(2+10ϕ)
2 ≤

(
2− 2 inf

i 6=l
0
Riīll̄

)
(2+10ϕ)+ 0

gαβ̄Rαβ̄ + 4 inf
i 6=l

0
Riīll̄ − R0

≤
(
2− 2 inf

i 6=l
0
Riīll̄

)
(2+10ϕ)+ 0

gαβ̄Rαβ̄ .

Now we may assume that

(2+10ϕ) ≤ v

2(2− 2 inf i 6=l
0
Riīll̄ )

onE0\Es. Otherwise,

C35 ≤ (2+10ϕ) = (1+ ϕ11̄)+ (1+ ϕ22̄) ≤ C20.

But eF = detg = (1+ ϕ11̄)(1+ ϕ22̄), soF has a uniformly lower bound. In this
case (say,D and|0gαβ̄Rαβ̄ | ≤ C21),∫

D

e−2δF 0
gαβ̄Rαβ̄ dµ0 ≤ C36

and ∫
E0

e−2δF 0
gαβ̄Rαβ̄ dµ0 ≤ C28+ C36+

∫
E0\(Es∪D)

e−2δF 0
gαβ̄Rαβ̄ dµ0.

OnE0\(Es ∪D) we have

(2+10ϕ) ≤ 1
2v +

0
gαβ̄Rαβ̄

and so
−0
gαβ̄Rαβ̄ ≤ 1

2v.

From (4.14), it follows that

δ−1
∫
M

| 0∇e−δF |2 dµ0 ≤ −v
∫
M

e−2δF dµ0 +
∫
E0

e−2δF(−0
gαβ̄Rαβ̄) dµ0

≤ −1

2
v

∫
M

e−2δF dµ0 + C28+ C36.

Thus ∫
M

e−2δF dµ0 ≤ C37,

and the lemma is proved.

Corollary 4.3. Given the assumptions of Lemma 4.2, we have

F ≥ −C38.

5. Asymptotic Convergence to the Metric
with Constant Scalar Curvature

In this section, let(M, [ω0]) be a compact Kähler surface admitting no nonzero
holomorphic tangent vector fields. We will show that there exists a subsequence
of solutions of(1.1) that converges to the metric with constant Scalar curvature.
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Consider the energy functional8(g) together with Simon’s general results [S].
Then we have the following theorem.

Theorem 5.1. Given the assumptions of Theorem 1.5,

R
C∞−−→ r as tj →∞,

wherer is constant withr = ( ∫
M
R dµ

)/( ∫
M
dµ
)
.

Remark 5.1. Here
∫
M
R dµ and

∫
M
dµ are all constants in a fixed Kähler class

H� 0.

Proof of Theorem 5.1.In view of (1.1), (1.2), Lemma 2.1, and the Cauchy–Schwarz
inequality,

− d
dt

∫
M

R2 dµ = 2
∫
M

|Rαβ̄ |2 dµ ≥
∫
M

(1R)2 dµ

and so ∫ ∞
0

∫
M

(1R)2 dµ dt <∞.
Then there exists a subsequence{tj } such that∫

M

(1R)2 dµ
∣∣
tj
→ 0 as tj →∞.

We know that‖F‖Wk,2 ≤ C for all 0 ≤ tj ≤ ∞, so the elliptic estimates and
interpolation inequalities yield

R
C∞−−→ r and g

C∞−−→ g∞
astj →∞ such that

1g∞R∞ = 0.

Now, Theorem 1.2 and Corollary 1.3 follow from Theorem 3.2, Lemma 4.1,
Lemma 4.2, and (3.1). Theorem 1.4 and Theorem 1.5 follow from Theorem 3.4,
Lemma 4.1, Lemma 4.2, and Theorem 5.1.

References

[A] T. Aubin, Nonlinear analysis on manifolds, Monge–Ampère equations,Grund-
lehren Math. Wiss., 252, Springer-Verlag, New York, 1982.

[BB] D. Burns and P. de Bartolomeis,Stability of vector bundles and extremal
metrics,Invent. Math. 92 (1988), 403–407.

[C1] E. Calabi,Extremal Kähler metrics,Seminars on differential geometry (S. T.Yau,
ed.), pp. 259–290, Princeton Univ. Press, Princeton, NJ, 1982.

[C2] , Extremal Kähler metrics II,Differential geometry and complex analysis
(I. Chavel, H. M. Farkas, eds.), pp. 95–114, Springer-Verlag, New York, 1985.

[Cao] H. D. Cao,Deformation of Kähler metrics to Kähler–Einstein metrics on
compact Kähler manifolds,Invent. Math. 81 (1985), 359–372.

[Ch1] S. C. Chang,The Calabi flow∂λ/∂t = 1R on Einstein manifolds,Lectures
on geometry and analysis (S. T. Yau, ed.), pp. 29–39, International Press,
Cambridge, MA, 1997.



Calabi Flow on Kähler Surfaces 233

[Ch2] , Compactness theorems of extremal-Kähler manifolds with positive first
Chern class,Ann. Global Anal. Geom. 17 (1999), 267–287.

[Ch3] , Global existence and convergence of solutions of the Calabi flow on
surfaces of genush ≥ 2, J. Math. Kyoto Univ. 40 (2000).

[ChW] S. C. Chang and J. T. Wu,On the existence of extremal metrics forL2-norm
of scalar curvature on closed 3-manifolds,J. Math. Kyoto Univ. 39 (1999),
435–454.
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