An Alternative Proof of an Extension Theorem of T. Ohsawa

Klas Diederich \& Gregor Herbort

Introduction

In [DHOh; OhT; Oh2; Oh3], extension theorems for weighted square-integrable holomorphic functions that are defined on intersections of lower-dimensional affine subspaces with a pseudoconvex domain D were proved on the basis of L^{2}-estimates for the $\bar{\partial}$-operator. (See also [Oh2; De; Bou; Mv] for generalizations to holomorphic differential forms with values in certain vector bundles.) They have proved to be useful in many applications, among them the behavior of the Bergman kernel [DH2; McN; JP] and the construction of integral kernels for the $\bar{\partial}$-equation, [BonD].

It is therefore of interest to have proofs for such extension results that are as elementary as possible. For the theorem of Ohsawa and Takegoshi (see [OhT]), such new proofs have been given, for instance, in [Bs; McN; Siu] and also by T. Ohsawa himself (oral communication). Our goal here is to give also an elementary proof for the refined extension theorem of Ohsawa [Oh3] that allows so-called negligible weights in the extension. Our proof will be free of tools from Kähler geometry.

Let us first clarify some notations and state the theorem. Let $D \subset \mathbb{C}^{n}$ be an arbitrary pseudoconvex domain in \mathbb{C}^{n}. For a plurisubharmonic function ψ on D, we denote by $H^{2}(D, \psi)$ the Hilbert space of holomorphic functions in $L^{2}(D, \psi)$. We also fix an affine linear subspace $H \subset \mathbb{C}^{n}$ of codimension k for which $D^{\prime}=$ $D \cap H \neq \emptyset$. Then the extension theorem of [Oh3] can be stated in the following form.
0.1. Theorem. Assume that there exists on D a plurisubharmonic function V such that

$$
C_{V}:=\sup _{D}(V+2 k \log \operatorname{dist}(\cdot, H))<\infty .
$$

Then there exists a continuous linear extension operator $E_{\psi}^{V}: H^{2}\left(D^{\prime}, \psi+V\right) \rightarrow$ $H^{2}(D, \psi)$ whose operator norm is bounded by

$$
\left\|E_{\psi}^{V}\right\|^{2} \leq C_{n} e^{C_{V}} .
$$

The constant C_{n} depends only on the dimension and not on the choice of ψ and D.
Received September 10, 1998. Revision received February 9, 1999.
Michigan Math. J. 46 (1999).

In Section 1 we will reduce the proof to a simpler situation. Section 2 contains the basic estimate that we use. The proof of Theorem 0.1 will be given in Section 3, and Section 4 contains our application to the Bergman kernel.

1. Reduction Steps

Let D, D^{\prime}, ψ, and V be as in Theorem 0.1. At first we show that it is enough to prove:

Any $f \in H^{2}\left(D^{\prime}, \psi+V\right)$ admits a holomorphic extension $\tilde{f} \in H^{2}(D, \psi)$
such that

$$
\begin{equation*}
\|\tilde{f}\|_{\psi}^{2} \leq C_{n} e^{C_{V}}\|f\|_{D^{\prime}, \psi+V}^{2} \tag{1}
\end{equation*}
$$

Namely, suppose that we have shown this. Let $h^{2}(D, \psi)$ denote the (closed) subspace of all functions $g \in H^{2}(D, \psi)$ such that $g \mid D^{\prime}=0$, and denote by $\pi^{\prime}: H^{2}(D, \psi) \rightarrow h^{2}(D, \psi)$ the orthogonal projection. Then, for a function $f \in$ $H^{2}\left(D^{\prime}, \psi+V\right)$, we choose an extension $\tilde{f} \in H^{2}(D, \psi)$ and put

$$
E_{\psi}^{V}(f):=\tilde{f}-\pi^{\prime}(\tilde{f})
$$

It is easy to check that this definition is independent of the choice of the extension \tilde{f} and hence is consistent. Also, it is elementary to show that E_{ψ}^{V} defines the desired extension operator.

For the proof of (1), the following further reductions are possible. Let $\Phi: D \rightarrow$ \mathbb{R}^{+}be a strongly plurisubharmonic exhaustion function and $T \subset \mathbb{R}^{+}$an unbounded set such that $D_{t}:=\{\Phi<t\}$ is strictly pseudoconvex with a smooth boundary for all $t \in T$. Let $D_{t}^{\prime}=D_{t} \cap H$.

A routine argument based upon the Alaoglu-Bourbaki theorem on weak- \star compactness of the unit ball in a normed space then justifies that it suffices to show:

For each $t \in T$ and $f \in H^{2}\left(D_{t}^{\prime}, \psi+V\right)$, there is an extension $\tilde{f}_{t} \in$ $H^{2}\left(D_{t}, \psi\right)$ for f satisfying

$$
\begin{equation*}
\left\|\tilde{f}_{t}\right\|_{D_{t}, \psi}^{2} \leq C_{n} e^{C_{V}}\|f\|_{D^{\prime}, \psi+V}^{2} \tag{2}
\end{equation*}
$$

with a constant C_{n} independent of ψ and t.
Finally it obviously suffices to prove (2) under the additional assumption that ψ and V are smooth. Namely, on D_{t} one can choose decreasing sequences $\left(\psi_{s}\right)_{s}$ and $\left(V_{s}\right)_{s}$ of smooth plurisubharmonic functions that converge to ψ and V, respectively. Then (2) applies with ψ_{s} and V_{s} instead of ψ and V. Hence the smoothness assumption on ψ and V can be removed by applying the Alaoglu-Bourbaki theorem once more.

2. A Basic Estimate for the $\bar{\partial}$ Operator

Let Ω denote a smooth bounded domain in \mathbb{C}^{n} with a defining function r that is normalized in such a way that $|\nabla r|=1$ on $\partial \Omega$. Let φ be a C^{2}-smooth function on
$\bar{\Omega}$. Let $q \in\{0, \ldots, n-1\}$. The standard $\bar{\partial}$-operator on $L_{(0, q)}^{2}(\Omega, \varphi)$ has a closure, also denoted by $\bar{\partial}$. By $\bar{\partial}_{\varphi}^{*}: L_{(0, q+1)}^{2}(\Omega, \varphi) \rightarrow L_{(0, q)}^{2}(\Omega, \varphi)$ we denote the closure of the formal adjoint of $\bar{\partial}$. The space

$$
\mathcal{F}_{q}(\Omega, \varphi):=C_{(0, q+1)}^{1}(\bar{\Omega}) \cap \operatorname{dom}\left(\bar{\partial}_{\varphi}^{*}\right)
$$

consists of all $(0, q+1)$-forms $u \in C_{(0, q+1)}^{1}(\bar{\Omega})$ satisfying the Neumann condition

$$
\begin{equation*}
u \downharpoonleft \partial r=0 \quad \text { on } \partial \Omega \tag{3}
\end{equation*}
$$

This space is known to be dense in $L_{(0, q+1)}^{2}(\Omega, \varphi) \cap \operatorname{dom}\left(\bar{\partial}_{\varphi}^{*}\right)$ with respect to the graph norm $u \mapsto\|u\|_{\varphi}+\|\bar{\partial} u\|_{\varphi}+\left\|\bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}$ (see [Hör, p. 100]).

For a function $f \in C^{2}(\bar{\Omega})$ and a $(0,1)$-form $u=\sum_{j=1}^{n} u_{j} d \bar{z}_{j}$, we write for short

$$
\mathcal{L}_{f}(z ; u):=\sum_{j, k=1}^{n} \frac{\partial^{2} f}{\partial z_{j} \partial \bar{z}_{k}}(z) u_{j}(z) \overline{u_{k}}(z)
$$

2.1. Lemma (The a priori formula for $\bar{\partial}$). Let Ω and φ be as before and let $\eta \in$ $C^{2}(\bar{\Omega})$ be a positive function. Then for $u=u_{1} d \bar{z}_{1}+\cdots+u_{n} d \bar{z}_{n} \in \mathcal{F}_{1}(\Omega, \varphi)$ we have
(a)

$$
\begin{align*}
&\|\sqrt{\eta} \bar{\partial} u\|_{\varphi}^{2}+\left\|\sqrt{\eta} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \\
&=\left.\int_{D_{t}}\left(\eta \mathcal{L}_{\varphi}-\mathcal{L}_{\eta}\right)(z ; u) e^{-\varphi} d \lambda(z)+2 \operatorname{Re}(u\lrcorner \partial \eta, \bar{\partial}_{\varphi}^{*} u\right)_{\varphi} \\
&+\sum_{i, j=1}^{n} \int_{\Omega} \eta\left|\frac{\partial u_{i}}{\partial \bar{z}_{j}}\right|^{2} e^{-\varphi} d \lambda+\int_{\partial \Omega} \eta \mathcal{L}_{r}(\zeta ; u) e^{-\varphi} d \sigma(\zeta) ; \tag{4}
\end{align*}
$$

(b) in particular, if Ω is pseudoconvex then

$$
\begin{align*}
& \|\sqrt{\eta} \bar{\partial} u\|_{\varphi}^{2}+\left\|\sqrt{\eta} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \\
& \quad \geq \int_{\Omega}\left(\eta \mathcal{L}_{\varphi}-\mathcal{L}_{\eta}\right)(z ; u) e^{-\varphi} d \lambda(z)+2 \operatorname{Re}\left(u \downharpoonleft \partial \eta, \bar{\partial}_{\varphi}^{*} u\right)_{\varphi} \tag{5}
\end{align*}
$$

Here $d \lambda$ denotes the Lebesgue measure and d σ the area measure on $\partial \Omega$.
Proof. The first formula is stated in [BoS]. For the reader's convenience we include a proof here. It uses the same technique (based upon integration by parts) as applied by Hörmander [Hör]. Similar computations have been carried out in [$\mathrm{McN} ; \mathrm{Bs} ; \mathrm{Siu}]$. First we recall the integral formula of Gauss:

$$
\begin{equation*}
\int_{\Omega} \frac{\partial f}{\partial z_{j}} \bar{g} d \lambda=-\int_{\Omega} f \frac{\partial \bar{g}}{\partial z_{j}} d \lambda+\int_{\partial \Omega} \frac{\partial r}{\partial z_{j}} f \bar{g} d \sigma \tag{6}
\end{equation*}
$$

for functions $f, g \in C^{1}(\bar{\Omega})$. For $1 \leq k \leq n$, let δ_{k} denote the operator

$$
\delta_{k} h=e^{\varphi} \frac{\partial\left(e^{-\varphi} h\right)}{\partial z_{k}} \quad \text { for } h \in C^{1}(\bar{\Omega})
$$

With this notation, for $u=u_{1} d \bar{z}_{1}+\cdots+u_{n} d \bar{z}_{n} \in \mathcal{F}_{1}(\Omega, \varphi)$ we can write

$$
\begin{equation*}
\bar{\partial}_{\varphi}^{*} u=-\sum_{j=1}^{n} \delta_{j} u_{j} . \tag{7}
\end{equation*}
$$

We start by computing

$$
\left\|\sqrt{\eta} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2}=\sum_{j, k=1}^{n} \int_{\Omega} \eta \delta_{j} u_{j} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda,
$$

using integration by parts. From formula (6) for $f=e^{-\varphi} u_{j}$ and $g=\eta \delta_{k}\left(u_{k}\right)$, we obtain

$$
\begin{align*}
\int_{\Omega} \eta \delta_{j}\left(u_{j}\right) \overline{\delta_{k}\left(u_{k}\right)} e^{-\varphi} d \lambda= & \int_{\Omega} \eta \frac{\partial\left(e^{-\varphi} u_{j}\right)}{\partial z_{j}} \overline{\delta_{k}\left(u_{k}\right)} d \lambda \\
= & -\int_{\Omega} e^{-\varphi} u_{j} \frac{\partial\left(\eta \overline{\delta_{k}\left(u_{k}\right)}\right)}{\partial z_{j}} d \lambda+\int_{\partial \Omega} \frac{\partial r}{\partial z_{j}} u_{j} \overline{\delta_{k} u_{k}} \eta e^{-\varphi} d \sigma \\
= & -\int_{\Omega} e^{-\varphi} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k}\left(u_{k}\right)} d \lambda-\int_{\Omega} e^{-\varphi} u_{j} \eta \frac{\partial\left(\overline{\delta_{k}\left(u_{k}\right)}\right)}{\partial z_{j}} d \lambda \\
& +\mathcal{I}_{1}(j, k) \tag{8}
\end{align*}
$$

where

$$
\mathcal{I}_{1}(j, k):=\int_{\partial \Omega} \frac{\partial r}{\partial z_{j}} u_{j} \overline{\delta_{k} u_{k}} \eta e^{-\varphi} d \sigma .
$$

Now one has a commutator relation for the δ_{k}, namely,

$$
\left[\delta_{k}, \frac{\partial}{\partial \bar{z}_{j}}\right]=\frac{\partial^{2} \varphi}{\partial z_{k} \partial \bar{z}_{j}} .
$$

Substituting this into the second member on the right-hand side of (8), we have

$$
\begin{aligned}
-\int_{\Omega} e^{-\varphi} u_{j} \eta \frac{\partial\left(\overline{\delta_{k}\left(u_{k}\right)}\right)}{\partial z_{j}} d \lambda & =-\int_{\Omega} e^{-\varphi} u_{j} \eta \frac{\overline{\partial\left(\delta_{k}\left(u_{k}\right)\right)}}{\partial \bar{z}_{j}} d \lambda \\
& =\int_{\Omega} e^{-\varphi} u_{j} \eta \overline{\left(\frac{\partial^{2} \varphi}{\partial z_{k} \partial \bar{z}_{j}}-\delta_{k} \frac{\partial}{\partial \bar{z}_{j}}\right) u_{k}} d \lambda \\
& =\int_{\Omega} e^{-\varphi} \eta \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} d \lambda-\overline{\int_{\Omega} e^{-\varphi} \eta \overline{u_{j}} \delta_{k} \frac{\partial u_{k}}{\partial \bar{z}_{j}} d \lambda}
\end{aligned}
$$

The second integral on the right side is again transformed by Gauss' formula:

$$
\begin{align*}
-\int_{\Omega} e^{-\varphi} \eta \bar{u}_{j} \delta_{k}\left(\frac{\partial u_{k}}{\partial \bar{z}_{j}}\right) d \lambda= & -\int_{\Omega} \eta \overline{u_{j}} \frac{\partial}{\partial z_{k}}\left(e^{-\varphi} \frac{\partial}{\partial \bar{z}_{j}} u_{k}\right) d \lambda \\
= & \int_{\Omega} e^{-\varphi} \eta \frac{\partial \overline{u_{j}}}{\partial z_{k}} \frac{\partial u_{k}}{\partial \bar{z}_{j}} d \lambda \\
& +\int_{\Omega} \frac{\partial \eta}{\partial z_{k}} \overline{u_{j}} \frac{\partial u_{k}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda-\mathcal{I}_{2}^{\prime}(j, k), \tag{9}
\end{align*}
$$

where

$$
\mathcal{I}_{2}^{\prime}(j, k)=\int_{\partial \Omega} \eta \frac{\partial r}{\partial z_{k}} \overline{u_{j}} \frac{\partial u_{k}}{\partial \bar{z}_{j}} e^{-\varphi} d \sigma .
$$

The complex conjugate of this is
$-\overline{\int_{\Omega} e^{-\varphi} \eta \overline{u_{j}} \delta_{k} \frac{\partial u_{k}}{\partial \bar{z}_{j}} d \lambda}=\int_{\Omega} e^{-\varphi} \eta \frac{\partial u_{j}}{\partial \bar{z}_{k}} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} d \lambda+\int_{\Omega} \frac{\partial \eta}{\partial \bar{z}_{k}} u_{j} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda-\mathcal{I}_{2}(j, k)$,
where

$$
\mathcal{I}_{2}(j, k):=\int_{\partial \Omega} \eta \frac{\partial r}{\partial \bar{z}_{k}} u_{j} \frac{\partial \overline{u_{k}}}{\partial z_{j}} e^{-\varphi} d \sigma .
$$

If we substitute this into the computations carried out so far, we obtain

$$
\begin{aligned}
\int_{\Omega} \eta \delta_{j}\left(u_{j}\right) \overline{\delta_{k}\left(u_{k}\right)} e^{-\varphi} d \lambda= & -\int_{\Omega} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda+\int_{\Omega} \frac{\partial \eta}{\partial \bar{z}_{k}} u_{j} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda \\
& +\int_{\Omega} \eta \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} e^{-\varphi} d \lambda+\int_{\Omega} \eta \frac{\partial u_{j}}{\partial \bar{z}_{k}} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda \\
& +\mathcal{I}_{1}(j, k)-\mathcal{I}_{2}(j, k) .
\end{aligned}
$$

Next we want to sum this over all indices $j, k \in\{1, \ldots, n\}$. The Neumann condition (3) at the level of $(0,1)$-forms reduces to

$$
\begin{equation*}
\sum_{j=1}^{n} u_{j} \frac{\partial r}{\partial z_{j}}=0 \quad \text { on } \quad \partial \Omega \tag{10}
\end{equation*}
$$

in particular, $\sum_{j=1}^{n} \mathcal{I}_{1}(j, k)=0$ for all $k=1, \ldots, n$. Hence we obtain

$$
\begin{align*}
\left\|\sqrt{\eta} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2}= & -\int_{\Omega} \sum_{j, k} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda+\int_{\Omega} \sum_{j, k} \frac{\partial \eta}{\partial \bar{z}_{k}} u_{j} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda \\
& +\int_{\Omega} \eta \sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} e^{-\varphi} d \lambda+\int_{\Omega} \sum_{j, k} \eta \frac{\partial u_{j}}{\partial \bar{z}_{k}} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda \\
& -\sum_{j, k} \mathcal{I}_{2}(j, k) \tag{11}
\end{align*}
$$

We now observe (see [Hör, p. 102]) that

$$
\|\sqrt{\eta} \bar{\partial} u\|_{\varphi}^{2}=\int_{\Omega} \eta\left(\sum_{j, k=1}^{n}\left|\frac{\partial u_{k}}{\partial \bar{z}_{j}}\right|^{2}-\sum_{j, k} \frac{\partial u_{j}}{\partial \bar{z}_{k}} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}}\right) e^{-\varphi} d \lambda
$$

This is substituted into (11) to yield

$$
\begin{align*}
\|\sqrt{\eta} \bar{\partial} u\|_{\varphi}^{2}+\left\|\sqrt{\eta} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2}= & \int_{\Omega} \eta \sum_{j, k=1}^{n}\left|\frac{\partial u_{k}}{\partial \bar{z}_{j}}\right|^{2} e^{-\varphi} d \lambda+T_{2}+T_{3} \\
& +\int_{\Omega} \eta \sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} e^{-\varphi} d \lambda-\sum_{j, k} \mathcal{I}_{2}(j, k) \tag{12}
\end{align*}
$$

where

$$
T_{2}:=-\int_{\Omega} \sum_{j, k} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda \quad \text { and } \quad T_{3}:=\int_{\Omega} \sum_{j, k} \frac{\partial \eta}{\partial \bar{z}_{k}} u_{j} \frac{\overline{\partial u_{k}}}{\partial \bar{z}_{j}} e^{-\varphi} d \lambda
$$

Finally, the proof of (a) will be complete if we show that the sum of the second and third terms on the right (T_{2} and T_{3}) is equal to

$$
-\int_{\Omega} \sum_{j, k=1}^{n} \frac{\partial^{2} \eta}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} e^{-\varphi} d \lambda+2 \operatorname{Re}\left(u \downharpoonleft \partial \eta, \bar{\partial}_{\varphi}^{*} u\right)_{\varphi},
$$

and that the last term (which we will denote T_{5}) is equal to

$$
\sum_{j, k=1}^{n} \int_{\partial \Omega} \eta \frac{\partial^{2} r}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} e^{-\varphi} d \sigma
$$

Let again $j, k \in\{1, \ldots, n\}$ be fixed. We transform the single terms that appear in T_{2}. In the first step we write

$$
\begin{align*}
&-\int_{\Omega} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda \\
&=-2 \operatorname{Re} \int_{\Omega} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda+\int_{\Omega} \overline{u_{j}} \frac{\partial \eta}{\partial \bar{z}_{j}} \delta_{k} u_{k} e^{-\varphi} d \lambda \tag{13}
\end{align*}
$$

The second term on the right side can be computed by the Gauss formula as follows:

$$
\begin{align*}
\int_{\Omega} \overline{u_{j}} \frac{\partial \eta}{\partial \bar{z}_{j}} \delta_{k} u_{k} e^{-\varphi} d \lambda= & \int_{\Omega} \overline{u_{j}} \frac{\partial \eta}{\partial \bar{z}_{j}} \frac{\partial\left(u_{k} e^{-\varphi}\right)}{\partial z_{k}} d \lambda \\
= & -\int_{\Omega} \frac{\partial^{2} \eta}{\partial \bar{z}_{j}} \frac{\partial z_{k}}{\bar{u}_{j}} u_{k} e^{-\varphi} d \lambda-\int_{\Omega} \frac{\partial \bar{u}_{j}}{\partial z_{k}} \frac{\partial \eta}{\partial \bar{z}_{j}} u_{k} e^{-\varphi} d \lambda \\
& +\int_{\partial \Omega} \frac{\partial r}{\partial z_{k}} \frac{\partial \eta}{\partial \bar{z}_{j}} \bar{u}_{j} u_{k} e^{-\varphi} d \sigma . \tag{14}
\end{align*}
$$

We now sum over all $j, k=1, \ldots, n$. Again, the sum of the boundary integrals vanishes because of (10). Likewise, we see that

$$
\sum_{j, k=1}^{n} \int_{\Omega} \frac{\partial \overline{u_{j}}}{\partial z_{k}} \frac{\partial \eta}{\partial \bar{z}_{j}} u_{k} e^{-\varphi} d \lambda=T_{3}
$$

Summation of (13) over all j, k thus yields (by means of (7))

$$
\begin{aligned}
T_{2} & =-\sum_{j, k=1}^{n} \int_{\Omega} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda \\
& =-2 \sum_{j, k=1}^{n} \operatorname{Re} \int_{\Omega} u_{j} \frac{\partial \eta}{\partial z_{j}} \overline{\delta_{k} u_{k}} e^{-\varphi} d \lambda-\int_{\Omega} \sum_{j, k} \frac{\partial^{2} \eta}{\partial \bar{z}_{j} \partial z_{k}} \overline{u_{j}} u_{k} e^{-\varphi} d \lambda-T_{3} \\
& \left.=2 \operatorname{Re}(u\lrcorner \partial \eta, \bar{\partial}_{\varphi}^{*} u\right)_{\varphi}-\int_{\Omega} \sum_{j, k} \frac{\partial^{2} \eta}{\partial \bar{z}_{j} \partial z_{k}} \overline{u_{j}} u_{k} e^{-\varphi} d \lambda-T_{3} .
\end{aligned}
$$

In order to transform the term T_{5}, we need only recall the argument of [Hör, p. 103]. It was shown there that (3) implies

$$
\sum_{k=1}^{n}\left(\frac{\partial \overline{u_{k}}}{\partial z_{j}} \frac{\partial r}{\partial \bar{z}_{k}}+\overline{u_{k}} \frac{\partial^{2} r}{\partial z_{j} \partial \bar{z}_{k}}\right)=0 \quad \text { on } \partial \Omega
$$

for all fixed j. We multiply by $u_{j} \eta e^{-\varphi}$ and then sum over all j. Finally, integration over $\partial \Omega$ gives us

$$
T_{5}=-\sum_{j, k} \mathcal{I}_{2}(j, k)=\sum_{j, k=1}^{n} \int_{\partial \Omega} \eta \frac{\partial^{2} r}{\partial z_{j} \partial \bar{z}_{k}} u_{j} \overline{u_{k}} e^{-\varphi} d \sigma .
$$

The proof of the a priori formula for $\bar{\partial}$ is complete.
For the proof of (b) we need only observe that, for pseudoconvex Ω, the boundary integral on the right-hand side of (4) is nonnegative if $u \in \mathcal{F}_{1}(\Omega, \varphi)$. Namely, from (10) we see that, for any $\zeta \in \partial \Omega$, the vector $\left(u_{1}(\zeta), \ldots, u_{n}(\zeta)\right)$ belongs to the holomorphic tangent space $T_{\zeta}^{(1,0)} \partial \Omega$. Hence $\mathcal{L}_{r}(\zeta ; u(\zeta)) \geq 0$.

3. Proof of the Theorem

We now give the proof of (2) under the assumption that ψ and V are smooth and the codimension of H is $k=1$. (The general case is settled by iterating the result from codimension 1). After a suitable choice of coordinates, we may assume that

$$
H=\left\{z=\left(z^{\prime}, z_{n}\right) \mid z_{n}=0\right\} .
$$

Then $V(z)+2 \log \left|z_{n}\right| \leq C_{V}$ on D_{t}. There exists a number $\varepsilon>0$ such that $\left(z^{\prime}, 0\right) \in D^{\prime}$ whenever $z \in D_{t}$ and $\left|z_{n}\right|<\varepsilon$. Let $\chi \in C^{\infty}(\mathbb{R})$ be a function with $\chi(x)=1$ on $(-\infty, 1 / 4]$ and $\chi(x)=0$ on $[3 / 4, \infty)$. For an arbitrary function $f \in$ $H^{2}\left(D^{\prime}, \psi+V\right)$, we define the following (0,1)-form:

$$
\begin{equation*}
\alpha_{f}:=\bar{\partial}\left[\chi\left(\frac{\left|z_{n}\right|^{2}}{\varepsilon^{2}}\right) f\left(z^{\prime}, 0\right)\right]=\chi^{\prime}\left(\frac{\left|z_{n}\right|^{2}}{\varepsilon^{2}}\right) f\left(z^{\prime}, 0\right) \frac{z_{n}}{\varepsilon^{2}} d \overline{z_{n}} . \tag{15}
\end{equation*}
$$

This form is $\bar{\partial}$-closed and smooth on D_{t}.
Let

$$
\begin{align*}
& \mathcal{J}_{\varepsilon}(f) \\
& \quad:=\int_{D^{\prime}}\left|f\left(z^{\prime}, 0\right)\right|^{2} \int_{\left\{1 / 2<\left|z_{n}\right|<1\right\}} \exp \left[-(\psi+V)\left(z^{\prime}, \varepsilon z_{n}\right)\right] d \lambda\left(z_{n}\right) d \lambda\left(z^{\prime}\right) . \tag{16}
\end{align*}
$$

We look for smooth weight functions φ and $\eta>0$ such that $\left(\eta+\eta^{3}\right) e^{-\psi} \leq e^{C_{V}-\varphi}$ and such that the quadratic form $\eta \mathcal{L}_{\varphi}-\mathcal{L}_{\eta}$ tames these data and yields a basic estimate of the form

$$
\begin{align*}
& \left|\left(u, \alpha_{f}\right)_{\varphi}\right|^{2} \\
& \quad \leq C^{\prime} \mathcal{J}_{\varepsilon}(f)\left\|\sqrt{\eta+\eta^{3}} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \quad \text { for all } \quad(0,1) \text {-forms } u \in \operatorname{dom}\left(\bar{\partial}_{\varphi}^{*}\right) \tag{17}
\end{align*}
$$

For an arbitrary number $0<\tau<\varepsilon^{2}$ we put

$$
\begin{equation*}
\varphi(z)=\varepsilon|z|^{2}+\log \left(\left|z_{n}\right|^{2}+\tau\right)+\psi(z)+V(z) \tag{18}
\end{equation*}
$$

and

$$
w=V+\log \left(\left|z_{n}\right|^{2}+\varepsilon^{2}\right)-C_{V}-4
$$

Then we have $w \leq-3$ on D_{t} if ε is chosen small enough. Moreover, w is plurisubharmonic. The function

$$
\eta=2(-w+\log (-w))
$$

is plurisuperharmonic, and $-4 w \geq \eta>8$ everywhere. By explicit computation we obtain

$$
\begin{equation*}
-\mathcal{L}_{\eta}=2\left(1-\frac{1}{w}\right) \mathcal{L}_{w}+2 \frac{\partial w \otimes \overline{\partial w}}{w^{2}} \geq 2 \mathcal{L}_{w}+4 \frac{\partial \eta \otimes \overline{\partial \eta}}{\eta^{3}} \tag{19}
\end{equation*}
$$

We will prove that (17) is satisfied for these functions η and φ.
It will suffice to check (17) for all $(0,1)$-forms $u \in \mathcal{F}_{t}:=\mathcal{F}_{1}\left(D_{t}, \varphi\right)$, since this space is dense in $\operatorname{dom}\left(\bar{\partial}_{\varphi}^{*}\right)$ with respect to the graph norm

$$
u \mapsto\|u\|_{\varphi}+\|\bar{\partial} u\|_{\varphi}+\left\|\bar{\partial}_{\varphi}^{*} u\right\|_{\varphi} .
$$

(Note that, because of the smoothness assumption on V, the function $\gamma:=\sqrt{\eta+\eta^{3}}$ is bounded on each D_{t-}.) We may furthermore restrict ourselves to forms in the null space $N_{(0,1)}(\bar{\partial})$ of $\bar{\partial}$ (for forms $u \perp N_{(0,1)}(\bar{\partial})$, the estimate (17) is trivial).

Let $u \in \mathcal{F}_{1}\left(D_{t}, \varphi\right) \cap N_{(0,1)}(\bar{\partial})$. We can apply (5). Using (19), we can split the mixed term $\left(u \downharpoonleft \partial \eta, \bar{\partial}_{\varphi}^{*} u\right)_{\varphi}$ that appeared in (5). By the Cauchy-Schwarz inequality, we obtain:

$$
\begin{align*}
\left.-2 \mid(u\lrcorner \partial \eta, \bar{\partial}_{\varphi}^{*} u\right)_{\varphi} \mid & \left.=-2 \mid(u\lrcorner \eta^{-3 / 2} \partial \eta, \eta^{3 / 2} \bar{\partial}_{\varphi}^{*} u\right)_{\varphi} \mid \\
& \geq-\| u\lrcorner \eta^{-3 / 2} \partial \eta\left\|_{\varphi}^{2}-\right\| \eta^{3 / 2} \bar{\partial}_{\varphi}^{*} u \|_{\varphi}^{2} \\
& \geq \frac{1}{4} \int_{D_{t}} \mathcal{L}_{\eta}(z ; u) e^{-\varphi} d \lambda-\left\|\eta^{3 / 2} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \tag{20}
\end{align*}
$$

Let Q denote the quadratic form defined by the coefficients of $\eta \mathcal{L}_{\varphi}-\frac{3}{4} \mathcal{L}_{\eta}$. Substituting (20) into (5), we have

$$
\begin{equation*}
\|\sqrt{\eta} \bar{\partial} u\|_{\varphi}^{2}+\left\|\sqrt{\eta+\eta^{3}} \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \geq \int_{D_{t}} Q(z ; u) e^{-\varphi} d \lambda(z) \tag{21}
\end{equation*}
$$

hence (with $\gamma=\sqrt{\eta+\eta^{3}}$),

$$
\begin{equation*}
\int_{D_{t}} Q(z ; u) e^{-\varphi} d \lambda \leq\|\gamma \bar{\partial} u\|_{\varphi}^{2}+\left\|\gamma \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \tag{22}
\end{equation*}
$$

The form Q is even positive definite, since

$$
Q \geq \varepsilon \eta \mathcal{L}_{|z|^{2}}+\frac{3}{2} \mathcal{L}_{w} \geq 8 \varepsilon \mathcal{L}_{|z|^{2}}+\frac{\varepsilon^{2}}{\left(\varepsilon^{2}+\left|z_{n}\right|^{2}\right)^{2}} \mathcal{L}_{\left|z_{n}\right|^{2}}
$$

Thus, $Q^{-1}(z ; u)$ is also meaningful. In combination with the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
\left|\left(u, \alpha_{f}\right)_{\varphi}\right|^{2} & \leq\left(\int_{D_{t}} Q^{-1}\left(z ; \alpha_{f}\right) e^{-\varphi} d \lambda\right)\left(\int_{D_{t}} Q(z ; u) e^{-\varphi} d \lambda\right) \\
& \leq 2\left(\int_{D_{t}} Q^{-1}\left(z ; \alpha_{f}\right) e^{-\varphi} d \lambda\right)\left(\|\gamma \bar{\partial} u\|_{\varphi}^{2}+\left\|\gamma \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2}\right)
\end{aligned}
$$

for all $u \in \mathcal{F}_{t}$. On $\operatorname{supp}\left(\alpha_{f}\right)$ we even have

$$
Q \geq 8 \varepsilon \mathcal{L}_{|z|^{2}}+\frac{1}{4 \varepsilon^{2}} d z_{n} \overline{d z_{n}}
$$

Substituting (15), we derive that

$$
\begin{aligned}
& \int_{D_{t}} Q^{-1}\left(z ; \alpha_{f}\right) e^{-\varphi} d \lambda \\
& \quad \leq C^{\prime} \int_{D_{t} \cap\left\{\varepsilon / 2<\left|z_{n}\right| \leq \varepsilon\right\}}\left|z_{n}\right|^{2} \frac{4}{\varepsilon^{2}}\left|f\left(z^{\prime}, 0\right)\right|^{2} \frac{e^{-\psi-V}}{\left|z_{n}\right|^{2}+\tau} d \lambda \\
& \quad \leq C^{\prime \prime} \varepsilon^{-2} \int_{D^{\prime}}\left|f\left(z^{\prime}, 0\right)\right|^{2} \int_{\left\{\varepsilon / 2<\left|z_{n}\right|<\varepsilon\right\}} e^{-(\psi+V)\left(z^{\prime}, z_{n}\right)} d \lambda\left(z_{n}\right) d \lambda\left(z^{\prime}\right)=C^{\prime \prime} \mathcal{J}_{\varepsilon}(f),
\end{aligned}
$$

where $\mathcal{J}_{\varepsilon}(f)$ is defined as in (16). This yields

$$
\begin{equation*}
\left|\left(u, \alpha_{f}\right)_{\varphi}\right|^{2} \leq C^{*} \mathcal{J}_{\varepsilon}(f)\left\|\gamma \bar{\partial}_{\varphi}^{*} u\right\|_{\varphi}^{2} \tag{23}
\end{equation*}
$$

for all forms $u \in \mathcal{F}_{t} \cap N_{(0,1)}(\bar{\partial})$ and hence for any $u \in \operatorname{dom}\left(\bar{\partial}_{\varphi}^{*}\right)$. By the HahnBanach theorem combined with the Riesz theorem, we obtain a solution $u_{\varepsilon} \in$ $L^{2}\left(D_{t}, \varphi\right)$ of the equation $\bar{\partial}\left(\gamma u_{\varepsilon}\right)=\alpha_{f}$ such that

$$
\left\|u_{\varepsilon}\right\|_{\varphi}^{2} \leq C^{\prime \prime} \mathcal{J}_{\varepsilon}(f)
$$

The function u_{ε} is even smooth, and

$$
\tilde{f}_{\varepsilon, \tau}:=\chi\left(\frac{\left|z_{n}\right|^{2}}{\varepsilon^{2}}\right) f\left(z^{\prime}, 0\right)-\gamma u_{\varepsilon}
$$

is holomorphic on D_{t}.
We estimate the norm of this function as follows:

$$
\begin{equation*}
\left\|\tilde{f}_{\varepsilon, \tau}\right\|_{\psi}^{2} \leq 2 \int_{D_{t} \cap\left\{\left|z_{n}\right|<\varepsilon\right\}}\left|f\left(z^{\prime}, 0\right)\right|^{2} e^{-\psi} d \lambda+2\left\|\gamma u_{\varepsilon}\right\|_{\psi}^{2} \tag{24}
\end{equation*}
$$

we have $\left(\varepsilon^{2}+\left|z_{n}\right|^{2}\right)^{-1} e^{-V} e^{C_{V}} \geq 1 / 2$ on D_{t} if ε is small enough, so

$$
\begin{aligned}
& \frac{1}{2} e^{-C_{V}} \int_{D_{t} \cap\left\{\left|z_{n}\right|<\varepsilon\right\}}\left|f\left(z^{\prime}, 0\right)\right|^{2} e^{-\psi} d \lambda \\
& \quad \leq \int_{D_{t} \cap\left\{\left|z_{n}\right|<\varepsilon\right\}}\left|f\left(z^{\prime}, 0\right)\right|^{2} \frac{1}{\varepsilon^{2}+\left|z_{n}\right|^{2}} e^{-\psi-V} d \lambda \\
& \quad=\int_{D_{t} \cap\left\{\left|z_{n}\right|<1\right\}}\left|f\left(z^{\prime}, 0\right)\right|^{2} \frac{1}{1+\left|z_{n}\right|^{2}} e^{-(\psi+V)\left(z^{\prime}, \varepsilon z_{n}\right)} d \lambda \\
& \quad \leq \mathcal{J}_{\varepsilon}^{*}(f):=\int_{\left\{\left|z_{n}\right|<1\right\}}\left|f\left(z^{\prime}, 0\right)\right|^{2} e^{-(\psi+V)\left(z^{\prime}, \varepsilon z_{n}\right)} d^{2 n} z
\end{aligned}
$$

Furthermore, since for $\tau<\varepsilon^{2}$ we can estimate

$$
V(z)+\log \left(\left|z_{n}\right|^{2}+\tau\right) \leq w(z)+C_{V}+4 \leq-\frac{\eta(z)}{4}+4+C_{V}
$$

the second term in (24) is dominated by some constant times $e^{C_{V}} \mathcal{J}_{\varepsilon}(f)$, because

$$
\begin{aligned}
\left|\gamma u_{\varepsilon}\right|^{2} e^{-\psi} & =\left(\eta+\eta^{3}\right) e^{\varepsilon|z|^{2}+V+\log \left(\left|z_{n}\right|^{2}+\tau\right)}\left|u_{\varepsilon}\right|^{2} e^{-\varphi} \\
& \leq C^{\prime} C_{t}^{\varepsilon} e^{C_{V}}\left(\eta+\eta^{3}\right) e^{-\eta / 4}\left|u_{\varepsilon}\right|^{2} e^{-\varphi} \leq C^{\prime \prime} C_{t}^{\varepsilon} e^{C_{V}}\left|u_{\varepsilon}\right|^{2} e^{-\varphi}
\end{aligned}
$$

where $C_{t}=\exp \left(\max _{D_{t}}|z|^{2}\right)$ and $C^{\prime}, C^{\prime \prime}>0$ are unimportant constants.
We next show that, for any point $\left(z^{\prime}, 0\right) \in D_{t} \cap H$, there exists a constant $C=$ $C^{\prime}\left(\varepsilon, z^{\prime}, t\right)$ such that, for all $0<\tau<\varepsilon^{2}$,
$\left|\tilde{f}_{\varepsilon, \tau}\left(z^{\prime}, 0\right)-f\left(z^{\prime}, 0\right)\right|^{2}=\left|\gamma u_{\varepsilon}\left(z^{\prime}, 0\right)\right|^{2} \leq C\left(z^{\prime}, \varepsilon, t\right) \frac{1}{\log \left(1+\varepsilon^{2} / 4 \tau\right)}\left\|u_{\varepsilon}\right\|_{\varphi}^{2}$.
Here we have used the fact that γu_{ε} is holomorphic on $\left\{\left|z_{n}\right|<\varepsilon / 2\right\}$. It satisfies on D_{t} the upper estimate

$$
\begin{equation*}
\frac{\left|\gamma u_{\varepsilon}\right|^{2}}{\left|z_{n}\right|^{2}+\tau}=\gamma^{2} e^{\varepsilon|z|^{2}+\psi+V}\left|u_{\varepsilon}\right|^{2} e^{-\varphi} \leq C(t, \varepsilon)\left|u_{\varepsilon}\right|^{2} e^{-\varphi} \tag{26}
\end{equation*}
$$

with a constant $C(t, \varepsilon)$ that does not depend on τ. Let $\left(z^{\prime}, 0\right) \in D_{t} \cap H$ be arbitrary. Then, after shrinking ε if necessary, we find a radius $\rho\left(z^{\prime}\right)$ such that the polydisc $P\left(z^{\prime}\right)=\Delta_{n-1}\left(z^{\prime}, \rho\left(z^{\prime}\right)\right) \times \Delta(0, \varepsilon / 2)$ is contained in D_{t}. Let

$$
\gamma u_{\varepsilon}(w)=\sum_{\beta \in \mathbb{N}_{0}^{n}} A_{\beta}\left(z^{\prime}\right)\left(w-\left(z^{\prime}, 0\right)\right)^{\beta}
$$

denote the Taylor expansion of γu_{ε} about $\left(z^{\prime}, 0\right)$ on $P\left(z^{\prime}\right)$. Then, using the orthogonality of the monomials $\left(w-\left(z^{\prime}, 0\right)\right)^{\beta}$ in conjunction with (26), we have

$$
\left|\gamma u_{\varepsilon}\left(z^{\prime}, 0\right)\right|^{2} \int_{P\left(z^{\prime}\right)} \frac{1}{\left|w_{n}\right|^{2}+\tau} d \lambda(w) \leq \int_{P\left(z^{\prime}\right)} \frac{\left|\gamma u_{\varepsilon}(w)\right|^{2}}{\left|w_{n}\right|^{2}+\tau} d \lambda(w) \leq C(t, \varepsilon)\left\|u_{\varepsilon}\right\|_{\varphi}^{2}
$$

From

$$
\int_{P\left(z^{\prime}\right)} \frac{1}{\left|w_{n}\right|^{2}+\tau} d \lambda(w)=C_{n}^{*} \rho\left(z^{\prime}\right)^{2 n-2} \log \left(1+\frac{\varepsilon^{2}}{4 \tau}\right)
$$

with an unimportant constant C_{n}^{*} we obtain (25). We saw already that $\left\|\tilde{f}_{\varepsilon, \tau}\right\|_{\psi}^{2} \leq$ $C^{\prime} C_{t}^{\varepsilon} e^{C_{V}}\left(\mathcal{J}_{\varepsilon}(f)+\mathcal{J}_{\varepsilon}^{*}(f)\right)$ for all $\tau<\varepsilon^{2}$, with a constant C_{t} that does not depend on anything but t. After selecting a weak- \star-convergent subsequence $\left(\tilde{f}_{\varepsilon, \tau_{j}}\right)_{j}$ from the $\tilde{f}_{\varepsilon, \tau}$, we obtain by means of (25) an extension $\tilde{f}_{\varepsilon} \in H^{2}\left(D_{t}, \psi\right)$ of f. Finally we let ε tend to zero. Then $\mathcal{J}_{\varepsilon}(f) \rightarrow 3 \pi / 4\|f\|_{D^{\prime}, \psi+V}^{2}$ and $\mathcal{J}_{\varepsilon}^{*}(f) \rightarrow \pi\|f\|_{D^{\prime}, \psi+V}^{2}$. After once more choosing a weak- \star-convergent subsequence from the \tilde{f}_{ε}, we will gain the desired extension $\tilde{f}_{t} \in H^{2}\left(D_{t}, \psi\right)$, satisfying (2).

By checking all the steps in the foregoing proof, we see that we indeed obtain our next result, which generalizes the case of codimension 1.
3.2. Theorem. Let D be a pseudoconvex domain in \mathbb{C}^{n} and h a holomorphic function such that $Z_{h}=\{h=0\}$ becomes a 1-codimensional complex submanifold of D. Assume that a plurisubharmonic function V exists on D for which

$$
C_{V, h}=\sup _{D}(V+2 \log |h|)<\infty .
$$

Then there exists a constant $C_{n}>0$ such that, for all plurisubharmonic functions ψ on D, one can find a bounded linear extension operator $E_{\psi}^{V, h}: H^{2}\left(D \cap Z_{h}\right.$, $\psi+V) \rightarrow H^{2}(D, \psi)$ whose operator norm can be estimated by $\left\|E_{\psi}^{V, h}\right\|^{2} \leq$ $C_{n} e^{C_{V, h}}$, with a constant C_{n} that does not depend on anything but the dimension.

4. An Application to the Bergman Kernel

We want to give an application of the Ohsawa extension theorem to the Bergman kernel of a class of pseudoconvex domains with a C^{2}-smooth boundary-an application covering all domains that are regular in the sense of [DF].

Let $\Omega \subset \subset \mathbb{C}^{n}$ be a pseudoconvex domain. For a plurisubharmonic function u on Ω, we denote by $K_{\Omega, u}$ the Bergman kernel for the Hilbert space $H^{2}(\Omega, u)$ of all holomorphic functions f such that $\int_{\Omega}|f|^{2} e^{-u} d \lambda<\infty$. As usual we put $K_{\Omega}=$ $K_{\Omega, 0}$. Furthermore, we define $\mathcal{P}(\bar{\Omega})$ as the family of all functions that are continuous on $\bar{\Omega}$ and plurisubharmonic on Ω. Let δ_{Ω} denote the boundary distance function on Ω.

If now H is an affine linear subspace of codimension k that meets Ω, and if u is a plurisubharmonic function on Ω satisfying

$$
u(z)+2 k \log \operatorname{dist}(z, D \cap H) \leq 0
$$

on Ω, then from Theorem 0.1 we obtain, for all $w \in \Omega \cap H$,

$$
\begin{equation*}
K_{\Omega}(w) \geq C_{n} K_{\Omega \cap H, u}(w) . \tag{27}
\end{equation*}
$$

Our result on the Bergman kernel is as follows.
4.1. Theorem. Assume that $\partial \Omega \in C^{2}$ and that each point $\zeta \in \partial \Omega$ is a peak point for $\mathcal{P}(\bar{\Omega})$. Let $z^{0} \in \partial \Omega$ be a point such that the Levi form of $\partial \Omega$ has $p<n-1$ positive eigenvalues at z^{0}. Then, for the Bergman kernel of Ω, we have

$$
\begin{equation*}
\lim _{\Omega \ni w \rightarrow z^{0}} \delta_{\Omega}(w)^{p+2} K_{\Omega}(w)=\infty \tag{28}
\end{equation*}
$$

Remarks. (a) In (28), the approach of $w \in \Omega$ toward z^{0} is not required to be nontangential.
(b) By work of Sibony [Si], it is known that the hypothesis concerning the plurisubharmonic peak functions is satisfied when Ω is regular in the sense of [DF].
(c) Stronger quantitative estimates have been obtained for the large class of domains of finite type. See, for example, [DHOh] or [Cat] and the references given in those papers.
(d) An extremely large Levi degeneracy set E of the boundary is not an obstacle for (28) to hold. One should note that Sibony [Si] found pseudoconvex regular domains in \mathbb{C}^{2} such that E has a positive Hausdorff measure of dimension 3.

Before giving a proof of the theorem, we summarize some facts about plurisubharmonic peak functions. In [Si, Thm. 2.1], the following is proved.
4.2. Lemma. Assume that $G \subset \subset \mathbb{C}^{n}$ is pseudoconvex, with a C^{1}-smooth boundary, such that each point $\zeta \in \partial G$ is a peak point for $\mathcal{P}(\bar{G})$. If $u \in C^{0}(\partial G)$, then the function

$$
\tilde{u}(z):=\sup \{v(z) \mid v \in \mathcal{P}(\bar{G}), v \leq u \text { on } \partial G\}
$$

is also an element of $\mathcal{P}(\bar{G}) ;$ moreover, $\tilde{u} \mid \partial G=u$.
Let now G be as in the lemma, and let $d_{q}(z):=|z-q|^{2}$ for $q \in \partial G$ and $z \in \mathbb{C}^{n}$. Then we have our next lemma.
4.3. Lemma. The functions $\psi_{q}:=\widetilde{-d}_{q}$, where $q \in \partial G$, have the following properties:
(a) $\psi_{q} \leq-d_{q}$ on \bar{G};
(b) $\left|\psi_{p}-\psi_{q}\right| \leq 2 \operatorname{diam}(G) \cdot|p-q|$ for $p, q \in \partial G$.

Proof. (a) is a consequence of the maximum principle. Let us prove (b). For $\zeta \in$ ∂G, we have

$$
\begin{aligned}
\psi_{q}(\zeta)+2 \operatorname{Re}\langle\zeta-p, p-q\rangle & =-|\zeta-q|^{2}+2 \operatorname{Re}\langle\zeta-p, p-q\rangle \\
& =-|\zeta-p|^{2}-|p-q|^{2} \leq-d_{p}(\zeta)
\end{aligned}
$$

Hence $z \mapsto \psi_{q}(z)+2 \operatorname{Re}\langle z-p, p-q\rangle$ is a candidate for the supremum that defines ψ_{p}, and therefore

$$
\psi_{q}(z) \leq \psi_{p}(z)+2|\operatorname{Re}\langle z-p, p-q\rangle| \leq \psi_{p}(z)+2 \operatorname{diam}(G) \cdot|p-q|
$$

Since the roles of p and q can be interchanged, the claim now follows.
Proof of Theorem 4.1. Choose open neighborhoods $W \subset \subset V$ for z^{0}, a smoothly bounded pseudoconvex domain $D \subset \subset \mathbb{C}^{n}$, and a linear subspace E of \mathbb{C}^{n} of dimension $p+1$ such that the following hold.
(i) $D \cap V \subset \Omega \cap V$ and $\partial D \cap V=\partial \Omega \cap V$.
(ii) For each $\zeta \in \partial \Omega \cap V$, the intersection $D_{\zeta}^{\prime}:=(\zeta+E) \cap D$ is strongly pseudoconvex and has a C^{2}-smooth boundary.
(iii) There is a number $\lambda>0$ such that the eigenvalues of the Levi form of $\partial D_{\zeta}^{\prime}$ are bounded from below by λ whenever $\zeta \in \partial \Omega \cap V$.
(iv) For any point $w \in \Omega \cap W$, there exists $w^{*} \in \partial \Omega \cap V$ with $w \in D_{w^{*}}^{\prime}$ and $\left|w-w^{*}\right| \approx \delta_{\Omega}(w)$.
By the localization lemma for the Bergman kernel (see e.g. [Oh1]) we have, with a constant C that depends only on V and W,

$$
K_{\Omega} \geq C K_{\Omega \cap V}=C K_{D \cap V} \geq C K_{D}
$$

on $\Omega \cap W$. Let $w \in \Omega \cap W$ be an arbitrary point, and let w^{*} be a boundary point according to (iv). Then, using Lemma 4.3(a) we can apply formula (27) to the function

$$
u:=-(n-p-1) \log \left(-\psi_{w^{*}}\right)
$$

and obtain (with a new constant C^{\prime})

$$
K_{D}(w) \geq C^{\prime} K_{D_{w^{*}}, u}(w)
$$

But in [DHM] it is shown that (with a constant that depends only on λ):

$$
K_{D_{w^{*}, u}}(w) \geq C_{\lambda}\left|w-w^{*}\right|^{-p-2} e^{u(w)} \geq C^{\prime \prime} \delta_{\Omega}(w)^{-p-2}\left|\psi_{w^{*}}(w)\right|^{-(n-p-1)}
$$

Lemma 4.3(b) implies that, for all $w \in \Omega \cap W$,

$$
\left|\psi_{w^{*}}(w)\right| \leq\left|\psi_{z^{0}}(w)\right|+\left|w^{*}-z^{0}\right| \leq \hat{C}\left(\left|\psi_{z^{0}}(w)\right|+\delta_{\Omega}(w)+\left|w-z^{0}\right|\right)
$$

and, consequently,

$$
\delta_{\Omega}(w)^{p+2} K_{\Omega}(w) \geq \hat{C} \frac{1}{\left(\left|\psi_{z^{0}}(w)\right|+\delta_{\Omega}(w)+\left|w-z^{0}\right|\right)^{n-p-1}} .
$$

From this the theorem follows.

References

[BoS] J. Boas and E. J. Straube, Global regularity of the $\bar{\partial}$-Neumann problem: A survey of the L^{2}-Sobolev theory, Current developments in several complex variables (M. Schneider, Y. T. Siu, eds.), Proc. of the special year in several complex variables at the MSRI, Cambridge Univ. Press (forthcoming).
[BonD] P. Bonneau and K. Diederich, Integral solution operators for the CauchyRiemann equations on pseudoconvex domains, Math. Ann. 286 (1990), 77-100.
[Bou] T. Bouche, Inegalités de Morse pour la d"-cohomologie sur une variété holomorphe non-compacte, Ann. Sci. École Norm. Sup. (4) 22 (1989), 501-513.
[Bs] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble) 14 (1996), 1083-1094.
[Cat] D. W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466.
[De] J. P. Demailly, Estimations L^{2} pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511.
[DF] K. Diederich and J. E. Fornaess, Pseudoconvex domains: Existence of Stein neighborhoods, Duke Math. J. 44 (1977), 641-662.
[DH1] K. Diederich and G. Herbort, Extension of holomorphic L^{2}-functions with weighted growth conditions, Nagoya Math. J. 126 (1992), 141-157.
[DH2] -, Geometric and analytic boundary invariants on pseudoconvex domains: Comparison results, J. Geom. Anal. 3 (1993), 237-267.
[DHM] K. Diederich, G. Herbort, and V. Michel, Weights of holomorphic extension and restriction, J. Math. Pures Appl. (9) 77 (1998), 697-719.
[DHOh] K. Diederich, G. Herbort, and T. Ohsawa, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann. 273 (1986), 471-478.
[Hör] L. Hörmander, L^{2}-estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152.
[JP] M. Jarnicki and P. Pflug, Bergman completeness of complete circular domains, Ann. Polon. Math. 50 (1989), 219-222.
[McN] J. McNeal, On large values of L^{2}-holomorphic functions, Math. Res. Lett. 3 (1996), 247-259.
[Mv] L. Manivel, Un théorème de prolongement L^{2} de sections holomorphes d'un fibré hermitien, Math. Z. 212 (1993), 107-122.
[Oh1] T. Ohsawa, Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. Res. Inst. Math. Sci. 20 (1984), 897-902.
[Oh2] -, On the extension of L^{2} holomorphic functions II, Publ. Res. Inst. Math. Sci. 24 (1988), 265-275.
[Oh3] -, On the extension of L^{2} holomorphic functions III: Negligible weights, Math. Z. 219 (1995), 215-225.
[OhT] T. Ohsawa and K. Takegoshi, On the extension of L^{2}-holomorphic functions, Math. Z. 195 (1987), 197-204.
[Si] N. Sibony, Une classe des domaines pseudoconvexes, Duke Math. J. 55 (1987), 299-319.
[Siu] Y. T. Siu, The Fujita conjecture and the extension theorem of OhsawaTakegoshi, Geometric complex analysis (Junjiro Noguchi et al., eds.), pp. 577592, World Scientific, Rivers Edge, NJ, 1996.

K. Diederich
Bergische Unversitaet-
Gesamthochschule Wuppertal
Fachbereich Mathematik
Gauss-Strasse 20
D-42097 Wuppertal
Germany
klas@math.uni-wuppertal.de

G. Herbort
Bergische Unversitaet-
Gesamthochschule Wuppertal
Fachbereich Mathematik
Gauss-Strasse 20
D-42097 Wuppertal
Germany
gregor@math.uni-wuppertal.de

