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1. Introduction

LetA = K[x1, . . . , xn] be a polynomial ring over a fieldK,and letR = A/I be the
quotient ofA by an idealI ⊂ A that is homogeneous with respect to the standard
grading in which deg(xi) = 1. WhenI is generated by square-free monomials, it
is traditional to associate with it a certain simplicial complex1, for whichI = I1
is theStanley–Reisner idealof 1 andR = K[1] = A/I1 is theStanley–Reisner
ring or face ring.The definition of1 as a simplicial complex on vertex set [n] :=
{1,2, . . . , n} is straightforward: the minimal non-faces of1 are defined to be the
supports of the minimal square-free monomial generators ofI.

Many of the ring-theoretic properties ofI1 then translate into combinatorial
and topological properties of1 (see [14, Chap.II]). In particular, a celebrated
formula of Hochster [14, Thm. II.4.8] describes TorA

··· (R,K) in terms of the ho-
mology of the full subcomplexes of1. HereK is considered the trivialA-module
K = A/m for m = (x1, . . . , xn). It is well known that the dimensions of these
K-vector spaces TorA··· (R,K) give the ranks of the resolvents in the finite minimal
free resolution ofR as anA-module.

In a series of recent papers, beginning with [8] and subsequently [9; 15; 13], it
has been recognized that, for square-free monomial idealsI = I1, there is another
simplicial complex1∗ which can be even more convenient for understanding free
A-resolutions ofR. The complex1∗, which from now on we will call theEagon
complexof I = I1, carries equivalent information to1 and is, in a certain sense,
its canonical Alexander dual:

1∗ := {F ⊆ [n] : [n] − F /∈1 }.
The crucial property of1∗ that makes it convenient for the study of TorA

··· (R,K)
is that, instead of the full subcomplexes of1 that are relevant in Hochster’s for-
mula, the relevant subcomplexes of1∗ are thelinksof its faces. Therefore, various
hypotheses on1∗ which are inherited by the links of faces, or which control the
topology of these links, lead to strong consequences for TorA

··· (R,K) (see Sec-
tion 3).
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Our motivation was to understand whether hypotheses on1∗ might also lead to
good consequences for theinfinite resolution ofK as a trivialR-module—that is,
for TorR··· (K,K). There are relatively few classes of rings where one can compute
TorR··· (K,K) (see [12]); however, there is a particularly nice class calledGolod
rings where TorR··· (K,K) is determined by TorA··· (R,K) in a simple fashion. Our
goal then is to show that, under reasonably simple hypotheses on1∗, the ringR =
A/I1 is Golod.

It is known [3] that if a homogeneous idealI has linear resolution as anA-
module (defined in the next section), thenR = A/I is Golod. Herzog and Hibi
[13] generalized the notion of linear resolution to that ofcomponentwise linear-
ity, and our main result (Theorem 4) states that, whenI is a componentwise linear
ideal, the ringR = A/I is Golod. We also observe (Theorem 9) that, for square-
free monomial idealsI = I1, componentwise linearity is equivalent to the Eagon
complex1∗ beingsequentially Cohen–Macaulay overK, a notion introduced by
Stanley [14, Sec.III.2.9]. Checking whether1∗ is sequentially Cohen–Macaulay
overK is relatively easy, and sequentially Cohen–Macaulay-ness is implied for
all fieldsK by the hypothesis that1 is shellablein the nonpure sense defined by
Björner and Wachs [5]. Thus, shellability is a simple condition on the Eagon com-
plex1∗ implying that both TorA··· (R,K) and TorR··· (K,K) are easy to compute and
independent of the fieldK.

The paper is structured as follows. Section 2 reviews the notions of Golod rings
and componentwise linearity and also proves Theorem 4. Then Section 3 gives
a “dictionary” summarizing how various conditions on a square-free monomial
idealI1 translate into conditions on the Eagon complex1∗, including the observa-
tion (Theorem 9) that componentwise linearity ofI1 corresponds to sequentially
Cohen–Macaulay-ness of1∗.

2. Componentwise Linear Resolution and Golodness

As in the introduction, letA = K[x1, . . . , xn], let I be a homogeneous ideal inA,
and letR = A/I. Any finitely generated gradedA-moduleM has a finite minimal
free resolution

0→ Aβh → · · · → Aβ1→ Aβ0 → M → 0, (2.1)

in which the maps can be made homogeneous by shifting the degrees of the vari-
ousA-basis elements in the free modulesAβi . It is well known that the number of
A-basis elements ofAβi having degreej is the dimension of thej th graded piece
TorAi (M,K)j of the gradedK-vector space TorAi (M,K).

We say thatM has linear resolutionif all nonzero entries in the matrices
∂i : Aβi → Aβi−1 for i ≥ 1 are linear forms inA. It is not hard to see thatM
has linear resolution if and only ifM has a minimal generating set all of the same
degreet, and that TorAi (M,K)i+j = 0 for j 6= t.

In [13], the authors defined the notion of componentwise linear homogeneous
ideals as follows. Given a homogeneous idealI inA, let I〈k〉 denote the ideal gen-
erated by all homogeneous polynomials of degreek in I, and letI≤k denote the
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ideal generated by the homogeneous polynomials of degree at mostk in I. We say
that I is componentwise linearif I〈k〉 has linear resolution for allk. In [13] it is
observed thatstablemonomial ideals [10] are componentwise linear, as are ideals
that areGotzmannin the sense that everyI〈k〉 is a Gotzmann ideal.

We next wish to relate componentwise linearity to the (infinite) minimal free
resolution ofK as anR-module and TorR··· (K,K). The Poincaré seriesrelevant
for the finite and infinite resolutions are defined as follows:

Poinfin(R, t, x) :=
∑
i,j≥0

dimK TorAi (R,K)j t
ixj,

Poininf(R, t, x) :=
∑
i,j≥0

dimK TorRi (K,K)j t
ixj.

In the late 1950s (see [12]), Serre proved by means of a spectral sequence that

Poininf(R, t, x) ≤ (1+ tx)n
1− t Poinfin(R, t, x)

, (2.2)

where “≤” is used here to mean coefficientwise comparison of power series int, x.

Subsequently, Eagon (see [12, Chap. 4.2.4]) and Golod [11] independently gave a
very concrete proof of this result by constructing a certain free (but not necessar-
ily minimal) resolution ofK as anR module that interprets the right-hand side of
equation (2.2). This Eagon-Golod construction:
(a) starts with the Koszul resolutionKA for K as anA-module;
(b) tensors withR to obtain a Koszul complexKA ⊗ R whose homology com-

putes TorA··· (K,R) ∼= TorA··· (R,K);
(c) “kills” the homology of the complexKA ⊗ R in a certain fashion to obtain a

freeR-resolution ofK.
Furthermore, Golod [11] was able to characterize equality in Serre’s result (2.2)
(or, equivalently, characterize minimality in the Eagon–Golod resolution) by the
vanishing of allMassey operationsin the Koszul complexK ⊗R considered as a
differential graded algebra(DGA). When this vanishing occurs we say thatR is
Golodor the idealI is Golod, whereR = A/I. We refer the reader to [12] for full
definitions and discussion of Massey operations, but emphasize here the proper-
ties that we will use as follows.
(i) The Massey operationµ(z1, . . . , zr ),which is defined only for certainr-tuples

z1, . . . , zr of cycles in a DGAA, is a cycle inA. It is defined using the DGA
structure, and its homology class depends only upon the homology classes of
z1, . . . , zr .

(ii) If zs has homological degreeis and degreès with respect to some extra grad-
ing preserved by the multiplication inA, thenµ(z1, . . . , zr ) will have ho-
mological degreer − 2+∑s is and degree

∑
s `s with respect to the extra

grading.
We now wish to prove our main result, beginning with two lemmas. Recall that

m = (x1, . . . , xn) denotes the irrelevant ideal inA.

Lemma 1. If I has linear resolution thenmI also has linear resolution.
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Proof. Assume thatI has linear resolution and is generated in degreet, so that
TorAi (I,K)j = 0 for j > i + t. The short exact sequence ofA-modules

0→ mI → I → I/mI → 0

gives rise to a long exact sequence

· · · → TorAi+1(I/mI,K)→ TorAi (mI,K)→ TorAi (I,K)→ · · · .
Note thatI/mI is also generated in degreet and isomorphic to a direct sumI/mI ∼=⊕g

m=1K(−t),whereK(−t) denotes the trivialA-module structure onK with gen-
erator in degreet and whereg is the number of minimal generators ofI. Therefore,
the minimal freeA-resolution ofI/mI is a direct sum of Koszul resolutions forK,
each shifted by degreet. Since Koszul resolutions are linear, TorA

i (I/mI,K)i+j =
0 for j 6= t. It then follows from the displayed portion of the long exact sequence
that TorAi (mI,K)i+j = 0 for j 6= t + 1, which means thatmI has linear resolu-
tion since it is generated in degreet +1.

Remark 2. Note that the only property of the polynomial ringA (and its max-
imal homogeneous idealm) used in the preceding lemma is that the fieldK =
A/m has a linear minimal freeA-resolution—that is, thatA is aKoszulring (see
e.g. [3]). Thus the lemma remains valid in all Koszul rings.

Lemma 3. If I is componentwise linear thenI≤k is componentwise linear for
all k.

Proof. This follows directly from the definition of componentwise linearity and
the previous lemma, since

(I≤k)〈j〉 =
{
I〈j〉 for j ≤ k,
mj−kI〈k〉 for j > k.

Theorem 4. If I is componentwise linear and contains no linear forms, thenI

is Golod.

Proof. Let I be a componentwise linear ideal, witht andT the minimum and
maximum degrees of a minimal generator forI. We will prove thatI is Golod by
induction on the differenceT − t.

The base case wheret = T requires us to show that an idealI having linear
resolution and generated in degreet ≥ 2 is Golod. This is well known [3], but
we include the proof for completeness. We must show that the Massey opera-
tions in the Koszul complexKA⊗R that computes TorA(K,R) all vanish. Given
z1, . . . , zr ∈KA⊗R with zs anis-cycle of degreeis+ js,we may assume without
loss of generality thatjs = t −1; otherwise,

TorAis (K,R)is+js
∼= TorAis (R,K)is+js

∼= TorAis−1(I,K)is−1+(js+1) = 0

by the linearity of the resolution. Therefore, the Massey operationµ(z1, . . . , zr ),

when it is defined, will be represented by ani-cycle withi := r − 2+∑s is hav-
ing degree

∑
s is + js = i + (2− r) + r(t − 1). Hence, this Massey operation

represents a class in TorA
i (R,K)i+j with
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j = r(t − 2)+ 2.

By linearity of the resolution, it will vanish unlessj = t −1,which one can check
is equivalent tot = 1+ r−1

r−2 < 2. SinceI has no linear forms the latter cannot
happen, and the Massey operation vanishes.

We now proceed to the inductive step, assuming the result for componentwise
linear ideals withT − t smaller. Consider the idealJ = I≤T−1, which is com-
ponentwise linear by Lemma 3 and hence Golod by induction. If we letR ′ :=
A/J, then note that the natural surjectionφ : R ′ → R induces ak-vector space
isomorphismR ′j → Rj in the range 0≤ j ≤ T − 1. It also induces a surjection
of differential graded algebrasφ] : KA ⊗ R ′ → KA ⊗ R, which gives an isomor-
phism

(KA ⊗ R ′)i+j ∼= (KA ⊗ R)i+j
for 0 ≤ j ≤ T −1 and hence induces an isomorphism

φ∗ : TorAi (K,R
′)i+j ∼= TorAi (K,R)i+j (2.3)

for 0 ≤ j ≤ T − 2.
With this information, we can now proceed to show that all Massey operations

in KA ⊗ R vanish. Givenz1, . . . , zr ∈ KA ⊗ R with zs an is-cycle of degree
is + js, we have two cases.

Case 1: Eachjs ≤ T − 2. In this case we are in the range of the isomorphism
φ∗ for eachis, js . Settingz ′s = φ−1

∗ (zs) ∈KA ⊗ R ′ for eachs, the Massey oper-
ationµ(z ′1, . . . , z

′
s ), when it is defined, must vanish in TorA

··· (K,R
′) sinceR ′ is

Golod. Letc ∈KA⊗R ′ be a chain with∂c = µ(z ′1, . . . , z ′s ). Becauseφ] is a dif-
ferential graded algebra map, we may conclude that∂φ](c) = µ(z1, . . . , zs) and
hence the Massey operationµ(z1, . . . , zs) vanishes as desired.

Case 2: Somejs ≥ T − 1. Without loss of generality, say thatj1 ≥ T − 1.
SinceI contains no linear forms, we havejs ≥ 1 for all s and hence the Massey
operationµ(z1, . . . , zs), when defined, represents a class in TorA

i (R,K)i+j with

j = 2− r +
∑
s

js

≥ 2− r + (T −1)+ (r −1) ·1
≥ T .

However, according to [13, Prop. 1.3], the componentwise linearity ofI implies
Tori(K,R)i+j = 0 for j ≥ T . Therefore, the Massey operation again vanishes.

Remark 5. The converse to Theorem 4 is already false for square-free mono-
mial idealsI generated in a single degree. We have the following more general
fact.

Proposition 6. Let I1 be a square-free monomial ideal inA = K[x1, . . . , xn]
containing no linear forms, and assume that the Eagon complex1∗ has no two
facesF,F ′ with F ∪ F ′ = [n]. ThenI1 is Golod.
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Proof. When I is a monomial ideal, there is a fineNn-grading by monomials
carried byA, I, R = A/I, and TorA··· (K,R). According to Hochster’s formula
[14, Thm. II.4.8], TorA··· (K,R) vanishes except in square-free multidegrees. On
the other hand, ifµ(z1, . . . , zr ) is a Massey product of some nonzero cycles in
KA ⊗ R, then eachzi lives in a multidegree that divides(x1 · · · xn)/xFi for some
faceFi of1∗. Since noFi, Fj satisfyFi ∪ Fj = [n], we conclude that no product
of these multidegrees can be square-free, soµ(z1, . . . , zr ) must vanish.

This provides many examples of Golod square-free monomial idealsI1—for ex-
ample, whenever1∗ has dimension less thann/2− 1. By Theorem 9, one need
only construct a pure but non-Cohen–Macaulay complex1∗ of low dimension
(such as the graph on six vertices consisting of three disjoint edges) in order to
obtain a counterexampleI1 to the converse of Theorem 4.

3. An Eagon Complex Dictionary

In this section we collect some recent and new results on properties of a square-free
monomial idealI = I1 in A = K[x1, . . . , xn] that can be phrased conveniently
in terms of the Eagon complex1∗. The first result appeared as [9, Thm. 3].

Theorem 7. I1 has linear resolution if and only if1∗ is Cohen–Macaulay
overK.

We wish to discuss two generalizations of Theorem 7. The first is a beautiful re-
sult of Terai [15], related to the notion ofCastelnuovo–Mumford regularity.Recall
that theregularity of a gradedA-moduleM is defined by

regM := max{ j : Tori(M,K)i+j 6= 0 },
and itsinitial degreeis defined by

indegM := min{ j : Mj 6= 0 } = min{ j : Tor0(M,K)j 6= 0 }.
It is clear that regM ≥ indegM, with equality if and only ifM has linear reso-
lution.

Theorem 8.

regI1 − indegI1 = dimK[1∗ ] − depthA K[1∗ ],

wheredim denotes Krull dimension anddepthA M denotes depth ofM as anA-
module(i.e., the length of the longestM-regular sequence inA).

Our second generalization of Theorem 7 is a new observation linking component-
wise linearity for square-free monomial ideals to the notion of sequential Cohen–
Macaulay-ness, whose definition we recall from [14, Def. 2.9]. A module graded
M over a graded ringR is said to besequentially Cohen–Macaulayif it has a fil-
tration 0= M0 ⊂ M1 ⊂ · · · ⊂ Mr = M of graded submodules satisfying two
conditions:
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(i) each quotientMi/Mi−1 is a Cohen–MacaulayR-module;
(ii) dimM1/M0 < dimM2/M1 < · · · < dimMr/Mr−1, where “dim” denotes

Krull dimension.
We say that a simplicial complex1 is sequentially Cohen–Macaulay overK if its
Stanley–Reisner ringK[1] = A/I1 is sequentially Cohen–Macaulay. For a sim-
plicial complex1 and somek ≥ 0, we denote by1(k) the simplicial complex
generated by thek-dimensional faces of1.

Theorem 9. Let 1 be a simplicial complex. ThenI1 is componentwise lin-
ear overK if and only if its Eagon complex1∗ is sequentially Cohen–Macaulay
overK.

Proof. Theorem 2.1of [13] characterizes componentwise linear square-free mono-
mial idealsI1 as those for which the pure simplicial complex1∗(k) is a Cohen–
Macaulay complex for everyk. On the other hand, in Theorem 3.3 of [7], the
complex1∗(k) is denoted1∗[k] and is called thepurek-skeleton; it is proven there
that1∗ is sequentially Cohen–Macaulay overK if and only if 1∗[k] is Cohen–
Macaulay for everyk. The theorem follows.

Theorems 8 and 9 show that the duality operationI 7→ I ∗ defined on square-free
monomial ideals inA by I1 7→ I1∗ has two amazing properties:
(i) reg(I )− indeg(I ) = dimA/I ∗ − depthA A/I ∗;

(ii) I is componentwise linear if and only ifA/I ∗ is sequentially Cohen–Macaulay.

Question 10. Can this operation be extended to a natural dualityI 7→ I ∗

with similar properties for more general idealsI ⊆ A, or for some class ofA-
modulesM?

Theorem 9 provides a wealth of new examples of componentwise linear square-
free monomial ideals. For example,1∗ is sequentially Cohen–Macaulay over all
fieldsK (and henceI1 for all fieldsK) whenever1∗ is shellablein the nonpure
sense of Björner and Wachs [5]. Recall that shellability of1∗ means there is an
orderingF1, F2, . . . of the facets of1∗ with the property that, for anyj > 1, the
closure of the facetFj intersects the subcomplex generated by the previous facets
F1, F2, . . . , Fj−1 in a subcomplex that is pure of codimension 1 insideFj .

We next discuss another pleasant feature related to Theorem 9: WhenI1 is
componentwise linear, the multigraded Betti numbers ofI1 appearing in the min-
imal free resolution turn out to encode the exact same information as what Björner
and Wachs call thef -triangle(orh-triangle) of the sequentially Cohen–Macaulay
complex1∗. For a simplicial complex1, define (as in [5]) thef -triangle(fij )i≥j
and theh-triangle(hij )i≥j as follows:
(a) fij = number of faces of1 of dimensionj that are contained in a face of

dimensionj but in no face of higher dimension;
(b) hij =

∑j

k=0(−1)j−k
(
i−k
j−k
)
fik.

It is shown in [5, Thm. 3.6] that theh-triangle of a shellable complex is nonnega-
tive and may be interpreted in terms of the shelling order. For a simplicial complex
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1 andk ≥ 0 we write1(k)′ for thek-skeleton of1(k + 1). Because1(k) and
1(k)′ are pure complexes, theirh-triangles degenerate to the usualh-vectorhj =
hkj . We may writehi(1) (resp.hij(1)) to indicate which simplicial complex is
meant when discussing theh-vector (resp.h-triangle) if this is not clear from the
context; we use analogous conventions for thef -vector (resp.f -triangle).

Lemma 11. For all i ≥ j we have

hij(1) = hj(1(i))− hj(1(i)′).
Proof. By definition of theh-triangle, we have

hj(1(i))− hj(1(i)′) =
j∑
k=0

(−1)j−k
(
i − k
j − k

)
(fik(1(i))− fik(1(i)′)).

Clearly,
fik(1) = fik(1(i))− fik(1(i)′).

Again by the definition of theh-triangle, the assertion follows.

The differencehj(1(i))−hj(1(i)′)was first considered in [13]. There it is shown
that, for componentwise linearI1, this difference is nonnegative for the com-
plex1∗. Thus, for sequentially Cohen–Macaulay complexes1, Theorem 9 and
Lemma 11 imply that theh-triangle is nonnegative (a fact first discovered in [7,
Thm. 5.1]). Furthermore, it is shown [13, Thm. 2.1(b)] that, for componentwise
linearI1 andj ≥ 1,∑
i≥0

dimK TorAi (I1,K)i+j t
i =

∑
i≥0

(hn−j−1(1
∗(i))− hn−j−1(1

∗(i)′))(t +1)i .

Again by Theorem 9 and Lemma 11, this yields the following result.

Proposition 12. LetI1 be componentwise linear or(equivalently) let1∗ be se-
quentially Cohen–Macaulay overK. Then∑

i≥0

dimK TorAi (I1,K)i+j t
i =

∑
i≥0

hi,n−j−1(1
∗)(t +1)i .

In particular, thef -triangle andh-triangle encode the same information as the
multigraded Betti numbersdimK TorAi (I1,K)i+j .

The remaining properties of square-free monomial ideals that we will discuss re-
late to stability properties of the monomials with respect to linear orderings of the
variablesx1, x2, . . . , xn, or equivalently of the set of indices [n] := {1,2, . . . , n}.
Given a square-free monomialm in A, define itssupportas

supp(m) := { i ∈ [n] : m is divisible byxi }.
and let max(m) be the maximum element of supp(m). By identifying a square-free
monomial with its support, we will intentionally make no distinction between sub-
sets of [n] and square-free monomials inA.Given a linear ordering3, define the
lexicographicorder induced by3 onk-subsets as follows:S <lex T if S contains
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the3-smallest element of the symmetric differenceS1T := (S − T ) ∪ (T − S).
Define thecolexicographicorder byS <colex T if T contains the3-largest ele-
ment ofS1T . In the remaining definitions it will be assumed that a fixed linear
ordering3 on [n] has been chosen.

A square-free monomial idealI is square-free lexsegmentif the square-free
monomials inI of degreek form an initial segment in the lexicographic order on
k-subsets of [n]. Equivalently,I is square-free lexsegment if, for every minimal
generatorm of I and every square-free monomialm′ <lex m, one hasm′ ∈ I.

A square-free monomial idealI is square-free 0-Borel fixed[2] if, for every
minimal generatorm of I and forj /∈ supp(m) andi ∈ supp(m) with j < i, one
has(xj/xi)m ∈ I. A square-free monomial idealI is square-free stable[2] if,
for every minimal generatorm of I and forj /∈ supp(m) with j < max(m), one
has(xj/xmax(m))m ∈ I. A square-free monomial idealI is square-free weakly
stable [1] if, for every minimal generatorm of I and for j /∈ supp(m) with
j < max(supp(m) − {max(m)}), there existsi ∈ supp(m) such thati > j and
(xj/xi)m∈ I.

It is easy to see that, for a square-free monomial idealI,

square-free lexsegment⇒
square-free 0-Borel fixed⇒
square-free stable⇒
square-free weakly stable.

We wish to relate these to some combinatorial notions about simplicial com-
plexes. Given a linear order3 on [n], a simplicial complex on a vertex set [n] is
said to becompressedif, for eachi, its faces of dimensioni form an initial seg-
ment in colex order induced on the(i + 1) subsets of [n]. A simplicial complex
is shifted if, wheneverF forms a face andi /∈ F but j <3 i ∈ F, one has that
(F −{i})∪ {j} also forms a face. Given a simplicial complex1 and faceF of1,
its link, star anddeletionin 1 are defined as follows

star1 F := {G∈1 : G ∪ F ∈1 };
link1 F := {G∈1 : G ∪ F ∈1,G ∩ F = ∅ };
del1 F := {G∈1 : G ∩ F = ∅ }.

A simplicial complex1 is anear-cone over the vertexv ∈ [n] if every faceF has
the property thatF − {i} lies in star1 v for everyi ∈ F. Equivalently, one must
check that this properties holds on the maximal facesF of 1.

A simplicial complex1 is calledvertex-decomposableif either (a)1 is a sim-
plex or1 = {∅} or (b) there is a vertexv such that link1(v) and del1(v) are vertex
decomposable and no facet of link1(v) is a facet of del1(v). In this case, the ver-
tex v is called ashedding vertex,and the sequence of shedding vertices that are
deleted in reducing1 to a simplex or empty face is called ashedding sequence.

It is not hard to check (or see [6] for proofs of some of these implications) that,
for a simplicial complex1 on vertex set [n],
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compressed⇒
shifted⇒
every faceF ∈1 has link1 F a near-cone on the vertex min([n] − F )⇒
shellable.

It is also shown in [6, Sec. 11] that1 being shifted implies that it is vertex-
decomposable with shedding ordern, n − 1, . . . . Furthermore, it is shown there
that vertex decomposability implies both the lexicographic and colexicographic
orders induced from the shedding order given by shelling orders on the facets
of 1.

We can now relate the stability properties ofI1 to combinatorial properties of
the Eagon complex1∗.

Proposition 13. I1 is a square-free lexsegment ideal with respect tox1 < · · · <
xn if and only if1∗ is compressed with respect ton <3 · · · <3 1.

Proof. The definition of1∗ states thatF is a face of1∗ if and only if [n] − F is
the support of a monomial inI1. Therefore, the crucial point (which is easy to
check) is thatS <lex S

′ in the lexicographic order on subsets induced from 1<

· · · < n if and only if [n] − S <colex [n] − S ′ in the colexicographic order on sub-
sets induced byn <3 · · · <3 1.

Proposition 14. I1 is square-free0-Borel-fixed with respect tox1 < · · · < xn if
and only if1∗ is shifted with respect ton <3 · · · <3 1.

Proof. Similarly straightforward; the crucial point is that

F = supp(m) and F ′ = supp

(
xj

xi
m

)
with j < i

if and only if

[n] − F ′ = ([n] − F ′)− {j}) ∪ {i} with i <3 j.

Proposition 15. I1 is square-free stable with respect tox1 < · · · < xn if and
only if1∗ haslink1∗ F a near-cone overmax([n] − F ) for each faceF ∈1∗.
Proof. We begin by proving the forward implication. AssumeI1 is square-free
stable with respect tox1 < · · · < xn. This translates into the condition on1∗ that,
for every maximal faceF andj ∈F with j < max([n] − F ), one has

(F − {j}) ∪ {max([n] − F )} ∈1∗.
Given any faceF of 1∗, a maximal faceG of link1∗ F, andj ∈G, we must now
show thatG− {j} is in starlink1∗ F (max([n]−F )). In other words, we must show
thatG−{j} lies in some face of link1∗ F containingi := max([n]−F ). If i ∈G,
then we are done sinceG is such a face. Ifi /∈G, theni = max([n] − (F ∪G)).
Therefore, sincej ∈ F ∪G andF ∪G is a maximal face of1∗ (note thatG is a



Componentwise Linear Ideals and Golod Rings 221

maximal face of link1∗ F ), we conclude from stability thatF ∪ (G− {j}) lies in
some faceF ′ of1∗ containingi. HenceG−{j} lies in the faceF ′−F of link1∗ F
that containsi, as desired.

For the backward implication, assume link1∗ F a near-cone over max([n]−F )
for each faceF ∈1∗. We need to show that, for every maximal faceG andj ∈G
with j < max([n]−G), one hasG− {j} ∪ {max([n]−F )} ∈1. To see this, use
the fact that link1∗(G−{j}) is a near-cone over the vertex max([n]−(G∪{j})) =
max([n]−G) =: i. BecauseG is a maximal face of1∗,we have that{j} is a max-
imal face of link1∗(G−{j}); hencei must also be a face of link1∗(G−{j}), since
i is the near-cone vertex. Thus(G− {j}) ∪ {i} is a face of1∗, as desired.

Finally, we deal with square-free weakly stable idealsI1.

Theorem 16. If I1 is square-free weakly stable with respect tox1 < · · · < xn,

then1∗ is vertex decomposable with shedding order1,2, . . . . Consequently,1∗

is shellable and henceI1 is componentwise linear independent of the fieldK.

Proof. Assume thatI1 is square-free weakly stable. This translates into the fol-
lowing condition.

(∗) For every maximal faceF of 1∗ andj ∈F with

j < max
(
([n] − F )− {max([n] − F )}),

there existsi ∈ [n] − F such thati > j and(F − {j}) ∪ {i} ∈1∗.
We will show that a simplicial complex satisfying(∗) is vertex-decomposable.

Clearly, if 1∗ satisfies(∗) then so do link1∗(1) and del1∗(1) as simplicial com-
plexes on the ground set [n] − {1}. LetF be a facet of link1∗(1). If F = [n] − {1}
then1∗ is the full simplex and so is clearly vertex-decomposable. IfF 6= [n]−{1}
then condition(∗) is satisfied in1∗ for j = 1 andF ∪ {1}. Hence there is ani > 1
such thatF ∪ {i} in 1∗ andF is not a facet of del1∗(1).

The implication “I square-free weakly stable impliesI componentwise linear for
all fieldsK” from the previous theorem can also be deduced algebraically, but first
we require the following result, which characterizes componentwise linear ideals
in terms of regularity.

Theorem 17. Let I be a monomial ideal. ThenI is componentwise linear over
K if and only if reg(I≤k) ≤ k for all k.

Proof. First, assume thatI1 is componentwise linear. Fix somek and setI = I1.
SinceI≤k is componentwise linear, [13, Prop. 1.3] implies

dimK TorAi (I,K)i+j = dimK TorAi ((I≤k)〈j〉,K)−dimK TorAi (m(I≤k)〈j−1〉,K).

If j > k, then(I≤k)〈j〉 = m(I≤k)〈j−1〉. Therefore, TorAi (I≤k, K)j = 0 for j > k.

This implies reg(I≤k) ≤ k.
Now assume that reg(I≤k) ≤ k for all k. We show by induction onj thatI〈j〉

has a linear resolution. From the exact sequence



222 J. Her zog, V. Reiner, & V. Wel k er

0→ I≤j−1→ I≤j → I〈j〉/mI〈j−1〉 → 0

we obtain an exact sequence

· · · → TorAi (I≤j, K)i+r → TorAi (I〈j〉/mI〈j−1〉,K)i+r

→ TorAi−1(I≤j−1,K)i+r → · · · .
By hypothesis, the TorAi (·,K)i+r of I≤j andI≤j−1 vanish forr > j. Hence,

TorAi (I〈j〉/mI〈j−1〉,K)i+j = 0

for r > j. Now consider the exact sequence

0→ mI〈j−1〉 → I〈j〉 → I〈j〉/mI〈j−1〉 → 0

and the associated long exact sequence

· → TorAi (mI〈j〉,K)i+r → TorAi−1(I〈j−1〉,K)i+r

→ TorAi (I〈j〉/mI〈j−1〉,K)i+r → · .
By induction, hypothesisI〈j−1〉 has a linear resolution. Then, by Lemma 3,mI〈j−1〉
has a linear resolution. Therefore, forr > j,

Tori(mI〈j−1〉,K)i+r = TorAi (I〈j〉/mI〈j−1〉)i+r = 0.

It follows that TorAi (I〈j〉,K)i+r = 0 for r > j. For trivial reasons,

Tori(I〈j〉,K)i+r = 0 for r < j.

We conclude thatI〈j〉 has a linear resolution.

With this result, the proof that a weakly stable idealI is componentwise linear for
all fieldsK is as follows. First, by Theorem 17,I is componentwise linear if and
only if reg(I≤k) ≤ k for all k. On the other hand,I weakly stable implies reg(I )
is the same as the degree of a maximal generator forI by [1, Thm. 1.4], andI
weakly stable trivially impliesI≤k is weakly stable for allk. Hence it impliesI is
componentwise linear.

Acknowledgments. The second author would like to thank Art Duval for help-
ful conversations regarding Propositions 14 and 15.
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