Componentwise Linear Ideals and Golod Rings

J. Herzog, V. Reiner, \& V. Welker

Dedicated to Jack Eagon on the occasion of his 65th birthday

1. Introduction

Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K, and let $R=A / I$ be the quotient of A by an ideal $I \subset A$ that is homogeneous with respect to the standard grading in which $\operatorname{deg}\left(x_{i}\right)=1$. When I is generated by square-free monomials, it is traditional to associate with it a certain simplicial complex Δ, for which $I=I_{\Delta}$ is the Stanley-Reisner ideal of Δ and $R=K[\Delta]=A / I_{\Delta}$ is the Stanley-Reisner ring or face ring. The definition of Δ as a simplicial complex on vertex set $[n]:=$ $\{1,2, \ldots, n\}$ is straightforward: the minimal non-faces of Δ are defined to be the supports of the minimal square-free monomial generators of I.

Many of the ring-theoretic properties of I_{Δ} then translate into combinatorial and topological properties of Δ (see [14, Chap. II]). In particular, a celebrated formula of Hochster [14, Thm. II.4.8] describes Tor. ${ }^{A}(R, K)$ in terms of the homology of the full subcomplexes of Δ. Here K is considered the trivial A-module $K=A / \mathfrak{m}$ for $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. It is well known that the dimensions of these K-vector spaces Tor. ${ }^{A}(R, K)$ give the ranks of the resolvents in the finite minimal free resolution of R as an A-module.

In a series of recent papers, beginning with [8] and subsequently [9;15; 13], it has been recognized that, for square-free monomial ideals $I=I_{\Delta}$, there is another simplicial complex Δ^{*} which can be even more convenient for understanding free A-resolutions of R. The complex Δ^{*}, which from now on we will call the Eagon complex of $I=I_{\Delta}$, carries equivalent information to Δ and is, in a certain sense, its canonical Alexander dual:

$$
\Delta^{*}:=\{F \subseteq[n]:[n]-F \notin \Delta\} .
$$

The crucial property of Δ^{*} that makes it convenient for the study of $\operatorname{Tor}{ }^{A}(R, K)$ is that, instead of the full subcomplexes of Δ that are relevant in Hochster's formula, the relevant subcomplexes of Δ^{*} are the links of its faces. Therefore, various hypotheses on Δ^{*} which are inherited by the links of faces, or which control the topology of these links, lead to strong consequences for $\operatorname{Tor}^{A}(R, K)$ (see Section 3).

[^0]Our motivation was to understand whether hypotheses on Δ^{*} might also lead to good consequences for the infinite resolution of K as a trivial R-module-that is, for $\operatorname{Tor}^{R}{ }^{R}(K, K)$. There are relatively few classes of rings where one can compute $\operatorname{Tor}^{R}(K, K)$ (see [12]); however, there is a particularly nice class called Golod rings where Tor. ${ }^{R}(K, K)$ is determined by Tor. ${ }^{A}(R, K)$ in a simple fashion. Our goal then is to show that, under reasonably simple hypotheses on Δ^{*}, the ring $R=$ A / I_{Δ} is Golod.

It is known [3] that if a homogeneous ideal I has linear resolution as an A module (defined in the next section), then $R=A / I$ is Golod. Herzog and Hibi [13] generalized the notion of linear resolution to that of componentwise linearity, and our main result (Theorem 4) states that, when I is a componentwise linear ideal, the ring $R=A / I$ is Golod. We also observe (Theorem 9) that, for squarefree monomial ideals $I=I_{\Delta}$, componentwise linearity is equivalent to the Eagon complex Δ^{*} being sequentially Cohen-Macaulay over K, a notion introduced by Stanley [14, Sec. III.2.9]. Checking whether Δ^{*} is sequentially Cohen-Macaulay over K is relatively easy, and sequentially Cohen-Macaulay-ness is implied for all fields K by the hypothesis that Δ is shellable in the nonpure sense defined by Björner and Wachs [5]. Thus, shellability is a simple condition on the Eagon complex Δ^{*} implying that both $\operatorname{Tor},{ }^{A}(R, K)$ and $\operatorname{Tor} .{ }^{R}(K, K)$ are easy to compute and independent of the field K.

The paper is structured as follows. Section 2 reviews the notions of Golod rings and componentwise linearity and also proves Theorem 4. Then Section 3 gives a "dictionary" summarizing how various conditions on a square-free monomial ideal I_{Δ} translate into conditions on the Eagon complex Δ^{*}, including the observation (Theorem 9) that componentwise linearity of I_{Δ} corresponds to sequentially Cohen-Macaulay-ness of Δ^{*}.

2. Componentwise Linear Resolution and Golodness

As in the introduction, let $A=K\left[x_{1}, \ldots, x_{n}\right]$, let I be a homogeneous ideal in A, and let $R=A / I$. Any finitely generated graded A-module M has a finite minimal free resolution

$$
\begin{equation*}
0 \rightarrow A^{\beta_{h}} \rightarrow \cdots \rightarrow A^{\beta_{1}} \rightarrow A^{\beta_{0}} \rightarrow M \rightarrow 0 \tag{2.1}
\end{equation*}
$$

in which the maps can be made homogeneous by shifting the degrees of the various A-basis elements in the free modules $A^{\beta_{i}}$. It is well known that the number of A-basis elements of $A^{\beta_{i}}$ having degree j is the dimension of the j th graded piece $\operatorname{Tor}_{i}^{A}(M, K)_{j}$ of the graded K-vector space $\operatorname{Tor}_{i}^{A}(M, K)$.

We say that M has linear resolution if all nonzero entries in the matrices $\partial_{i}: A^{\beta_{i}} \rightarrow A^{\beta_{i-1}}$ for $i \geq 1$ are linear forms in A. It is not hard to see that M has linear resolution if and only if M has a minimal generating set all of the same degree t, and that $\operatorname{Tor}_{i}^{A}(M, K)_{i+j}=0$ for $j \neq t$.

In [13], the authors defined the notion of componentwise linear homogeneous ideals as follows. Given a homogeneous ideal I in A, let $I_{\langle k\rangle}$ denote the ideal generated by all homogeneous polynomials of degree k in I, and let $I_{\leq k}$ denote the
ideal generated by the homogeneous polynomials of degree at most k in I. We say that I is componentwise linear if $I_{\langle k\rangle}$ has linear resolution for all k. In [13] it is observed that stable monomial ideals [10] are componentwise linear, as are ideals that are Gotzmann in the sense that every $I_{\langle k\rangle}$ is a Gotzmann ideal.

We next wish to relate componentwise linearity to the (infinite) minimal free resolution of K as an R-module and $\operatorname{Tor}^{R}{ }^{R}(K, K)$. The Poincaré series relevant for the finite and infinite resolutions are defined as follows:

$$
\begin{aligned}
& \operatorname{Poin}^{\mathrm{fin}}(R, t, x):=\sum_{i, j \geq 0} \operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}(R, K)_{j} t^{i} x^{j} \\
& \operatorname{Poin}^{\inf }(R, t, x):=\sum_{i, j \geq 0} \operatorname{dim}_{K} \operatorname{Tor}_{i}^{R}(K, K)_{j} t^{i} x^{j}
\end{aligned}
$$

In the late 1950s (see [12]), Serre proved by means of a spectral sequence that

$$
\begin{equation*}
\operatorname{Poin}^{\inf }(R, t, x) \leq \frac{(1+t x)^{n}}{1-t \operatorname{Poin}^{\operatorname{fin}}(R, t, x)}, \tag{2.2}
\end{equation*}
$$

where " \leq " is used here to mean coefficientwise comparison of power series in t, x. Subsequently, Eagon (see [12, Chap. 4.2.4]) and Golod [11] independently gave a very concrete proof of this result by constructing a certain free (but not necessarily minimal) resolution of K as an R module that interprets the right-hand side of equation (2.2). This Eagon-Golod construction:
(a) starts with the Koszul resolution \mathbb{K}^{A} for K as an A-module;
(b) tensors with R to obtain a Koszul complex $K^{A} \otimes R$ whose homology computes $\operatorname{Tor} .{ }^{A}(K, R) \cong \operatorname{Tor} .{ }^{A}(R, K)$;
(c) "kills" the homology of the complex $K^{A} \otimes R$ in a certain fashion to obtain a free R-resolution of K.
Furthermore, Golod [11] was able to characterize equality in Serre's result (2.2) (or, equivalently, characterize minimality in the Eagon-Golod resolution) by the vanishing of all Massey operations in the Koszul complex $K \otimes R$ considered as a differential graded algebra (DGA). When this vanishing occurs we say that R is Golod or the ideal I is Golod, where $R=A / I$. We refer the reader to [12] for full definitions and discussion of Massey operations, but emphasize here the properties that we will use as follows.
(i) The Massey operation $\mu\left(z_{1}, \ldots, z_{r}\right)$, which is defined only for certain r-tuples z_{1}, \ldots, z_{r} of cycles in a DGA \mathcal{A}, is a cycle in \mathcal{A}. It is defined using the DGA structure, and its homology class depends only upon the homology classes of z_{1}, \ldots, z_{r}.
(ii) If z_{s} has homological degree i_{s} and degree ℓ_{s} with respect to some extra grading preserved by the multiplication in \mathcal{A}, then $\mu\left(z_{1}, \ldots, z_{r}\right)$ will have homological degree $r-2+\sum_{s} i_{s}$ and degree $\sum_{s} \ell_{s}$ with respect to the extra grading.
We now wish to prove our main result, beginning with two lemmas. Recall that $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ denotes the irrelevant ideal in A.

Lemma 1. If I has linear resolution then \mathfrak{m} I also has linear resolution.

Proof. Assume that I has linear resolution and is generated in degree t, so that $\operatorname{Tor}_{i}^{A}(I, K)_{j}=0$ for $j>i+t$. The short exact sequence of A-modules

$$
0 \rightarrow \mathfrak{m} I \rightarrow I \rightarrow I / \mathfrak{m} I \rightarrow 0
$$

gives rise to a long exact sequence

$$
\cdots \rightarrow \operatorname{Tor}_{i+1}^{A}(I / \mathfrak{m} I, K) \rightarrow \operatorname{Tor}_{i}^{A}(\mathfrak{m} I, K) \rightarrow \operatorname{Tor}_{i}^{A}(I, K) \rightarrow \cdots
$$

Note that $I / \mathfrak{m} I$ is also generated in degree t and isomorphic to a direct sum $I / \mathfrak{m} I \cong$ $\bigoplus_{m=1}^{g} K(-t)$, where $K(-t)$ denotes the trivial A-module structure on K with generator in degree t and where g is the number of minimal generators of I. Therefore, the minimal free A-resolution of $I / \mathfrak{m} I$ is a direct sum of Koszul resolutions for K, each shifted by degree t. Since Koszul resolutions are linear, $\operatorname{Tor}_{i}^{A}(I / \mathfrak{m} I, K)_{i+j}=$ 0 for $j \neq t$. It then follows from the displayed portion of the long exact sequence that $\operatorname{Tor}_{i}^{A}(\mathfrak{m} I, K)_{i+j}=0$ for $j \neq t+1$, which means that $\mathfrak{m} I$ has linear resolution since it is generated in degree $t+1$.

Remark 2. Note that the only property of the polynomial ring A (and its maximal homogeneous ideal \mathfrak{m}) used in the preceding lemma is that the field $K=$ A / \mathfrak{m} has a linear minimal free A-resolution-that is, that A is a Koszul ring (see e.g. [3]). Thus the lemma remains valid in all Koszul rings.

Lemma 3. If I is componentwise linear then $I_{\leq k}$ is componentwise linear for all k.

Proof. This follows directly from the definition of componentwise linearity and the previous lemma, since

$$
\left(I_{\leq k}\right)_{\langle j\rangle}= \begin{cases}I_{\langle j\rangle} & \text { for } j \leq k, \\ \mathfrak{m}^{j-k} I_{\langle k\rangle} & \text { for } j>k\end{cases}
$$

Theorem 4. If I is componentwise linear and contains no linear forms, then I is Golod.

Proof. Let I be a componentwise linear ideal, with t and T the minimum and maximum degrees of a minimal generator for I. We will prove that I is Golod by induction on the difference $T-t$.

The base case where $t=T$ requires us to show that an ideal I having linear resolution and generated in degree $t \geq 2$ is Golod. This is well known [3], but we include the proof for completeness. We must show that the Massey operations in the Koszul complex $\mathbb{K}^{A} \otimes R$ that computes $\operatorname{Tor}^{A}(K, R)$ all vanish. Given $z_{1}, \ldots, z_{r} \in \mathbb{K}^{A} \otimes R$ with z_{s} an i_{s}-cycle of degree $i_{s}+j_{s}$, we may assume without loss of generality that $j_{s}=t-1$; otherwise,

$$
\operatorname{Tor}_{i_{s}}^{A}(K, R)_{i_{s}+j_{s}} \cong \operatorname{Tor}_{i_{s}}^{A}(R, K)_{i_{s}+j_{s}} \cong \operatorname{Tor}_{i_{s}-1}^{A}(I, K)_{i_{s}-1+\left(j_{s}+1\right)}=0
$$

by the linearity of the resolution. Therefore, the Massey operation $\mu\left(z_{1}, \ldots, z_{r}\right)$, when it is defined, will be represented by an i-cycle with $i:=r-2+\sum_{s} i_{s}$ having degree $\sum_{s} i_{s}+j_{s}=i+(2-r)+r(t-1)$. Hence, this Massey operation represents a class in $\operatorname{Tor}_{i}^{A}(R, K)_{i+j}$ with

$$
j=r(t-2)+2
$$

By linearity of the resolution, it will vanish unless $j=t-1$, which one can check is equivalent to $t=1+\frac{r-1}{r-2}<2$. Since I has no linear forms the latter cannot happen, and the Massey operation vanishes.

We now proceed to the inductive step, assuming the result for componentwise linear ideals with $T-t$ smaller. Consider the ideal $J=I_{\leq T-1}$, which is componentwise linear by Lemma 3 and hence Golod by induction. If we let $R^{\prime}:=$ A / J, then note that the natural surjection $\phi: R^{\prime} \rightarrow R$ induces a k-vector space isomorphism $R_{j}^{\prime} \rightarrow R_{j}$ in the range $0 \leq j \leq T-1$. It also induces a surjection of differential graded algebras $\phi_{\sharp}: \mathbb{K}^{A} \otimes R^{\prime} \rightarrow \mathbb{K}^{A} \otimes R$, which gives an isomorphism

$$
\left(\mathbb{K}^{A} \otimes R^{\prime}\right)_{i+j} \cong\left(\mathbb{K}^{A} \otimes R\right)_{i+j}
$$

for $0 \leq j \leq T-1$ and hence induces an isomorphism

$$
\begin{equation*}
\phi_{*}: \operatorname{Tor}_{i}^{A}\left(K, R^{\prime}\right)_{i+j} \cong \operatorname{Tor}_{i}^{A}(K, R)_{i+j} \tag{2.3}
\end{equation*}
$$

for $0 \leq j \leq T-2$.
With this information, we can now proceed to show that all Massey operations in $\mathbb{K}^{A} \otimes R$ vanish. Given $z_{1}, \ldots, z_{r} \in \mathbb{K}^{A} \otimes R$ with z_{s} an i_{s}-cycle of degree $i_{s}+j_{s}$, we have two cases.

Case 1: Each $j_{s} \leq T-2$. In this case we are in the range of the isomorphism ϕ_{*} for each i_{s}, j_{s}. Setting $z_{s}^{\prime}=\phi_{*}^{-1}\left(z_{s}\right) \in \mathbb{K}^{A} \otimes R^{\prime}$ for each s, the Massey operation $\mu\left(z_{1}^{\prime}, \ldots, z_{s}^{\prime}\right)$, when it is defined, must vanish in $\operatorname{Tor}^{A}\left(K, R^{\prime}\right)$ since R^{\prime} is Golod. Let $c \in \mathbb{K}^{A} \otimes R^{\prime}$ be a chain with $\partial c=\mu\left(z_{1}^{\prime}, \ldots, z_{s}^{\prime}\right)$. Because ϕ_{\sharp} is a differential graded algebra map, we may conclude that $\partial \phi_{\sharp}(c)=\mu\left(z_{1}, \ldots, z_{s}\right)$ and hence the Massey operation $\mu\left(z_{1}, \ldots, z_{s}\right)$ vanishes as desired.

Case 2: Some $j_{s} \geq T-1$. Without loss of generality, say that $j_{1} \geq T-1$. Since I contains no linear forms, we have $j_{s} \geq 1$ for all s and hence the Massey operation $\mu\left(z_{1}, \ldots, z_{s}\right)$, when defined, represents a class in $\operatorname{Tor}_{i}^{A}(R, K)_{i+j}$ with

$$
\begin{aligned}
j & =2-r+\sum_{s} j_{s} \\
& \geq 2-r+(T-1)+(r-1) \cdot 1 \\
& \geq T
\end{aligned}
$$

However, according to [13, Prop. 1.3], the componentwise linearity of I implies $\operatorname{Tor}_{i}(K, R)_{i+j}=0$ for $j \geq T$. Therefore, the Massey operation again vanishes.

Remark 5. The converse to Theorem 4 is already false for square-free monomial ideals I generated in a single degree. We have the following more general fact.

Proposition 6. Let I_{Δ} be a square-free monomial ideal in $A=K\left[x_{1}, \ldots, x_{n}\right]$ containing no linear forms, and assume that the Eagon complex Δ^{*} has no two faces F, F^{\prime} with $F \cup F^{\prime}=[n]$. Then I_{Δ} is Golod.

Proof. When I is a monomial ideal, there is a fine \mathbb{N}^{n}-grading by monomials carried by $A, I, R=A / I$, and $\operatorname{Tor}^{A}(K, R)$. According to Hochster's formula [14, Thm. II.4.8], Tor. ${ }^{A}(K, R)$ vanishes except in square-free multidegrees. On the other hand, if $\mu\left(z_{1}, \ldots, z_{r}\right)$ is a Massey product of some nonzero cycles in $K^{A} \otimes R$, then each z_{i} lives in a multidegree that divides $\left(x_{1} \cdots x_{n}\right) / x^{F_{i}}$ for some face F_{i} of Δ^{*}. Since no F_{i}, F_{j} satisfy $F_{i} \cup F_{j}=[n]$, we conclude that no product of these multidegrees can be square-free, so $\mu\left(z_{1}, \ldots, z_{r}\right)$ must vanish.

This provides many examples of Golod square-free monomial ideals I_{Δ}-for example, whenever Δ^{*} has dimension less than $n / 2-1$. By Theorem 9 , one need only construct a pure but non-Cohen-Macaulay complex Δ^{*} of low dimension (such as the graph on six vertices consisting of three disjoint edges) in order to obtain a counterexample I_{Δ} to the converse of Theorem 4.

3. An Eagon Complex Dictionary

In this section we collect some recent and new results on properties of a square-free monomial ideal $I=I_{\Delta}$ in $A=K\left[x_{1}, \ldots, x_{n}\right]$ that can be phrased conveniently in terms of the Eagon complex Δ^{*}. The first result appeared as [9, Thm. 3].

Theorem 7. I_{Δ} has linear resolution if and only if Δ^{*} is Cohen-Macaulay over K.

We wish to discuss two generalizations of Theorem 7. The first is a beautiful result of Terai [15], related to the notion of Castelnuovo-Mumford regularity. Recall that the regularity of a graded A-module M is defined by

$$
\operatorname{reg} M:=\max \left\{j: \operatorname{Tor}_{i}(M, K)_{i+j} \neq 0\right\}
$$

and its initial degree is defined by

$$
\operatorname{indeg} M:=\min \left\{j: M_{j} \neq 0\right\}=\min \left\{j: \operatorname{Tor}_{0}(M, K)_{j} \neq 0\right\}
$$

It is clear that reg $M \geq$ indeg M, with equality if and only if M has linear resolution.

Theorem 8.

$$
\operatorname{reg} I_{\Delta}-\operatorname{indeg} I_{\Delta}=\operatorname{dim} K\left[\Delta^{*}\right]-\operatorname{depth}_{A} K\left[\Delta^{*}\right]
$$

where dim denotes Krull dimension and depth $_{A} M$ denotes depth of M as an Amodule (i.e., the length of the longest M-regular sequence in A).

Our second generalization of Theorem 7 is a new observation linking componentwise linearity for square-free monomial ideals to the notion of sequential Cohen-Macaulay-ness, whose definition we recall from [14, Def. 2.9]. A module graded M over a graded ring R is said to be sequentially Cohen-Macaulay if it has a filtration $0=M_{0} \subset M_{1} \subset \cdots \subset M_{r}=M$ of graded submodules satisfying two conditions:
(i) each quotient M_{i} / M_{i-1} is a Cohen-Macaulay R-module;
(ii) $\operatorname{dim} M_{1} / M_{0}<\operatorname{dim} M_{2} / M_{1}<\cdots<\operatorname{dim} M_{r} / M_{r-1}$, where "dim" denotes Krull dimension.
We say that a simplicial complex Δ is sequentially Cohen-Macaulay over K if its Stanley-Reisner ring $K[\Delta]=A / I_{\Delta}$ is sequentially Cohen-Macaulay. For a simplicial complex Δ and some $k \geq 0$, we denote by $\Delta(k)$ the simplicial complex generated by the k-dimensional faces of Δ.

Theorem 9. Let Δ be a simplicial complex. Then I_{Δ} is componentwise linear over K if and only if its Eagon complex Δ^{*} is sequentially Cohen-Macaulay over K.

Proof. Theorem 2.1 of [13] characterizes componentwise linear square-free monomial ideals I_{Δ} as those for which the pure simplicial complex $\Delta^{*}(k)$ is a CohenMacaulay complex for every k. On the other hand, in Theorem 3.3 of [7], the complex $\Delta^{*}(k)$ is denoted $\Delta^{*[k]}$ and is called the pure k-skeleton; it is proven there that Δ^{*} is sequentially Cohen-Macaulay over K if and only if $\Delta^{*[k]}$ is CohenMacaulay for every k. The theorem follows.

Theorems 8 and 9 show that the duality operation $I \mapsto I^{*}$ defined on square-free monomial ideals in A by $I_{\Delta} \mapsto I_{\Delta^{*}}$ has two amazing properties:
(i) $\operatorname{reg}(I)-\operatorname{indeg}(I)=\operatorname{dim} A / I^{*}-\operatorname{depth}_{A} A / I^{*}$;
(ii) I is componentwise linear if and only if A / I^{*} is sequentially Cohen-Macaulay.

Question 10. Can this operation be extended to a natural duality $I \mapsto I^{*}$ with similar properties for more general ideals $I \subseteq A$, or for some class of A modules M ?

Theorem 9 provides a wealth of new examples of componentwise linear squarefree monomial ideals. For example, Δ^{*} is sequentially Cohen-Macaulay over all fields K (and hence I_{Δ} for all fields K) whenever Δ^{*} is shellable in the nonpure sense of Björner and Wachs [5]. Recall that shellability of Δ^{*} means there is an ordering F_{1}, F_{2}, \ldots of the facets of Δ^{*} with the property that, for any $j>1$, the closure of the facet F_{j} intersects the subcomplex generated by the previous facets $F_{1}, F_{2}, \ldots, F_{j-1}$ in a subcomplex that is pure of codimension 1 inside F_{j}.

We next discuss another pleasant feature related to Theorem 9: When I_{Δ} is componentwise linear, the multigraded Betti numbers of I_{Δ} appearing in the minimal free resolution turn out to encode the exact same information as what Björner and Wachs call the f-triangle (or h-triangle) of the sequentially Cohen-Macaulay complex Δ^{*}. For a simplicial complex Δ, define (as in [5]) the f-triangle $\left(f_{i j}\right)_{i \geq j}$ and the h-triangle $\left(h_{i j}\right)_{i \geq j}$ as follows:
(a) $f_{i j}=$ number of faces of Δ of dimension j that are contained in a face of dimension j but in no face of higher dimension;
(b) $h_{i j}=\sum_{k=0}^{j}(-1)^{j-k}\binom{i-k}{j-k} f_{i k}$.

It is shown in [5, Thm. 3.6] that the h-triangle of a shellable complex is nonnegative and may be interpreted in terms of the shelling order. For a simplicial complex
Δ and $k \geq 0$ we write $\Delta(k)^{\prime}$ for the k-skeleton of $\Delta(k+1)$. Because $\Delta(k)$ and $\Delta(k)^{\prime}$ are pure complexes, their h-triangles degenerate to the usual h-vector $h_{j}=$ $h_{k j}$. We may write $h_{i}(\Delta)$ (resp. $\left.h_{i j}(\Delta)\right)$ to indicate which simplicial complex is meant when discussing the h-vector (resp. h-triangle) if this is not clear from the context; we use analogous conventions for the f-vector (resp. f-triangle).

Lemma 11. For all $i \geq j$ we have

$$
h_{i j}(\Delta)=h_{j}(\Delta(i))-h_{j}\left(\Delta(i)^{\prime}\right)
$$

Proof. By definition of the h-triangle, we have

$$
h_{j}(\Delta(i))-h_{j}\left(\Delta(i)^{\prime}\right)=\sum_{k=0}^{j}(-1)^{j-k}\binom{i-k}{j-k}\left(f_{i k}(\Delta(i))-f_{i k}\left(\Delta(i)^{\prime}\right)\right)
$$

Clearly,

$$
f_{i k}(\Delta)=f_{i k}(\Delta(i))-f_{i k}\left(\Delta(i)^{\prime}\right)
$$

Again by the definition of the h-triangle, the assertion follows.
The difference $h_{j}(\Delta(i))-h_{j}\left(\Delta(i)^{\prime}\right)$ was first considered in [13]. There it is shown that, for componentwise linear I_{Δ}, this difference is nonnegative for the complex Δ^{*}. Thus, for sequentially Cohen-Macaulay complexes Δ, Theorem 9 and Lemma 11 imply that the h-triangle is nonnegative (a fact first discovered in [7, Thm. 5.1]). Furthermore, it is shown [13, Thm. 2.1(b)] that, for componentwise linear I_{Δ} and $j \geq 1$,

$$
\sum_{i \geq 0} \operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}\left(I_{\Delta}, K\right)_{i+j} t^{i}=\sum_{i \geq 0}\left(h_{n-j-1}\left(\Delta^{*}(i)\right)-h_{n-j-1}\left(\Delta^{*}(i)^{\prime}\right)\right)(t+1)^{i} .
$$

Again by Theorem 9 and Lemma 11, this yields the following result.
Proposition 12. Let I_{Δ} be componentwise linear or (equivalently) let Δ^{*} be sequentially Cohen-Macaulay over K. Then

$$
\sum_{i \geq 0} \operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}\left(I_{\Delta}, K\right)_{i+j} t^{i}=\sum_{i \geq 0} h_{i, n-j-1}\left(\Delta^{*}\right)(t+1)^{i}
$$

In particular, the f-triangle and h-triangle encode the same information as the multigraded Betti numbers $\operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}\left(I_{\Delta}, K\right)_{i+j}$.

The remaining properties of square-free monomial ideals that we will discuss relate to stability properties of the monomials with respect to linear orderings of the variables $x_{1}, x_{2}, \ldots, x_{n}$, or equivalently of the set of indices $[n]:=\{1,2, \ldots, n\}$. Given a square-free monomial m in A, define its support as

$$
\operatorname{supp}(m):=\left\{i \in[n]: m \text { is divisible by } x_{i}\right\}
$$

and let $\max (m)$ be the maximum element of $\operatorname{supp}(m)$. By identifying a square-free monomial with its support, we will intentionally make no distinction between subsets of $[n]$ and square-free monomials in A. Given a linear ordering Λ, define the lexicographic order induced by Λ on k-subsets as follows: $S<_{\text {lex }} T$ if S contains
the Λ-smallest element of the symmetric difference $S \Delta T:=(S-T) \cup(T-S)$. Define the colexicographic order by $S<_{\text {colex }} T$ if T contains the Λ-largest element of $S \Delta T$. In the remaining definitions it will be assumed that a fixed linear ordering Λ on $[n]$ has been chosen.

A square-free monomial ideal I is square-free lexsegment if the square-free monomials in I of degree k form an initial segment in the lexicographic order on k-subsets of [n]. Equivalently, I is square-free lexsegment if, for every minimal generator m of I and every square-free monomial $m^{\prime}<_{\operatorname{lex}} m$, one has $m^{\prime} \in I$.

A square-free monomial ideal I is square-free 0 -Borel fixed [2] if, for every minimal generator m of I and for $j \notin \operatorname{supp}(m)$ and $i \in \operatorname{supp}(m)$ with $j<i$, one has $\left(x_{j} / x_{i}\right) m \in I$. A square-free monomial ideal I is square-free stable [2] if, for every minimal generator m of I and for $j \notin \operatorname{supp}(m)$ with $j<\max (m)$, one has $\left(x_{j} / x_{\max (m)}\right) m \in I$. A square-free monomial ideal I is square-free weakly stable [1] if, for every minimal generator m of I and for $j \notin \operatorname{supp}(m)$ with $j<\max (\operatorname{supp}(m)-\{\max (m)\})$, there exists $i \in \operatorname{supp}(m)$ such that $i>j$ and $\left(x_{j} / x_{i}\right) m \in I$.

It is easy to see that, for a square-free monomial ideal I,

$$
\begin{aligned}
& \text { square-free lexsegment } \Rightarrow \\
& \text { square-free } 0 \text {-Borel fixed } \Rightarrow \\
& \text { square-free stable } \Rightarrow \\
& \text { square-free weakly stable. }
\end{aligned}
$$

We wish to relate these to some combinatorial notions about simplicial complexes. Given a linear order Λ on [n], a simplicial complex on a vertex set [n] is said to be compressed if, for each i, its faces of dimension i form an initial segment in colex order induced on the $(i+1)$ subsets of $[n]$. A simplicial complex is shifted if, whenever F forms a face and $i \notin F$ but $j<_{\Lambda} i \in F$, one has that $(F-\{i\}) \cup\{j\}$ also forms a face. Given a simplicial complex Δ and face F of Δ, its link, star and deletion in Δ are defined as follows

$$
\begin{aligned}
\operatorname{star}_{\Delta} F & :=\{G \in \Delta: G \cup F \in \Delta\} ; \\
\operatorname{link}_{\Delta} F & :=\{G \in \Delta: G \cup F \in \Delta, G \cap F=\emptyset\} ; \\
\operatorname{del}_{\Delta} F & :=\{G \in \Delta: G \cap F=\emptyset\} .
\end{aligned}
$$

A simplicial complex Δ is a near-cone over the vertex $v \in[n]$ if every face F has the property that $F-\{i\}$ lies in $\operatorname{star}_{\Delta} v$ for every $i \in F$. Equivalently, one must check that this properties holds on the maximal faces F of Δ.

A simplicial complex Δ is called vertex-decomposable if either (a) Δ is a simplex or $\Delta=\{\emptyset\}$ or (b) there is a vertex v such that $\operatorname{link}_{\Delta}(v)$ and del ${ }_{\Delta}(v)$ are vertex decomposable and no facet of $\operatorname{link}_{\Delta}(v)$ is a facet of $\operatorname{del}_{\Delta}(v)$. In this case, the vertex v is called a shedding vertex, and the sequence of shedding vertices that are deleted in reducing Δ to a simplex or empty face is called a shedding sequence.

It is not hard to check (or see [6] for proofs of some of these implications) that, for a simplicial complex Δ on vertex set $[n]$,
compressed \Rightarrow
shifted \Rightarrow
every face $F \in \Delta$ has $\operatorname{link}_{\Delta} F$ a near-cone on the vertex $\min ([n]-F) \Rightarrow$
shellable.
It is also shown in [6, Sec. 11] that Δ being shifted implies that it is vertexdecomposable with shedding order $n, n-1, \ldots$ Furthermore, it is shown there that vertex decomposability implies both the lexicographic and colexicographic orders induced from the shedding order given by shelling orders on the facets of Δ.

We can now relate the stability properties of I_{Δ} to combinatorial properties of the Eagon complex Δ^{*}.

Proposition 13. I_{Δ} is a square-free lexsegment ideal with respect to $x_{1}<\cdots<$ x_{n} if and only if Δ^{*} is compressed with respect to $n<_{\Lambda} \cdots<_{\Lambda} 1$.

Proof. The definition of Δ^{*} states that F is a face of Δ^{*} if and only if $[n]-F$ is the support of a monomial in I_{Δ}. Therefore, the crucial point (which is easy to check) is that $S<_{\text {lex }} S^{\prime}$ in the lexicographic order on subsets induced from $1<$ $\cdots<n$ if and only if $[n]-S<_{\text {colex }}[n]-S^{\prime}$ in the colexicographic order on subsets induced by $n<_{\Lambda} \cdots<_{\Lambda} 1$.

Proposition 14. I_{Δ} is square-free 0 -Borel-fixed with respect to $x_{1}<\cdots<x_{n}$ if and only if Δ^{*} is shifted with respect to $n<_{\Lambda} \cdots<_{\Lambda} 1$.

Proof. Similarly straightforward; the crucial point is that

$$
F=\operatorname{supp}(m) \quad \text { and } \quad F^{\prime}=\operatorname{supp}\left(\frac{x_{j}}{x_{i}} m\right) \text { with } j<i
$$

if and only if

$$
\left.[n]-F^{\prime}=\left([n]-F^{\prime}\right)-\{j\}\right) \cup\{i\} \text { with } i<_{\Lambda} j
$$

Proposition 15. I_{Δ} is square-free stable with respect to $x_{1}<\cdots<x_{n}$ if and only if Δ^{*} has $\operatorname{link}_{\Delta^{*}} F$ a near-cone over $\max ([n]-F)$ for each face $F \in \Delta^{*}$.

Proof. We begin by proving the forward implication. Assume I_{Δ} is square-free stable with respect to $x_{1}<\cdots<x_{n}$. This translates into the condition on Δ^{*} that, for every maximal face F and $j \in F$ with $j<\max ([n]-F)$, one has

$$
(F-\{j\}) \cup\{\max ([n]-F)\} \in \Delta^{*}
$$

Given any face F of Δ^{*}, a maximal face G of $\operatorname{link}_{\Delta^{*}} F$, and $j \in G$, we must now show that $G-\{j\}$ is in $\operatorname{star}_{\operatorname{link}_{\Delta^{*}} F}(\max ([n]-F))$. In other words, we must show that $G-\{j\}$ lies in some face of $\operatorname{link}_{\Delta^{*}} F$ containing $i:=\max ([n]-F)$. If $i \in G$, then we are done since G is such a face. If $i \notin G$, then $i=\max ([n]-(F \cup G))$. Therefore, since $j \in F \cup G$ and $F \cup G$ is a maximal face of Δ^{*} (note that G is a
maximal face of $\left.\operatorname{link}_{\Delta^{*}} F\right)$, we conclude from stability that $F \cup(G-\{j\})$ lies in some face F^{\prime} of Δ^{*} containing i. Hence $G-\{j\}$ lies in the face $F^{\prime}-F$ of $\operatorname{link}_{\Delta^{*}} F$ that contains i, as desired.

For the backward implication, assume $\operatorname{link}_{\Delta^{*}} F$ a near-cone over $\max ([n]-F)$ for each face $F \in \Delta^{*}$. We need to show that, for every maximal face G and $j \in G$ with $j<\max ([n]-G)$, one has $G-\{j\} \cup\{\max ([n]-F)\} \in \Delta$. To see this, use the fact that $\operatorname{link}_{\Delta^{*}}(G-\{j\})$ is a near-cone over the vertex $\max ([n]-(G \cup\{j\}))=$ $\max ([n]-G)=: i$. Because G is a maximal face of Δ^{*}, we have that $\{j\}$ is a maximal face of $\operatorname{link}_{\Delta^{*}}(G-\{j\})$; hence i must also be a face of $\operatorname{link}_{\Delta^{*}}(G-\{j\})$, since i is the near-cone vertex. Thus $(G-\{j\}) \cup\{i\}$ is a face of Δ^{*}, as desired.

Finally, we deal with square-free weakly stable ideals I_{Δ}.
Theorem 16. If I_{Δ} is square-free weakly stable with respect to $x_{1}<\cdots<x_{n}$, then Δ^{*} is vertex decomposable with shedding order $1,2, \ldots$ Consequently, Δ^{*} is shellable and hence I_{Δ} is componentwise linear independent of the field K.

Proof. Assume that I_{Δ} is square-free weakly stable. This translates into the following condition.
(*) For every maximal face F of Δ^{*} and $j \in F$ with

$$
j<\max (([n]-F)-\{\max ([n]-F)\})
$$

there exists $i \in[n]-F$ such that $i>j$ and $(F-\{j\}) \cup\{i\} \in \Delta^{*}$.
We will show that a simplicial complex satisfying $(*)$ is vertex-decomposable. Clearly, if Δ^{*} satisfies $(*)$ then so do $\operatorname{link}_{\Delta^{*}}(1)$ and $\operatorname{del}_{\Delta^{*}}(1)$ as simplicial complexes on the ground set $[n]-\{1\}$. Let F be a facet of $\operatorname{link}_{\Delta^{*}}(1)$. If $F=[n]-\{1\}$ then Δ^{*} is the full simplex and so is clearly vertex-decomposable. If $F \neq[n]-\{1\}$ then condition $(*)$ is satisfied in Δ^{*} for $j=1$ and $F \cup\{1\}$. Hence there is an $i>1$ such that $F \cup\{i\}$ in Δ^{*} and F is not a facet of $\operatorname{del}_{\Delta^{*}}(1)$.

The implication " I square-free weakly stable implies I componentwise linear for all fields K " from the previous theorem can also be deduced algebraically, but first we require the following result, which characterizes componentwise linear ideals in terms of regularity.

Theorem 17. Let I be a monomial ideal. Then I is componentwise linear over K if and only if $\operatorname{reg}\left(I_{\leq k}\right) \leq k$ for all k.

Proof. First, assume that I_{Δ} is componentwise linear. Fix some k and set $I=I_{\Delta}$. Since $I_{\leq k}$ is componentwise linear, [13, Prop. 1.3] implies
$\operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}(I, K)_{i+j}=\operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}\left(\left(I_{\leq k}\right)_{\langle j\rangle}, K\right)-\operatorname{dim}_{K} \operatorname{Tor}_{i}^{A}\left(\mathfrak{m}\left(I_{\leq k}\right)_{\langle j-1\rangle}, K\right)$.
If $j>k$, then $\left(I_{\leq k}\right)_{\langle j\rangle}=\mathfrak{m}\left(I_{\leq k}\right)_{\langle j-1\rangle}$. Therefore, $\operatorname{Tor}_{i}^{A}\left(I_{\leq k}, K\right)_{j}=0$ for $j>k$. This implies reg $\left(I_{\leq k}\right) \leq k$.

Now assume that $\operatorname{reg}\left(I_{\leq k}\right) \leq k$ for all k. We show by induction on j that $I_{\langle j\rangle}$ has a linear resolution. From the exact sequence

$$
0 \rightarrow I_{\leq j-1} \rightarrow I_{\leq j} \rightarrow I_{\langle j\rangle} / \mathfrak{m} I_{\langle j-1\rangle} \rightarrow 0
$$

we obtain an exact sequence

$$
\begin{aligned}
\cdots \rightarrow \operatorname{Tor}_{i}^{A}\left(I_{\leq j}, K\right)_{i+r} & \rightarrow \operatorname{Tor}_{i}^{A}\left(I_{\langle j\rangle} / \mathfrak{m} I_{\langle j-1\rangle}, K\right)_{i+r} \\
& \rightarrow \operatorname{Tor}_{i-1}^{A}\left(I_{\leq j-1}, K\right)_{i+r} \rightarrow \cdots
\end{aligned}
$$

By hypothesis, the $\operatorname{Tor}_{i}^{A}(\cdot, K)_{i+r}$ of $I_{\leq j}$ and $I_{\leq j-1}$ vanish for $r>j$. Hence,

$$
\operatorname{Tor}_{i}^{A}\left(I_{\langle j\rangle} / \mathfrak{m} I_{\langle j-1\rangle}, K\right)_{i+j}=0
$$

for $r>j$. Now consider the exact sequence

$$
0 \rightarrow \mathfrak{m} I_{\langle j-1\rangle} \rightarrow I_{\langle j\rangle} \rightarrow I_{\langle j\rangle} / \mathfrak{m} I_{\langle j-1\rangle} \rightarrow 0
$$

and the associated long exact sequence

$$
\begin{aligned}
\cdot \rightarrow \operatorname{Tor}_{i}^{A}\left(\mathfrak{m} I_{\langle j\rangle}, K\right)_{i+r} & \rightarrow \operatorname{Tor}_{i-1}^{A}\left(I_{\langle j-1\rangle}, K\right)_{i+r} \\
& \rightarrow \operatorname{Tor}_{i}^{A}\left(I_{\langle j\rangle} / \mathfrak{m} I_{\langle j-1\rangle}, K\right)_{i+r} \rightarrow \cdots
\end{aligned}
$$

By induction, hypothesis $I_{\langle j-1\rangle}$ has a linear resolution. Then, by Lemma 3, $\mathfrak{m} I_{\langle j-1\rangle}$ has a linear resolution. Therefore, for $r>j$,

$$
\operatorname{Tor}_{i}\left(\mathfrak{m} I_{\langle j-1\rangle}, K\right)_{i+r}=\operatorname{Tor}_{i}^{A}\left(I_{\langle j\rangle} / \mathfrak{m} I_{\langle j-1\rangle}\right)_{i+r}=0
$$

It follows that $\operatorname{Tor}_{i}^{A}\left(I_{\langle j\rangle}, K\right)_{i+r}=0$ for $r>j$. For trivial reasons,

$$
\operatorname{Tor}_{i}\left(I_{\langle j\rangle}, K\right)_{i+r}=0 \quad \text { for } r<j
$$

We conclude that $I_{\langle j\rangle}$ has a linear resolution.
With this result, the proof that a weakly stable ideal I is componentwise linear for all fields K is as follows. First, by Theorem 17, I is componentwise linear if and only if $\operatorname{reg}\left(I_{\leq k}\right) \leq k$ for all k. On the other hand, I weakly stable implies reg (I) is the same as the degree of a maximal generator for I by [1, Thm. 1.4], and I weakly stable trivially implies $I_{\leq k}$ is weakly stable for all k. Hence it implies I is componentwise linear.

Acknowledgments. The second author would like to thank Art Duval for helpful conversations regarding Propositions 14 and 15.

References

[1] A. Aramova, J. Herzog, and T. Hibi, Weakly stable ideals, Osaka J. Math. 34 (1997), 745-755.
[2] -, Square-free lexsegment ideals, Math. Z. 228 (1998), 353-378.
[3] J. Backelin and R. Fröberg, Koszul algebras, Veronese subrings, and rings with linear resolutions, Rev. Roumaine Math. Pures. Appl. 30 (1985), 85-97.
[4] A. Björner and G. Kalai, On f-vectors and homology, Combinatorial Mathematics: Proc. of 3rd International Conference (New York, 1985), pp. 63-80, N.Y. Acad. Sci., New York, 1989.
[5] A. Björner and M. Wachs, Shellable non-pure complexes and posets I, Trans. Amer. Math. Soc. 348 (1996), 1299-1327.
[6] -, Shellable non-pure complexes and posets II, Trans. Amer. Math. Soc. 349 (1997), 3945-3975.
[7] A. Duval, Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J. Combin. 3 (1996), \#R21.
[8] J. A. Eagon, Minimal resolutions of ideals associated to triangulated homology manifolds, preprint, 1995.
[9] J. A. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), 265-275.
[10] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), 1-25.
[11] E. S. Golod, Homologies of some local rings, Dokl. Akad. Nauk SSSR 144 (1962), 479-482.
[12] T. Gulliksen and G. Levin, Homology of local rings, Queen's Papers in Pure and Appl. Math. 20, Queens Univ., Kingston, Ont., 1969.
[13] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. (to appear).
[14] R. P. Stanley, Combinatorics and commutative algebra, 2nd. ed., Birkhäuser, Boston, 1996.
[15] N. Terai, Generalization of Eagon-Reiner theorem and h-vectors of graded rings, preprint, 1997.

J. Herzog

FB 6, Mathematik und Informatik
Universität GH-Essen
Essen 45117
Germany
juergen.herzog@uni-essen.de
V. Welker

Fachbereich Mathematik
Philipps-Universität Marburg 35032 Marburg
Germany
welker@mathematik.uni-marburg.de

V. Reiner
School of Mathematics
University of Minnesota
Minneapolis, MN 55455
reiner@math.umn.edu

[^0]: Received October 15, 1997. Revision received March 25, 1999.
 The second author was supported by Sloan Foundation and University of Minnesota McKnight-Land Grant Fellowships. The third author was supported by Deutsche Forschungsgemeinschaft (DFG). Michigan Math. J. 46 (1999).

