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1. Introduction

In this paper, “meromorphic function” means meromorphic in the whole planeC.
We shall assume that the reader is familiar with the notation and elementary aspects
of Nevanlinna theory (cf. [3] or [4]).

We say that two meromorphic functionsf andg share a valuea “IM” (resp.
CM) if f − a andg − a have the same zeros ignoring multiplicities (counting
multiplicities). The subject on sharing values between meromorphic functions and
their derivatives was first studied by Rubel and Yang [9].

Theorem A. Letf be a nonconstant entire function. Iff andf ′ share two finite
values CM, thenf = f ′.
This result was improved independently by Gundersen [2], and Mues and Stein-
metz [7].

Theorem B. Let f be meromorphic and nonconstant. Iff andf ′ share three
finite and distinct valuesb1, b2, b3 IM, thenf = f ′.
Frank and Schwick [1] generalized this to thekth derivative.

Theorem C. Letf be meromorphic and nonconstant,k ∈N. If f andf (k) share
three finite and distinct valuesb1, b2, b3 IM, thenf = f (k).
In the sequel, we set

L(f ) := akf (k) + ak−1f
(k−1) + · · · + a0f (ak 6= 0), (1)

whereak, . . . , a0 are finite constants. Mues-Reinders [6] proved the following
result.

Theorem D. Letf be meromorphic and nonconstant,2 ≤ k ≤ 50. If f andL(f )
share three finite and distinct valuesb1, b2, b3 IM, thenf = L(f ). Furthermore,
if ak−1= ak−2 = 0, then the restrictionk ≤ 50 can be omitted.
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The purpose of this paper is to cancel the restrictionk ≤ 50.

Theorem 1. Let f(z) be nonconstant and meromorphic,k ≥ 2. If f andL(f )
share three finite and distinct valuesb1, b2, b3 IM, thenf = L(f ).
The following example will show that three finite values in our theorem are best
possible.

Example. Let

f(z) = 2
e2
√

2iz + 4e
√

2iz +1

(e
√

2iz −1)2
.

Then 2− f 6= 0, f ′′ = f(2− f ), andf ′′ −1= −(f −1)2. Thusf andf ′′ share
0 and 1 IM, butf 6≡ f ′′.

2. One Basic Lemma

For the sake of convenience, we define

9(f ) := f ′(L(f ))′(f − L(f ))2
(f − b1)(f − b2)(f − b3)(L(f )− b1)(L(f )− b2)(L(f )− b3)

, (2)

N0

(
r,

1

f − L(f )
)

:= N
(
r,

1

f − L(f )
)
−

3∑
j=1

N̄

(
r,

1

f − bj

)
,

N0

(
r,

1

f ′

)
:= N

(
r,

1

f ′

)
−

3∑
j=1

N1

(
r,

1

f − bj

)
,

N0

(
r,

1

(L(f ))′

)
:= N

(
r,

1

(L(f ))′

)
−

3∑
j=1

N1

(
r,

1

L(f )− bj

)
,

N1(r, f ) := N(r, f )− N̄(r, f ),

A := (L(f ))′(f − L(f ))
(L(f )− b1)(L(f )− b2)(L(f )− b3)

. (3)

Lemma 1. Letf be a nonconstant meromorphic function,k ∈N. If f andL(f )
share three finite valuesb1, b2, b3 IM, and if f 6≡ L(f ), then the following con-
clusions hold:

T(r, f ) = T(r, L(f ))+ S(r, f ), T (r, L(f )) = T(r, f )+ S(r, f ); (4)

2T(r, L(f )) = N̄(r, f )+
3∑
j=1

N̄

(
r,

1

L(f )− bj

)
+ S(r, f ); (5)

N1(r, f ) = S(r, f ); (6)

T(r,9(f )) = m(r,9(f )) = S(r, f ); (7)

N0

(
r,

1

f − L(f )
)
, N0

(
r,

1

f ′

)
, N0

(
r,

1

(L(f ))′

)
= S(r, f ); (8)
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m(r, L(f )) = S(r, f ); (9)

T(r, L(f )) = (k +1)N̄(r, f )+ S(r, f ); (10)

T(r, f ) = (k +1)N̄(r, f )+ S(r, f ); (11)

m(r, f ) = kN̄(r, f )+ S(r, f ); (12)

T(r, A) = m(r,A) = kN̄(r, f )+ S(r, f ). (13)

Proof. The proof is actually given in [2], [5], and [6]. We include it here for the
sake of completeness. Takec ∈ C − {b1, b2, b3} and letb̂j = 1

bj−c (j = 1,2,3),
b̂4 = 0, g1 = 1

f−c , andg2 = 1
L(f )−c . Theng1 andg2 share the valueŝbj (j =

1, . . . ,4) IM. By the second fundamental theorem, we have

2T(r, gi) ≤
4∑

j=1

N̄

(
r,

1

gi − b̂j

)
+ S(r, gi)

≤ N
(
r,

1

g1− g2

)
+ S(r, gi)

≤ T(r, g1)+ T(r, g2)+ S(r, gi) (i = 1,2).

Equations (4) and (5) follow from this and the first fundamental theorem. Now, by

kN̄(r, f )+N(r, f ) ≤ T(r, L(f )) = T(r, f )+ S(r, f )

=
3∑

j=1

N̄

(
r,

1

f − bj

)
+ N̄(r, f )− T(r, f )+ S(r, f )

≤ N
(
r,

1

f − L(f )
)
+ N̄(r, f )− T(r, f )+ S(r, f )

≤ (k +1)N̄(r, f )+ S(r, f ),
we obtain (6), (10), (11), and (12). By the assumptions and (2), it is easy to see that
9 is entire. Now (2) can be written in the form

9(f ) =
3∑

s,t=1

cst
f ′

f − bs
(L(f ))′

L(f )− bt ,

where cst (s, t = 1,2,3) are constants depending only onbj (j = 1,2,3).
Equation (7) follows from this and the theorem on the logarithmic derivative;
(7) and (2) yield (8). Now, by (10),

m(r, L(f ))+ (k +1)N̄(r, L(f )) ≤ m(r, L(f ))+N(r, L(f ))
≤ (k +1)N̄(r, f )+ S(r, f ).

This gives (9). From (3), we now have

m(r,A) ≤ m(r, f )+ S(r, f )
and
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kN̄(r, f ) ≤ N(r,1/A) ≤ T(r, A)+ S(r, f ). (14)

Combining these two inequalities with (12), we obtain (13). This completes the
proof of the lemma.

3. Proof of Theorem 1

To prove our theorem, we follow some ideas in Mues and Reinders [6]. We suppose
thatf 6≡ L(f ) andk ≥ 3. Let z0 be a simple pole off, and let

f(z) = R

z− z0
+O(1)

nearz = z0. Then

L(f )(z) = akk! (−1)kR

(z− z0)k+1
+ ak−1(k −1)! (−1)k−1R

(z− z0)k
+ · · · .

Put

φ := A′

A
. (15)

We then have

φ(z) = k

z− z0
+ σ + τ

2

3k
(z− z0)+O((z− z0)

2), (16)

whereσ andτ are constants depending only on the coefficients ofL(f ) andk as
follows:

σ := σ(f ) := (k + 2)

k(k +1)

ak−1

ak
, (17)

τ := τ(f ) :=
[
3k

(
k2 + 4k + 2

k2(k +1)2

(
ak−1

ak

)2

− 2k + 6

k(k2 −1)

ak−2

ak

)]1/2

. (18)

Obviously, by (15),
m(r, φ) = S(r, f ) (19)

and
N(r, φ) = N̄(r,1/A) = N̄(r, f )+ S(r, f ).

Let
H := kφ ′ − τ 2 + (φ − σ)2;

then, by (16),H(z0) = 0 at the simple pole off and soN(r,H ) = S(r, f ),which
results inT(r,H ) = S(r, f ) by (19). IfH(z) 6≡ 0, then

N(r, f ) ≤ N(r,1/H )+ S(r, f ) = S(r, f ),
which contradicts (11). ThusH(z) ≡ 0; that is,

kφ ′ = τ 2 − (φ − σ)2.
If τ = 0 thenφ is fractional linear, and sof has at most one pole by (15) and

(3), which contradicts (11). Thusτ 6= 0. From the preceding equality we have
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φ(z) = σ + τ a exp(uz)− b exp(−uz)
a exp(uz)+ b exp(−uz) ,

wherea, b are constants and

u = τ

k
. (20)

If ab = 0 thenφ(z) is constant. By (14) and (15),

kN̄(r, f ) ≤ N(r,1/A) = 0,

which contradicts (11). Thusab 6= 0. Takec satisfying exp(2uc) = −a/b. Then
φ has the form

φ(z) = σ + τ exp(u(z+ c))+ exp(−u(z+ c))
exp(u(z+ c))− exp(−u(z+ c)) .

Using the transformationz→ z− c if necessary, we may letc = 0. Thus

φ(z) = σ + τ coth(uz).

By (15), we have

A(z) = Deσz
(
euz − e−uz

2

)k
(21)

with a constantD 6= 0. This, together with (3), (6), and (13), imply that

N̄(r, f ) = 2|u|r
π
+O(1)

and so, by (11),

T(r, f ) = 2(k +1)|u|
π

r + S(r, f ).
This implies that the orderρ(f ) of f is less than or equal to 1. Thus

T(r, f ) = O(r) for r →∞.
It follows from (2) and [8] that

m(r,9(f )) = B(logr) for r →∞.
Combining this with the fact that9(f ) is entire, we obtain

9(f ) ≡ constant. (22)

By (22) and (2), the functionsf ′, (L(f ))′, andf − L(f ) have only zeros at
the zeros off − bj (j = 1,2,3); f −L(f ) has only simple zeros andf has only
simple poles that coincide with zeros ofA. Thus, the poles off are

zν = ν π
u
i (ν ∈Z),

which gives

N̄(r, f ) = N(r, f ) = 2|u|r
π
+O(1). (23)

Note that, sinceρ(f ) ≤ 1, it follows from [8], (9), and (12) that
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m(r, L(f )) = B(logr), m(r, f ) = 2k|u|r
π
+ B(logr). (24)

Let

f(z) = Rν

z− zν +O(1). (25)

Then

9(f ) = k +1

R2
ν

, (26)

by (2). Set

v := v(L(f )) := σ

u
= σk

τ
. (27)

From (21) and (3) it follows that

Dukevνπi(−1)kν = (−1)k(k +1)

k! akRν
(28)

for all ν ∈Z. Squaring (28) and combining with (22) and (26), we deduce that

e2vνπi ≡ constant for allν ∈Z.
Takingν = 0, we know that

e2vνπi ≡ 1 for all ν ∈Z.
Thuse2vπi = 1, which results inv ∈Z. By (28) we have

Rν = (−1)(k−v)νB, (29)

where

B =
(
−1

u

)k
k +1

Dk! ak
. (30)

Now, by (21),

T(r, A) = m(r,A) = {k +max(k, |v|)} |u|r
π
+O(1).

On the other hand, by (13) and (23),

T(r, A) = k2|u|r
π
+ B(logr).

These two equations imply that|v| ≤ k, and so

v ∈Z, −k ≤ v ≤ k. (31)

We define:

G(w) :=
{

2Bu/(w2 −1) if k − v is even,

2Buw/(w2 −1) if k − v is odd; (32)

g(z) := G(euz); (33)

h(z) := f(z)− g(z). (34)

Thenh is entire by (25), (29), and (34). Let
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L(g) =
k∑

j=0

ajg
(j), L(h) =

k∑
j=0

ajh
(j). (35)

It is easy to check thatm(r, g(j)) = O(1) for j = 0, . . . , k; (24) gives

m(r, L(h)) ≤ m(r, L(f ))+m(r, L(g))+O(1) = B(logr)

for r →∞. Note thatL(h) is entire and so we have

L(h) = constant; (36)

hence,
L(f )(z) = L(g)(z)+ L(h)(z) = S(euz) (37)

for a rational functionS(w). Note that, as|Re(uz)| → ∞,
g(j)(z) = O(1) (0 ≤ j ≤ k).

We deduce that
S(0) 6= ∞, S(∞) 6= ∞. (38)

From (21), (33), (34), (37), and (3), we see thath is a (2π/u)i-periodic entire
function, and (24) and (34) yield

m(r, h) = m(r, f )+O(1) = 2k|u|r
π
+ B(logr)

for r →∞. Thush(z) is of the form

h(z) =
q∑

j=p
Aje

juz (p ≤ q, Aj ∈C, ApAq 6= 0), (39)

with
max{q,0} −min{p,0} = 2k. (40)

Therefore,
f(z) = R(euz) (41)

with a rational function

R(w) =
q∑

j=p
Ajw

j +G(w). (42)

By (21), (37), (41), and (3), we now have

uwS ′(w)(R(w)− S(w))
(S(w)− b1)(S(w)− b2)(S(w)− b3)

= D

2k
(w2 −1)k

wk−v . (43)

From (33), (37), and (40), we may suppose that

S(w) = P(w)

(w2 −1)k+1
, (44)

where

P(w) = dtwt + · · · + d1w + d (dt 6= 0, t ≤ 2(k +1), P (±1) 6= 0).

Substituting this into (43), we obtain
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w[(w2 −1)P ′(w)− 2(k +1)wP (w)]

×[R(w)wk−v(w2 −1)k+1− P(w)wk−v]∏3
j=1[P(w)− bj(w2 −1)k+1]

= D

u2k
. (45)

From (44) we see that there exists an integerm with

m ≥ 2(k +1)− t +1 (46)

such that
S ′(w) = O(w−m) for w→∞.

Dividing both sides of (43) bywk+v and lettingw → ∞, it follows from (40),
(42), and (43) that

q = k + v +m−1≥ k + v. (47)

Similarly, by consideringw→ 0 we obtain

p ≤ v − k.
Combining this, (24), (40), and (47), we have

q = v + k, p = v − k.
Thus, (39) and (42) now read

h(z) =
v+k∑

j=v−k
Aje

juz (Aj ∈C, ApAq 6= 0) (48)

and

R(w) =
v+k∑
v−k

Ajw
j +G(w), (49)

respectively. Furthermore, fromq = v+ k and (47) we deduce thatm = 1; hence
by (46), 1≥ 2(k + 1) − t + 1—that is,t ≥ 2(k + 1). This and the conditiont ≤
2(k +1) imply that

t = 2(k +1).

Thus by (44),
S(∞) = dt 6= 0,

which implies that
(w2 −1)P ′(w)− 2(k +1)wP (w)

is a polynomial ofw with order≤ 2k + 2. Therefore, the order of the numerator
of (45) is at most 6k + 5. If

S(∞) = dt 6= b1, b2, b3,

thenP(w)−bj(w2−1)k+1 is a polynomial ofw with degree 2k+2 for j = 1,2,3,
so that the order of the denominator of (45) is 6k+6—a contradiction. Thusdt =
bj (1≤ j ≤ 3). We may let

b1= S(∞) = dt 6= 0. (50)

This, (36), and (48) imply that
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S(euz) = b1+ L(g(z)) (51)

and
dt = b1= a0A0 = L(h). (52)

Without loss of generality, we may suppose that

a0 6= b1− b2

2Bu
and a0 6= b1− b3

2Bu
. (53)

Otherwise, we consider̃f = f(αz) and

L̃(f̃ ) :=
k∑

j=0

ãjf̃
(j)

for some suitable positive constantα, where

ãj = ajα−j (j = 0,1, . . . , k).

It is obvious thatL̃(f̃ ) = L(f ) and thatf̃ andL̃(f̃ ) sharebj IM for j = 1,2,3.
Let Ã, B̃, ũ, ṽ, τ̃ , σ̃ , andD̃ correspond toA, B, u, v, τ, σ, andD, respectively.
Then, by (3) and (21),̃D = D; by (17) and (18),̃σ = ασ andτ̃ = ατ, so thatũ =
αu andṽ = v by (20) and (27). Thus (31) still holds forṽ and by (30),B̃ = B.
As a result,

b1− bj
2B̃ũ

= α−1b1− b2

2Bu
(j = 2,3).

We can therefore choose a suitable positive constantα such that

b1− bj
2B̃ũ

6= ã0 = a0 (j = 2,3).

Next we consider two cases.

Case 1:k − v is even.Then, by (32),

G(w) = 2Bu

w2 −1
and g(z) = 2Bu

e2uz −1
.

These equalities imply that

g(j)(z) = e2uz

∑j−1
l=0 cle

2luz

(e2uz −1)j+1
(j ≥ 1),

where allcl are constants. Thus, by (50) and (51), we may let

S(w) = b1+ Q(w)

(w2 −1)k+1
, (54)

where
Q(w) = 2Bua0(w

2 −1)k + w2Pk−1(w
2); (55)

herePk−1(w
2) is a polynomial ofw2 of degree less than or equal tok − 1. We

rewriteQ(w) in the form

Q(w) = emwm + · · · + e1w + e0 (em 6= 0, m ≤ 2k).
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Combining (55), (54), and (53), we obtain thatS(0)− b2 6= 0 andS(0)− b3 6=
0. By (43), we thus have

uw(w2 −1)S ′(w)(R(w)wk−v − S(w)wk−v)
Q(w)(S(w)− b2)(S(w)− b3)

= D2−k.

Now the numerator is zero atw = 0 and soQ(0) = 0, which results ina0 = 0 by
(55). Henceb1= 0 by (52), which contradicts (50).

Case 2:k − v is odd. ThenG(w) = 2Buw/(w2 − 1) andg(z) = G(euz). We
can easily deduce that

g(j)(z) = 2B(−u)j+1 wQj(w
2)

(w2 −1)j+1
B euz (j ≥ 0),

whereQj(w2) is a polynomial ofw2 with degreej. It follows from (33) and (35)
that

L(g) = wQ(w2)

(w2 −1)k+1
B euz,

whereQ(ζ) is a polynomial ofζ with degree≤ k. This and (51) imply

S(w) = b1+ U(w)

(w2 −1)k+1
, (56)

where
U(w) = wQ(w2). (57)

Substituting (49) and (56) into (43), we have

w{(w2 −1)U ′(w)− 2(k + 1)wU(w)}
×{(∑v+k

i=v−k Aiwi +G(w)− b1
)
(w2 −1)k+1− U(w)}

{(b2 − b1)(w2 −1)k+1+ U(w)]U(w)[(b3− b1)(w2 −1)k+1+ U(w)}
= D

2k
wv−k.

We rewrite this in the form
k∑

j=0

Av−k+2jw
2j +

k−1∑
j=0

Av−k+2j+1w
2j+1− b1w

k−v

+ 2Buwk−v+1

w2 −1
− w

k−v+1Q(w2)

(w2 −1)k+1

= D

2k
· Q(w2)

(w2 −1)U ′(w)− 2(k +1)wU(w)

·
{
(b2 − b1)(b3− b1)(w

2 −1)k+1

+ [wQ(w2)]2

(w2 −1)k+1
+ (2b1− b2 − b3)wQ(w

2)

}
, (58)

where we have replaced some of theU(w) by (57). From (57) we now see that
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(w2 −1)U ′(w)− 2(k +1)wU(w)

is a polynomial ofw2. By multiplying the factor

{(w2 −1)U ′(w)− 2(k +1)wU(w)}(w2 −1)k+1

to both sides of (58) and then comparing all the terms with odd degree, we obtain

k−1∑
j=0

Av−k+2j+1w
2j+1− b1w

k−v

= (2b1− b2 − b3)D

2k
[Q(w2)]2

(w2 −1)U ′(w)− 2(k +1)wU(w)
w. (59)

It is easy to see that the right-hand side can not be a polynomial unless

2b1− b2 − b3 = 0. (60)

Therefore, 3b1 = b1+ b2 + b3. From this and (50), we thus have the following
lemma.

Lemma 2. Let f be nonconstant and meromorphic, and letL(f ) andv be de-
fined (resp.) by (1) and (27), k ≥ 2. Suppose thatf andL(f ) share three finite
valuesb1, b2, b3 IM, wheref 6≡ L(f ). If k − v is odd, then there exists some
bj 6= 0 (1≤ j ≤ 3) such that

3bj = b1+ b2 + b3.

Proof of the Theorem (cont.).From (60) we see that the left-hand side of (59) is
identically zero. Thus,b1 = A0. Together with (50) and (52), this implies that
a0 = 1 and so

L(f ) = akf (k) + · · · + a1f
′ + f. (61)

Let
f̂ = f − b1

and
L̂(f̂ ) = akf̂ (k) + · · · + a1f̂

′ + f̂ .
Then—from (60), (61), and the assumptions of the theorem—we deduce thatf̂

andL̂(f̂ ) share three values(0, x, and−x) IM, wherex can be chosen asb2− b1

or b3 − b1 andx 6= 0. On the other hand, sincêL(f̂ ) andL(f ) have the same
coefficients, it follows from (27), (17), and (18) thatv(L̂(f̂ )) = v(L(f )) and so
k − v(L̂(f̂ )) is also odd. Obviously,̂L(f̂ ) 6≡ f̂ by the assumptionL(f ) 6≡ f.

Thus all the conditions of Lemma 2 are satisfied. By Lemma 2,

3x = x + 0+ (−x) = 0

and sox = 0, which is impossible.
This completes the proof of the theorem.
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