Differential Polynomials That Share
Three Finite Values with Their
Generating Meromorphic Function
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1. Introduction

In this paper, “meromorphic function” means meromorphic in the whole flane
We shall assume that the reader is familiar with the notation and elementary aspects
of Nevanlinna theory (cf. [3] or [4]).

We say that two meromorphic functiorfsandg share a value “IM” (resp.
CM) if f —a andg — a have the same zeros ignoring multiplicities (counting
multiplicities). The subject on sharing values between meromorphic functions and
their derivatives was first studied by Rubel and Yang [9].

THEOREM A. Let f be a nonconstant entire function. fifand f’ share two finite
values CM, thery = f’.

This result was improved independently by Gundersen [2], and Mues and Stein-
metz [7].

THEOREM B. Let f be meromorphic and nonconstant. fifand f’ share three
finite and distinct valuess, by, b3 IM, then f = .

Frank and Schwick [1] generalized this to ttt@ derivative.

TueoreM C. Let f be meromorphic and nonconstakts N. If £ and f® share
three finite and distinct valugs, by, b3 IM, then f = f®.

In the sequel, we set

L(f) i =arfP +ar 1 f* P+ +aof (a #0), @

whereqy, . . ., ag are finite constants. Mues-Reinders [6] proved the following
result.

THEOREM D. Letf be meromorphicand nonconstats k£ < 50. If f andL(f)
share three finite and distinct valugsg b, b3 IM, then f = L(f). Furthermore,
if ax_1 = ay_» = 0, then the restrictiork < 50 can be omitted.
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The purpose of this paper is to cancel the restrictian 50.

THEOREM 1. Let f(z) be nonconstant and meromorphic> 2. If f and L(f)
share three finite and distinct valuég b», b3 IM, then f = L(f).

The following example will show that three finite values in our theorem are best
possible.

ExamMpPLE. Let
o 2V2iz +4eﬁiz +1
(eﬁiz —1)2
Then2— f #0, f" = f(2— f),andf” —1= —(f — 1) Thusf and f” share
0 and 1 1M, butf # f”.

flm)=2

2. One Basic Lemma
For the sake of convenience, we define

L) = L))

U(f) = . (2
(f = bD(f —b2)(f — ba)(L(f) — b)) (L(f) — b2)(L(f) — ba)
(7=5) = =) -5 725)

Nolr,—— | =N|\r, —— ) — N\ r, ,
f=L(f) f-LH) 4 f=b
1 1 3 1
No(r, =) =nN(r. =) =3 M(r, :
%ﬁ) Qﬁ ;(U>J
1 1 3 1
Nolr, ——— ) =N|r, —— | — Nilr, —— |,
°<r (L(f))’> (r (L(f))/) ,; 1(r L(f)—bj)
Na(r, f) = N(r, f) = N(r, f),
L "(f = L
(L) (f — L(f)) @)

A= .
(L(f) = b)(L(f) — b2)(L(f) — b3)

LeEmMA 1. Let f be a nonconstant meromorphic functidng N. If f and L(f)
share three finite valuds, b,, b3 IM, and if f # L(f), then the following con-
clusions hold

T, f)=Tr LN+ S ), TE L) =T0 H+SE ) (4)

_ 8. _ 1
2T(r, L =N, f)+ N{r, + S, f); 5
(r, L(f) = N(r, f) ; (r L(f)—bj> (r, f) (5)
Nl(ryf)=S(r7f); (6)
T(r, W([)) = m(r, W(f)) = S(r, [); 7

N(r;>N<ri>N<r L )—S(rf)' (8
Nr—n) ) P Cawegyy) T
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m(r, L(f)) = S, f); )
T(r,L(f)) = (k+ DN, f)+ S, f); (10)
T(r, f) = (k+ DN, f)+ S, ); (11)
m(r, f) = kN(r, f) + S, f): (12)
T(r, A) =m(r, A) = kN(r, )+ S(r. f). (13)
Proof. The proof is actually given in [2], [5], and [6]. We incIude it here for the
sake of completeness Take C {b1, b2, b3} and Ietb = (=122,
by = 0, g1 = f ,andg, = L(f . Theng; andg; share the vaIueB (j =
1...,4 IM.By the second fundamental theorem, we have
_ 1
27(r, &) < ZN(r, - ) +S(r, &)
=1 g —b;

1
§N<r, >+S(r,gi)
81— 82
ST(rvg1)+T(rsg2)+S(r9gi) (l:172)
Equations (4) and (5) follow from this and the first fundamental theorem. Now, by

kKN(r, f) + N(r, f) < T(r, L(f)) = T(r, f) + S, f)

_ZN<

>+N(r ) =Tw )+ S0 f)

1 _
_N(”,m)‘t‘N(”,f)—T(”,f)‘l‘S(”»f)

<k+DNG, )+ S0, ),
we obtain (6), (10), (11), and (12). By the assumptions and (2), it is easy to see that
W is entire. Now (2) can be written in the form
23: P A C6))
s,t=1 Stf_bs L(f)_ '

wherec,; (s,t = 1,2, 3) are constants depending only én (j = 1, 2,3).
Equation (7) follows from this and the theorem on the logarithmic derivative;
(7) and (2) yield (8). Now, by (10),
m(r, L(f)) + (k + DN, L(f)) < m(r, L(f)) + N, L(f))
< k+DN@ f)+ S f).

V() =

This gives (9). From (3), we now have

m(r, A) <m(r, f) + S(r, f)
and
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kN(r, f) < N(r,1/A) < T(r, A) + S(r, ). 14)

Combining these two inequalities with (12), we obtain (13). This completes the
proof of the lemma. O

3. Proof of Theorem 1

To prove our theorem, we follow some ideas in Mues and Reinders [6]. We suppose
that f £ L(f) andk > 3. Letzo be a simple pole of, and let

R
f@)=——+ 00
Z—2Z0

nearz = zo. Then
ark! (=D*R  ap_1(k = D! (=D*1R

LN = (z — zo)k*1 * (z — zo)* L
Put o
¢ =" (15)
We then have
2
b= ot Lm0+ 0 — 20, (16)
Z—20 3k

whereo andzt are constants depending only on the coefficients @f) andk as
follows:

(k+2)ak_,1

o:=0(f) = KT D o 17)
iy 3k<k2+4k+2<ak__1>2 2k + 6 %> vz 1)
r=T '_[ RE+1D2 \a ) kK21 a } '
Obviously, by (15),
m(r, ¢) = S(r, f) 19)
and . .
N(r,¢) = N(r,1/A) = N(r, ) + S(r, [).
Let

H:=k¢' — 12+ (¢ — 0)%

then, by (16),H(zo) = 0 atthe simple pole of and soN(r, H) = S(r, f), which
results inT(r, H) = S(r, f) by (19). If H(z) # 0, then

N(@r, f) < N I/H) + S0, ) =S, f),
which contradicts (11). ThuB (z) = 0; that is,
k¢’ = 1% — (¢ — 0)>

If T = 0theng is fractional linear, and s¢ has at most one pole by (15) and
(3), which contradicts (11). Thus=# 0. From the preceding equality we have
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aexp(uz) — bexp(—uz)

P =0t T ) + b exp—iz)’

wherea, b are constants and

If ab = 0 theng(z) is constant. By (14) and (15),
kN(r, f) < N(r,1/A) = 0,
which contradicts (11). Thusb # 0. Takec satisfying exg2uc) = —a/b. Then
¢ has the form
exp(u(z +c¢)) + exp(—u(z +c))
expu(z + c¢)) — exp(—u(z +c))’
Using the transformation — z — ¢ if necessary, we may let= 0. Thus

¢(z)=0+T7

¢(z) = o + T coth(uz).
By (15), we have

AG) = De(’z(#)k (21)
with a constanD # 0. This, together with (3), (6), and (13), imply that
we. =21 0w
and so, by (11),
T(r, f)= Wr + S(r, ).

This implies that the ordes(f) of f is less than or equal to 1. Thus
T(r, f) = O(r) for r — oo.
It follows from (2) and [8] that
m(r, ¥(f)) =o(logr) for r — oo.
Combining this with the fact tha¥ (1) is entire, we obtain
W (f) = constant (22)

By (22) and (2), the functiong”’, (L(f))’, and f — L(f) have only zeros at
the zeros off — b; (j =1, 2, 3); f — L(f) has only simple zeros argihas only
simple poles that coincide with zeros &f Thus, the poles of are

w=vii (e,
u
which gives

N, f) = N(r, f)=¥+0(1)- (23)

Note that, since (f) < 1, it follows from [8], (9), and (12) that
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2k|ul|r
m(r, L(f)) = o(logr), m(r, f) = - + o(logr).
Let
R,
f@) = + 0.
Z _Z\)

Then k4l

‘I’(f) = R—E,
by (2). Set

o ok
vi=v(L(f))i=—=—.
u T
From (21) and (3) it follows that

D"k +1)

D k vvmi -1 kv _
ne ( ) k!akRu

(24)

(25)

(26)

(27)

(28)

for all v € Z. Squaring (28) and combining with (22) and (26), we deduce that

e?™ = constant for allv € Z.
Takingv = 0, we know that
e =1 forall veZ.
Thuse?™ = 1, which results inv € Z. By (28) we have
R, = (=)*“"""B,

1\ k+1
B=(-2) 2=
(u)Dk!ak

T(r, A) =m(r, A) = {k + max(k, |v|)}% + 0.

where

Now, by (21),

On the other hand, by (13) and (23),

2|ulr
T(r, A) = k—— + o(logr).
T

These two equations imply that| < k, and so
velZ, —-k<v<k.
We define:
2Bu/(w?—1) if k—viseven
2Buw/(w? —1) if k —v is odd
2(z) == G(e");
h(z) == f(2) — g(2).
Then# is entire by (25), (29), and (34). Let

G(w) = {

(29)

(30)

(31)

(32)

(33)
(34)
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k k

L(g) =) ag?, L= ah.

j=0 j=0

It is easy to check thak(r, g/) = 0(1) for j =0, .. ., k; (24) gives
m(r, L(h)) < m(r, L(f)) +m(r, L(g)) + O(1) = o(logr)

for r — oo. Note thatL (k) is entire and so we have

L(h) = constant

hence,
L(f)(z) = L(g)(2) + L(h)(z) = S(e™)

for a rational functionS(w). Note that, agRe(uz)| — oo,
V@ =00 ©0=<j<h.

We deduce that
S(0) # oo, S(00) # oo.

181

(39)

(36)

(37)

(38)

From (21), (33), (34), (37), and (3), we see thds a (27/u)i-periodic entire

function, and (24) and (34) yield
2k|u|r
m(r,h) =m(r, f)+ 0Q) = — + o(logr)

for r — oo. Thush(z) is of the form

q
h(z) =) Aje’ (p=<gq. AjeC, AA, #0),
J=P
with
max{q, 0} — min{p, 0} = 2k%.
Therefore,
f(@) = R(e")

with a rational function

q
Rw) =) Awl +G(w).
j=p

By (21), (37), (41), and (3), we now have

uwS'(w)(R(w) — S(w)) _ D@ -t

(S(w) —b1)(S(w) — b)) (S(w) —bz) 28 wk=v
From (33), (37), and (40), we may suppose that
P(w)
S(w) = (w? — D

where

Pw)=dw' +---+diw+d (d, #0,t<2k+1, P(£1) #0).

Substituting this into (43), we obtain

(39)

(40)

(41)

(42)

(43)

(44)
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w[(w? — ) P'(w) — 2(k + HwP (w)]
x[R(w)wk—v (w2 — D 1 — P(w)wk—v] _ D

. (45)
15[ P (w) — bj(w? — D+ u2*
From (44) we see that there exists an integewith
m=>2k+1—t+1 (46)

such that
S'(w)=0w™™) for w— oo.

Dividing both sides of (43) by** and lettingw — oo, it follows from (40),
(42), and (43) that
g=k+v+m—-1>k+v. (47)

Similarly, by consideringy — 0 we obtain
p<v—k.
Combining this, (24), (40), and (47), we have
q=v+k, p=v—k.
Thus, (39) and (42) now read

v+k

h(z) = Z‘ Aje’ (A eC, A A, #0) (48)
j=v—k
and
v+k )
Rw) =Y Aw/ +Gw), (49)
v—k

respectively. Furthermore, frogn= v + k and (47) we deduce that = 1; hence
by (46), 1> 2(k +1) — t + 1—thatis,t > 2(k + 1). This and the condition <
2(k + 1) imply that
t=2k+17).
Thus by (44),
S(c0) =d; #0,
which implies that
(w? =P (w) — 2(k + HwP (w)

is a polynomial ofw with order< 2k + 2. Therefore, the order of the numerator
of (45) is at most 6 + 5. If

S(o00) =d; # b1, b, b3,

thenP (w) — b;(w? —1)**1is a polynomial ofw with degree 2 +2for j =1, 2, 3,
so that the order of the denominator of (45) is66—a contradiction. Thug, =
b; 1< j <3). Wemay let

by = S(c0) =d; #0. (50)
This, (36), and (48) imply that
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S(e") = b1+ L(g(2)) (51)
and
d; = by =apgAo = L(h). (52)
Without loss of generality, we may suppose that

b—b bi—b
1 n 17 b3

d ao# 5B (53)

ag #

Otherwise, we considef = f(az) and
k
L(f)y =) &
j=0

for some suitable positive constantwhere
dj=aja (j=01...,k).

It is obvious thatl(f) = L(f) and thatf andZ(f) shareb; IMfor j =1,2, 3.
LetA, B, i, ¥, 7, 6, andD correspond taA, B, u, v, 7, o, andD, respectively.
Then, by (3) and (21)D = D; by (17) and (18)6 = oo and? = «z, so thati =
au and? = v by (20) and (27). Thus (31) still holds férand by (30),B = B.

As a result,
b1 — b; b1 — by

-1 .
— = =2,3).
2Bi 2Bu G )
We can therefore choose a suitable positive constanich that
by — b;

do=a =2, 3).
2Bi #Fao=ao (Jj )

Next we consider two cases.
Case 1:k — v is even.Then, by (32),

Gw) = 2Bu and g() = 2Bu
R 8= a1
These equalities imply that
) 2luz
g(l)(z) 2uz Zl Ocle (j 2 1),

( (o2uz — 1) j+1 _‘]_) j+1

where all¢; are constants. Thus, by (50) and (51), we may let

S(w) = b1+ (w%uﬁk“, (54)
where
Q(w) = 2Buag(w? — ¥ + w?Pr_1(w?); (55)

here P,_1(w?) is a polynomial ofw? of degree less than or equalko- 1. We
rewrite O (w) in the form

O(w) =e,w" +---+eqw+eg (e, #0, m < 2k).
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Combining (55), (54), and (53), we obtain tt$a0) — b, # 0 andS(0) — b3 #

0. By (43), we thus have
uw(w? — DS (w)(R(w)w*? — S(w)w*?)
Q(w)(S(w) — b2)(S(w) — b3)

Now the numerator is zero at = 0 and soQ (0) = 0, which results imig = 0 by
(55). Henceb, = 0 by (52), which contradicts (50).

Case 2:k — v is odd. ThenG (w) = 2Buw/(w? — 1) andg(z) = G(e*?). We
can easily deduce that

= D27k,

; 1 wQiw?)
gV = ZB(—M)j+l(w2 . i+’

whereQ;(w?) is a polynomial ofw? with degreej. It follows from (33) and (35)
that

(=0,

wQ (w?) uz

=zt

whereQ(¢) is a polynomial oft with degree< k. This and (51) imply

L(g)

U
ﬂm=m+67§%g, (56)
where
Uw) = wQ(w?). (57)
Substituting (49) and (56) into (43), we have
w{(w? = DU (w) — 2(k + DHwU(w)}
x{(XE Ajwi + G(w) — br)(w? — DL — U(w)}
{(b2 — by) (w2 — D*+L + Uw)]U (w)[(b3 — b1) (w? — DML 4 U(w))}
D v—k
= v
We rewrite this in the form
k k—1
Z Ay_p2jw? + Z Aypr2jsw? T — bpwkTY
j=0 j=0
2Buwk—vtl kg (y?)
w2—1  (w2—DkH
_D 0(w?)
T2k (w2 =DU'(w) — 2k + HwU(w)
{wrmmm—mmﬁ—wﬂ
2\12
% +(2b1— by — bg)wQ(wz)}, (58)

where we have replaced some of thew) by (57). From (57) we now see that
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(w? = DU (w) — 2(k + DHwU(w)
is a polynomial ofw?. By multiplying the factor
{(w? = DU (w) — 2(k + HwU (w)}(w? — D L

to both sides of (58) and then comparing all the terms with odd degree, we obtain

k1
2j+1 k—v
E Apkg2j4w YT = biw

j=0
(2by — ba — b3) D [Qw?)]?
= w. (59)
2k (w2 —HU' (w) — 2(k + HwU(w)
It is easy to see that the right-hand side can not be a polynomial unless
2b1— by — b3 =0. (60)

Therefore, 8; = by + b, + bsz. From this and (50), we thus have the following
lemma.

LemMma 2. Let f be nonconstant and meromorphic, and Agtf) and v be de-
fined(resp) by (1) and (27),k > 2. Suppose thaf and L(f) share three finite
valuesb, by, b3 IM, where f £ L(f). If kK — v is odd, then there exists some
b; #0 (1 < j < 3) such that

3bj =by+bo+ bs.

Proof of the Theorem (cont.}rrom (60) we see that the left-hand side of (59) is
identically zero. Thush; = Ap. Together with (50) and (52), this implies that
ap=1and so

L(f)=arf®+ - +af +f (61)
Let A

f=r—-b

and

Lf)=af®P+ - +af +f.

Then—from (60), (61), and the assumptions of the theorem—we deducé¢ that
andi(f) share three valug®, x, and—x) IM, wherex can be chosen d@s — b,

or b3 — by andx # 0. On the other hand, sincé(f) andL( f) have the same
coefficients, it follows from (27), (17), and (18) thatL(f)) = v(L(f)) and so

k — v(L(f)) is also odd. ObviouslyL.(f) # f by the assumptiol(f) £ f.
Thus all the conditions of Lemma 2 are satisfied. By Lemma 2,

A =x+0+(—x)=0

and sax = 0, which is impossible.
This completes the proof of the theorem. O

AcCkNOWLEDGMENT. We wish to thank Dr. Reinders for many valuable discus-
sions. We also want to express our gratitude to the referee for useful comments.



186 GUNTER FRANK & XIN-HOU Hua

References

[1] G. Frank and W. Schwickiveromorphe Funktionen, die mit einer Ableitung drei
Werte teilen Results Math. 22 (1992), 679-684.

[2] G. G. Gundersenyeromorphic functions that share finite values with their deriva-
tive, J. Math. Anal. Appl. 75 (1980), 441-446.

[3] W. K. Hayman,Meromorphic functionsClarendon Press, Oxford, 1964.

[4] G. Jank and L. Volkmannileromorphe Funktionen und Differentialgleichungen,
Birkhauser, Basel, 1985.

[5] E. Mues,Meromorphic functions sharing four valueSpmplex Variables Theory
Appl. 12 (1989), 169-179.

[6] E. Mues and M. Reinderdvleromorphe Funktionen, die mit einem linearen
Differentialpolynom drei Werte teilerResults Math. 22 (1992), 725-738.

[7] E. Mues and N. Steinmetaeromorphe Funktionen, die mit ihrer Ableitung Werte
teilen, Manuscripta Math. 29 (1979), 195-206.

[8] V. Ngoan and I. V. OstrovskiiThe logarithmic derivative of a meromorphic
function, Akad. Nauk. Armjan. SSR Dokl. 41 (1965), 272-277.

[9] L. A. Rubel and C. C. YangYalues shared by an entire function and its derivative,
Complex analysis (Lexington, KY, 1976), pp01-103,Lecture Notes in Math.,
599, Springer-Verlag, Berlin, 1977.

G. Frank X. Hua

Technische Universitat Berlin Institute of Mathematics
Fachbereich 3/Mathematik Nanjing University
10623 Berlin Nanjing 210093
Germany China

frank@math .tu-berlin.de mahua@netra.nju.edu.cn



