Homology of Real Algebraic Fiber Bundles Having Circle as Fiber or Base

Yildiray Ozan

1. Introduction

For real algebraic sets $X \subseteq \mathbb{R}^{r}$ and $Y \subseteq \mathbb{R}^{s}$, a map $F: X \rightarrow Y$ is said to be entire rational if there exist $f_{i}, g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{r}\right], i=1, \ldots, s$, such that each g_{i} vanishes nowhere on X and $F=\left(f_{1} / g_{1}, \ldots, f_{s} / g_{s}\right)$. We say X and Y are isomorphic to each other if there are entire rational maps $F: X \rightarrow Y$ and $G: Y \rightarrow X$ such that $F \circ G=\mathrm{id}_{Y}$ and $G \circ F=\mathrm{id}_{X}$. A complexification $X_{\mathbb{C}} \subseteq \mathbb{C P}^{N}$ of X will mean that X is a nonsingular algebraic subset of some $\mathbb{R P}^{N}$ and $X_{\mathbb{C}} \subseteq \mathbb{C P}^{N}$ is the complexification of the pair $X \subseteq \mathbb{R P}^{N}$. We also require the complexification to be nonsingular (blow up $X_{\mathbb{C}}$ along smooth centers away from X defined over reals if necessary). For basic definitions and facts about real algebraic geometry, we refer the reader to $[2 ; 4]$. Let $K H_{*}(X, R)$ be the kernel of the induced map

$$
i_{*}: H_{*}(X, R) \rightarrow H_{*}\left(X_{\mathbb{C}}, R\right)
$$

on homology, where $i: X \rightarrow X_{\mathbb{C}}$ is the inclusion map and R is either \mathbb{Z} or a field. In [16] it is shown that $K H_{*}(X, R)$ is independent of the complexification $X \subseteq$ $X_{\mathbb{C}}$. All compact manifolds and nonsingular real or complex algebraic sets are R oriented so that Poincaré duality and intersection of homology classes are defined.

In this note, X will be mostly the total space of a fiber bundle and we will study $K H_{*}(X, R)$. In the next section the fiber will be S^{1} and in the third section the base space will be S^{1}. As an application we will prove a result of Kulkarni that a compact homogeneous manifold M has an algebraic model X with [X] zero in $H_{n}\left(X_{\mathbb{C}} ; \mathbb{Z}\right)$ if and only if M has zero Euler characteristic. (Kulkarni [10, Cor. 4.6, Thm. 5.1] proved this for rational coefficients.) In Section 4 we will consider entire rational maps $f: X \rightarrow Y$ and compare $K H_{k}(X, R)$ and $K H_{k}(Y, R)$ via f in case X and Y have the same dimension. Results will be proved in the last section.

2. Bundles with Circle Fibers

On any compact Lie group there is a unique real algebraic structure compatible with the group operations [12]. Let G be such a group endowed with its unique real algebraic structure. An action of G on X is said to be algebraic if the action
is given by an entire rational map $\theta: G \times X \rightarrow X$. If $H \subseteq G$ is a closed subgroup then, on the homogeneous space G / H, there is a canonical algebraic structure where the quotient map is entire rational. Moreover, this algebraic structure is unique if one requires the action of G on G / H, by left multiplication, to be algebraic.

For any smooth map $f: N^{n} \rightarrow M^{m}$ of compact smooth manifolds, define the transfer homomorphisms

$$
f_{!}: H_{m-k}(M ; R) \rightarrow H_{n-k}(N ; R) \quad \text { and } \quad f^{!}: H^{n-k}(N ; R) \rightarrow H^{m-k}(M ; R)
$$

via the following diagrams:

$$
\begin{array}{cccccc}
H_{m-k}(M ; R) & \xrightarrow{f_{!}} & H_{n-k}(N ; R) & H^{n-k}(N ; R) & \xrightarrow{f^{!}} & H^{m-k}(M ; R) \\
D \downarrow \cong & \cong \mid D & D^{-1} \downarrow \cong & \cong \downarrow D^{-1} \\
H^{k}(M ; R) & \xrightarrow[f^{*}]{\longrightarrow} & H^{k}(N ; R), & H_{k}(N ; R) \xrightarrow[f_{*}]{\longrightarrow} & H_{k}(M ; R),
\end{array}
$$

where the vertical maps are the (inverse of) Poincaré isomorphisms ($R=\mathbb{Z}_{2}$ if M or N is nonorientable). For any $a \in H^{n-k}(N, R)$ and $b \in H_{m-l}(M, R)$ with $\operatorname{deg}\left(f_{!}(b)\right) \geq \operatorname{deg}(a)$, the following holds (cf. [7, p. 394]):

$$
\begin{equation*}
f_{*}\left(a \cap f_{!}(b)\right)=(-1)^{l(m-n)} f^{!}(a) \cap b \tag{*}
\end{equation*}
$$

Now we can state the results of this section.
Theorem 2.1. Let S^{1} act algebraically on a compact connected nonsingular real algebraic set X of dimension n, and let $\pi: X \rightarrow X / S^{1}=B$ be the quotient map. Then, for any $0 \leq k \leq n-1, \pi_{!}\left(H_{k}(B, R)\right) \subseteq K H_{k+1}(X, R)$ in each of the following cases:
(1) R is a field and the S^{1} action is free;
(2) $R=\mathbb{Z}$, the S^{1} action is free, and $H_{k+1}(B, \mathbb{Z})$ is torsion free;
(3) R is a field of characteristic zero and the stabilizer of any point of the S^{1} action is finite.

Moreover, in these cases the map $\pi_{!}: H_{n-1}(B, R) \rightarrow K H_{n}(X, R)$ is an isomorphism and so the R fundamental class $[X]$ is null homologous in any complexification $X_{\mathbb{C}}$.

Dovermann [8] showed that any smooth S^{1} action on a smooth closed manifold is algebraically realized. Hence, we have the following theorem.

Theorem 2.2. Assume that S^{1} is acting on a smooth closed manifold M of dimension n and that $\pi: M \rightarrow M / S^{1}=B$ is the quotient map. Then M has an algebraic model X such that, for any $0 \leq k \leq n-1, \pi_{!}\left(H_{k}(B, R)\right) \subseteq K H_{k+1}(X, R)$ in each of the following cases:
(1) R is a field and the S^{1} action is free;
(2) $R=\mathbb{Z}$, the S^{1} action is free, and $H_{k+1}(B, \mathbb{Z})$ is torsion free;
(3) R is a field of characteristic zero and the stabilizer of any point of the S^{1} action is finite.
Moreover, in these cases the R fundamental class $[X]$ is null homologous in any complexification $X_{\mathbb{C}}$.

Remark. Suppose M is \mathbb{Z} oriented. The manifold M in Theorem 2.2 has necessarily zero Euler characteristic. Indeed, if M has nonzero Euler characteristic then the self-intersection of X in its complexification is nonzero and so $[X]$ would not be torsion in $H_{n}\left(X_{\mathbb{C}} ; \mathbb{Z}\right)$. In fact, we conjecture that any connected smooth compact manifold M with zero Euler characteristic has an algebraic model X with torsion $[X]$ in $H_{n}\left(X_{\mathbb{C}} ; \mathbb{Z}\right)$. We have to mention Kulkarni's result that this conjecture is true for compact homogeneous manifolds [10, Cor. 4.6, Thm. 5.1].

Corollary 2.3. A compact homogeneous manifold M has an algebraic model X with $[X]$ zero in $H_{n}\left(X_{\mathbb{C}} ; \mathbb{Z}\right)$ if and only if M has zero Euler characteristic.

Kulkarni uses mixed Hodge structures to prove this result in rational coefficients. The proof we provide is of different nature and works for integer coefficients also.

3. Fiber Bundles over a Circle

In this section, we will study the relative homology of fiber bundles over S^{1} in their complexifications. The main reference for this section is the article by Morrison [9, p. 101].

Let $F \rightarrow M \xrightarrow{\pi_{0}} S^{1}$ be a smooth fiber bundle with compact and connected F. Topologically, M is just $[0,1] \times F /((0, x) \sim(1, \phi(x))$, where $\phi: F \rightarrow F$ is a diffeomorphism, the monodromy of the fiber bundle. By a Mayer-Vietoris argument we see that

$$
H_{k}(M, \mathbb{Q}) \simeq \bigoplus_{i+j=k} H_{i}\left(S^{1}, \mathbb{Q}\right) \otimes H_{j}(F, \mathbb{Q})^{\phi_{*}},
$$

where $H_{j}(F, \mathbb{Q})^{\phi_{*}}$ is the +1 -eigenspace of the induced homomorphism of vector spaces $\phi_{*}: H_{j}(F, \mathbb{Q}) \rightarrow H_{j}(F, \mathbb{Q})$. In particular, M is orientable if and only if F is orientable and $\phi: F \rightarrow F$ is orientation preserving.

Assume that π_{0} is a regular map. This ensures that the smooth fiber bundle is stable under small deformations of the projection map π_{0}. There exists an algebraic model X of M such that any smooth map $X \rightarrow S^{1}$ can be approximated by entire rational maps in the C^{∞} topology (first use [1], [2], or [3] to get a model X with $H_{\mathrm{alg}}^{1}\left(X, \mathbb{Z}_{2}\right)=H^{1}\left(X, \mathbb{Z}_{2}\right)$ and then use Theorem 1.4 in [5]). In other words, the set $R\left(X, S^{1}\right)$ of entire rational maps from X to S^{1} is dense in the set $C^{\infty}\left(X, S^{1}\right)$ of smooth maps from X to S^{1}, where $C^{\infty}\left(X, S^{1}\right)$ is equipped with the C^{∞} topology. Now choose some $\pi \in R\left(X, S^{1}\right)$ so close to π_{0} that $\pi: X \rightarrow S^{1}$ is a fiber bundle equivalent to $\pi_{0}: X \rightarrow S^{1}$; that is, there is a diffeomorphism $G: X \rightarrow M$ with $\pi=\pi_{0} \circ G$. For generic π close enough to π_{0}, each fiber $F_{z}=\pi^{-1}(z)$ will be an irreducible nonsingular real algebraic set diffeomorphic to F. Now consider the complexification of this fiber bundle $\pi_{\mathbb{C}}: X_{\mathbb{C}} \rightarrow S_{\mathbb{C}}^{1}=\mathbb{C} P^{1}$, which is locally
trivial with smooth and irreducible fibers outside a finite set of singular fibers. For any $z \in S^{1} \subseteq \mathbb{C} P^{1}$, the fiber $\pi_{\mathbb{C}}^{-1}(z) \subseteq X_{\mathbb{C}}$ is a complexification of $F_{z}=\pi^{-1}(z) \subseteq$ X. We will denote this complex fiber by $F_{\mathbb{C}}$. The monodromy $\phi: F \rightarrow F$ extends to $\phi_{\mathbb{C}}: F_{\mathbb{C}} \rightarrow F_{\mathbb{C}}$, the monodromy of the complex fiber bundle restricted $S^{1} \subseteq$ $\mathbb{C} P^{1}$, provided that the complex fibers over S^{1} are smooth.

Theorem 3.1. Let $\pi: X \rightarrow S^{1}, \pi_{\mathbb{C}}: X_{\mathbb{C}} \rightarrow S_{\mathbb{C}}^{1}=\mathbb{C} P^{1}, F, F_{\mathbb{C}}, \phi: F \rightarrow F$, and $\phi_{\mathbb{C}}: F_{\mathbb{C}} \rightarrow F_{\mathbb{C}}$ as before. Then

$$
\left(H_{1}\left(S^{1}, \mathbb{Q}\right) \otimes H_{k-1}(F, \mathbb{Q})^{\phi_{*}}\right) \oplus K H_{k}(F, \mathbb{Q})^{\phi_{*}} \subseteq K H_{k}(X, \mathbb{Q}),
$$

where $H_{j}(F, \mathbb{Q})^{\phi_{*}}$ is the +1 -eigenspace of the homomorphism of $\phi_{*}: H_{j}(F, \mathbb{Q}) \rightarrow$ $H_{j}(F, \mathbb{Q})$ and $K H_{k}(F, \mathbb{Q})^{\phi_{*}}=K H_{k}(F, \mathbb{Q}) \cap H_{k}(F, \mathbb{Q})^{\phi_{*}}$.

The following is an immediate corollary of the foregoing discussion.
Corollary 3.2. Assume that M is an n-dimensional compact connected smooth manifold that admits a fibering over S^{1}. Then M has an algebraic model X such that the fundamental class $[X]$ is torsion in $H_{n}\left(X_{\mathbb{C}}, \mathbb{Z}\right)$.

Remarks. (1) Write $\mathbb{C} P^{1}=D_{+} \cup D_{-}$as the union of two closed disks with common boundary $\partial D_{+}=\partial D_{-}=S^{1}$. Let Z_{+}denote $\pi_{\mathbb{C}}^{-1}\left(D_{+}\right)$. Assume that Z_{+} has only one singular fiber. It is well known (see [11]) that the eigenvalues of the induced map on homology $\phi_{*}: H_{j}\left(F_{\mathbb{C}}, \mathbb{C}\right) \rightarrow H_{j}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ are all roots of unity. Hence, any class $\alpha \in H_{j}(F, \mathbb{C})$ with the property that $\phi_{*}(\alpha)=\lambda \cdot \alpha$, where $\lambda \in \mathbb{C}$ is not a root of unity, should vanish in $H_{j}\left(F_{\mathbb{C}}, \mathbb{C}\right)$.
(2) Let $\pi: X \rightarrow(-1,1)$ be a real deformation with complexification $\pi_{\mathbb{C}}: X_{\mathbb{C}} \rightarrow$ D, where D is the unit disk in \mathbb{C} so that all fibers are smooth. Let $t \in(-1,1)$ and let $F^{t}=\pi^{-1}(t)$ be the real fiber over t with complexification $F_{\mathbb{C}}^{t}=\pi_{\mathbb{C}}^{-1}(t)$. Since the pair $\left(F_{\mathbb{C}}^{t}, F^{t}\right)$ is diffeomorphic to $\left(F_{\mathbb{C}}^{0}, F^{0}\right)$, we see that $K H_{*}\left(F^{t}, R\right)=$ $K H_{*}\left(F^{0}, R\right)$. Hence, $K H_{*}(F, R)$ does not alter under real deformations. It is not yet known what happens in the case that all fibers but $F_{\mathbb{C}}^{0}$, with only nonreal singularities, are smooth.
(3) Suppose that X is the total space of a real algebraic fiber bundle whose base space or the fiber has trivial homology in its complexification. We do not yet have a result like Theorem 3.1 in this general case. However, if a homology class in X is a product of classes of the base and the fiber then it is trivial in the complexification $X_{\mathbb{C}}$.

4. The Case Where X and Y Have the Same Dimension

Let $f: X \rightarrow Y$ be an entire rational map. Then, by [16, Thm. 2.3] we have $f_{*}\left(K H_{k}(X, R)\right) \subseteq K H_{k}(Y, R)$. It is natural to ask whether $f_{!}\left(K H_{k}(Y, R)\right)$ lies in $K H_{k}(X, R)$. The following propositions provide partial answers to this question when $\operatorname{dim}(X)=\operatorname{dim}(Y)$.

Proposition 4.1. Let $f: X \rightarrow Y$ be an entire rational map of topological degree $n>0$ of compact connected nonsingular real algebraic sets of the same dimension. Let F be field of characteristic zero or p with $n \not \equiv 0(\bmod p)$. Then, for any $k, f_{!}$maps $H_{k}(Y, F)-K H_{k}(Y, F)$ into $H_{k}(X, F)-K H_{k}(X, F)$ injectively.

Remark. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{4}+y^{4}=1\right\}$, which does not bound in its complexification because its complexification $X_{\mathbb{C}}$ is a nonsingular curve of degree 4 in $\mathbb{C P}^{2}$ and thus has genus 3. By a result of Bochnak and Kucharz [5, Cor. 1.5], we can find an entire rational diffeomorphism $f: X \rightarrow S^{1}$. Since S^{1} bounds in its complexification, this example shows that in Proposition 4.1 we cannot replace the conclusion with a statement that $f_{!}$maps $K H_{k}(Y, F)$ into $K H_{k}(X, F)$. What went wrong in this example is that-although the topological degree of $f: X \rightarrow S^{1}$ is 1-the degree of its complexification $f_{\mathbb{C}}: X_{\mathbb{C}} \rightarrow S_{\mathbb{C}}^{1}$ is 2 and hence the preimage of S^{1} under $f_{\mathbb{C}}$ has an extra component (other than X).

Let G be a finite group acting algebraically and freely on a nonsingular real algebraic set X, so that the topological quotient X / G equals the algebraic quotient $Y=X / / G$. In other words, the nonreal points of $X_{\mathbb{C}}$ are mapped to the nonreal points of the quotient algebraic set or, equivalently, the degrees of both the quotient map and its complexification are equal [14; 15]. In this case we have the following.

Proposition 4.2. Let G and $f: X \rightarrow Y$ be as in the preceding paragraph, and let F be a field of characteristic zero or p with $n=|G| \not \equiv 0(\bmod p)$. Then, for any k, $f_{!}$maps $K H_{k}(Y, F)$ injectively into $K H_{k}(X, F)$. Moreover, the composition $f_{*} \circ f_{!}: K H_{k}(Y, F) \rightarrow K H_{k}(Y, F)$ is just multiplication by n and thus is an isomorphism.

Example. Let $G=\mathbb{Z}_{2}$ or a finite group of odd order, and let $\pi: M \rightarrow N$ be a regular G covering of compact smooth manifolds. Then there exists an equivariant algebraic model X of M such that $X / G=X / / G$: If G is of odd order then by [8] the G manifold M has an equivariant algebraic model-say, X-and then, by [15, Thm. 2.1] or [14, Prop. 3.7], we see that $X / G=X / / G$. If $G=\mathbb{Z}_{2}$ then first find an algebraic model Y for the smooth quotient X / G with $H_{\text {alg }}^{1}\left(Y, \mathbb{Z}_{2}\right)=$ $H^{1}\left(Y, \mathbb{Z}_{2}\right)$ (cf. [1], [2], or [3]) and then use [13, Thm. 4.2] to construct X.

5. Proofs

Proof of Theorem 2.1. Parts (1) and (2) are proved in [16]. For part (3), we need only observe that the manifold W used in [16] is a rational homology manifold. To see this, let $H \subseteq S^{1}$ be the smallest subgroup containing all the stabilizers of the S^{1} action on $\left(D^{2} \times X\right) ; H$ is finite (cf. [6, Sec. 10, p. 218]), and each element of H is homotopic to the identity map of W. Hence $H_{*}\left(D^{2} \times X, \mathbb{Q}\right)=$ $H_{*}\left(\left(D^{2} \times X\right) / H, \mathbb{Q}\right)$. So $\left(D^{2} \times X\right) / H$ is a rational homology manifold. Note that $S^{1} \simeq S^{1} / H$ acts on $\left(D^{2} \times X\right) / H$ freely with quotient W. The Gysin sequence associated to this S^{1} fiber bundle proves that W is a rational homology manifold.

Proof of Corollary 2.3. If the Euler characteristic of M is not zero then-by the Remark following Theorem 2.2-for any algebraic model X of M, the fundamental class [X] is not zero in $H_{*}\left(X_{\mathbb{C}}, \mathbb{Z}\right)$.

Now assume that M has zero Euler characteristic. Since M is a homogeneous manifold we can write $M=G / H$ for some compact Lie group G and a closed subgroup H of G. By the facts stated at the beginning of Section 2, M has a canonical algebraic structure and the G action on the coset space $M=G / H$ is algebraic. Let $T_{0} \subseteq H$ be a maximal torus. Suppose that T_{0} is maximal in G also, and consider the fiber bundle

$$
H / T_{0} \rightarrow G / T_{0} \rightarrow G / H
$$

Since T_{0} is maximal in G, the Euler characteristics of G / T_{0} is nonzero. However, this is a contradiction because the base space G / H has zero Euler characteristic. So, T_{0} is not maximal in G. Now choose a maximal torus T in G containing T_{0}, and let S^{1} be a circle subgroup of T with $T_{0} \cap S^{1}=(e)$. The subgroup S^{1} acts freely on G / H because $S^{1} \cap H=\left(S^{1} \cap T\right) \cap H=S^{1} \cap(T \cap H)=S^{1} \cap T_{0}=$ (e). Moreover, this S^{1} action is algebraic and thus, by Theorem 2.1(2), the fundamental class [M] is zero in $H_{*}\left(M_{\mathbb{C}}, \mathbb{Z}\right)$.

Proof of Theorem 3.1. The proof consists of setting up the notation and diagram chasing. We will basically follow the article by Morrison in [9]. Write $\mathbb{C} P^{1}=$ $D_{+} \cup D_{-}$as the union of two closed disks with common boundary $\partial D_{+}=\partial D_{-}=$ S^{1}. Let Z_{+}denote $\pi_{\mathbb{C}}^{-1}\left(D_{+}\right)$. As mentioned before, there are only finitely many singular fibers. We can assume that the fibers over S^{1} are all smooth. The reason is that the real parts of all the fibers over S^{1} are smooth and we care only about the relative homology of the pair $\left(X_{\mathbb{C}}, X\right)$. Hence, smoothly ε-isotoping S^{1} in $\mathbb{C} P^{1}$ off the singular base points (together with the real fibers over it), we obtain a smooth manifold L isotopic to X and such that $\pi_{\mathbb{C}}^{-1}\left(\pi_{\mathbb{C}}(z)\right)$ is smooth for all $z \in L$.

We will first assume that there is only one singular fiber in Z_{+}and that this fiber has normal crossings. In other words, the degeneration is semistable. We need semistability for the Clemens-Schmid exact sequence that we will make use of shortly.

Let $N=\log \phi_{*}: H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right) \rightarrow H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right)$, where $\phi_{*}: H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right) \rightarrow$ $H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right)$ is the monodromy homomorphism and

$$
\log \phi_{*}=\left(\phi_{*}-I\right)-\frac{1}{2}\left(\phi_{*}-I\right)^{2}+\frac{1}{3}\left(\phi_{*}-I\right)^{3}-\cdots .
$$

This is a finite sum by the monodromy theorem. Note that ker $N=H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right)^{\phi^{*}}$, the set of all invariant m cycles. (The +1 -eigenspace of the induced homomorphism ϕ_{*} of vector spaces maps $H_{j}\left(F_{\mathbb{C}}, \mathbb{Q}\right)$ to $H_{j}\left(F_{\mathbb{C}}, \mathbb{Q}\right)$.) Let $t_{*}: H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right) \rightarrow$ $H_{m}\left(Z_{+}, \mathbb{Q}\right)$ be the induced map on homology by the inclusion $t: F_{\mathbb{C}} \rightarrow Z_{+}$. Finally, define two more homomorphisms α and β as the compositions

$$
\alpha: H_{m}\left(Z_{+}, \mathbb{Q}\right) \rightarrow H_{m}\left(Z_{+}, \partial Z_{+}, \mathbb{Q}\right) \xrightarrow{D} H^{2 n-m}\left(Z_{+}, \mathbb{Q}\right)
$$

and

$$
\beta: H^{2 n-m}\left(Z_{+}, \mathbb{Q}\right) \xrightarrow{l^{*}} H^{2 n-m}\left(F_{\mathbb{C}}, \mathbb{Q}\right) \xrightarrow{D} H_{m-2}\left(F_{\mathbb{C}}, \mathbb{Q}\right),
$$

respectively. The maps labeled D are just (the inverse of) the Poincare duality maps. Now we can write the Clemens-Schmid exact sequence:

$$
\begin{aligned}
\cdots \rightarrow H^{2 n-2-m}\left(Z_{+}, \mathbb{Q}\right) & \xrightarrow{\beta} H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right) \xrightarrow{N} H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right) \\
& \xrightarrow{l_{*}} H_{m}\left(Z_{+}, \mathbb{Q}\right) \xrightarrow{\alpha} H^{2 n-m}\left(Z_{+}, \mathbb{Q}\right) \xrightarrow{\beta} .
\end{aligned}
$$

Since $\pi_{\mathbb{C}}: \partial Z_{+} \rightarrow S^{1}$ is also a fiber bundle with fiber $F_{\mathbb{C}}$, we have

$$
H_{k}\left(\partial Z_{+}, \mathbb{Q}\right) \simeq \bigoplus_{i+j=k} H_{i}\left(S^{1}, \mathbb{Q}\right) \otimes H_{j}\left(F_{\mathbb{C}}, \mathbb{Q}\right)^{\phi_{*}}
$$

Consider the following commutative diagram:

where all nonhorizontal maps are induced by inclusions. Note that the image of $i_{F_{\mathbb{C}}}$ is the direct summand $H_{0}\left(S^{1}, \mathbb{Q}\right) \otimes H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right)^{\phi_{*}}$ of $H_{m}\left(\partial Z_{+}, \mathbb{Q}\right)$. On the other hand, it follows from the definition of α that the image of $i_{\partial Z_{+}}$lies in the kernel of α. Hence, the summand $H_{1}\left(S^{1}, \mathbb{Q}\right) \otimes H_{m-1}\left(F_{\mathbb{C}}, \mathbb{Q}\right)^{\phi_{*}}$ of $H_{m}\left(\partial Z_{+}, \mathbb{Q}\right)$ is contained in $\operatorname{ker} i_{\partial Z_{+}}$. Finally, since $K H_{m}(X, \mathbb{Q})$ is equal to the kernel of the composition $i_{\partial Z_{+}} \circ i_{X}$, we conclude that

$$
\left(H_{1}\left(S^{1}, \mathbb{Q}\right) \otimes H_{m-1}(F, \mathbb{Q})^{\phi_{*}}\right) \oplus K H_{m}(F, \mathbb{Q})^{\phi_{*}} \subseteq K H_{m}(X, \mathbb{Q}) .
$$

Suppose now that this singular fiber is not semistable. Then, by the semistable reduction theorem [9, p. 102], the degeneration can be made semistable by changing the base, taking a finite cyclic cover of the degeneration branched over some center in the singular fiber, and then blowing up and down the singular fiber. This operation replaces the monodromy with a power of it. Let $\tilde{X} \rightarrow X$ be the corresponding cyclic-say, r-fold-covering. Then, by the foregoing arguments,

$$
\left(H_{1}\left(S^{1}, \mathbb{Q}\right) \otimes H_{m-1}(F, \mathbb{Q})^{\left(\phi^{r}\right)_{*}}\right) \oplus K H_{m}(F, \mathbb{Q})^{\left(\phi^{r}\right)_{*}}=H_{m}(\tilde{X}, \mathbb{Q})
$$

and

$$
\left(H_{1}\left(S^{1}, \mathbb{Q}\right) \otimes H_{m-1}(F, \mathbb{Q})^{\left(\phi^{r}\right)_{*}}\right) \oplus K H_{m}(F, \mathbb{Q})^{\left(\phi^{r}\right)_{*}} \subseteq K H_{m}(\tilde{X}, \mathbb{Q})
$$

This covering is induced from the standard cyclic r-fold covering $S^{1} \rightarrow S^{1}, z \rightarrow$ z^{r}, and thus $\tilde{X} / \mathbb{Z}_{r}=\tilde{X} / / \mathbb{Z}_{r}([16])$. Hence, using Proposition 4.2, we are done in this case also.

Assume now that there is more than one singular fiber. Let $z_{0} \in S^{1}$ and, for each singular fiber, choose an "elementary" loop at z_{0} in D_{+}that goes around just that fiber exactly once. Then the monodromy along S^{1} will be just the composition of
monodromies along each of these elementary loops. For a class $a \in H_{m}\left(F_{\mathbb{C}}, \mathbb{Q}\right)$ to survive in $H_{m}\left(Z_{+}, \mathbb{Q}\right)$, it must be invariant under the monodromies along all the elementary loops. Note that a class that is invariant under the monodromy along S^{1} may not be invariant under the monodromy along some elementary loop. However, a class that is invariant under each of these monodromies will be invariant under the monodromy along S^{1}. Hence we have

$$
\left(H_{1}\left(S^{1}, \mathbb{Q}\right) \otimes H_{m-1}(F, \mathbb{Q})^{\phi_{*}}\right) \oplus K H_{m}(F, \mathbb{Q})^{\phi_{*}} \subseteq K H_{m}(X, \mathbb{Q}) .
$$

Proof of Proposition 4.1 and Proposition 4.2. Since $f: X \rightarrow Y$ has degree n, the composition $f_{*} \circ f_{!}: H_{k}(Y, F) \rightarrow H_{k}(Y, F)$ is just multiplication by n and thus is an isomorphism [7, Prop. 14.1(6)]. Since f_{*} maps $K H_{k}(X, F)$ into $K H_{k}(Y, F)$, we are done with the proof of Proposition 4.1 (Theorem 2.3 in [16]). To complete the proof of the other proposition, we need only show that $f_{!}$maps $K H_{k}(Y, F)$ into $K H_{k}(X, F)$. For this we use another property of transfer homomorphisms. Namely, given a commutative diagram

of smooth manifolds, where the vertical maps are embeddings and g is transversal to $J(L)$ so that $g^{-1}(J(L))=l(K)$, it follows that $l_{*} \circ f_{!}=g_{!} \circ J_{*}$. (This follows from the Thom isomorphism and the fact that the Poincaré dual of an embedded submanifold is supported in any given tubular neighborhood of the submanifold so that, since g is transversal to $J(L), g^{*}$ pulls back the Poincaré dual of $J(L)$ to that of $l(K)$.)

Take $K=X, L=Y, M=X_{\mathbb{C}}, N=Y_{\mathbb{C}}, g=f_{\mathbb{C}}$, and ι and \jmath as the embeddings of X and Y into their complexifications. Note that these choices satisfy the previous conditions. Now, if $\alpha \in K H_{k}(Y, F)$ then $J_{*}(\alpha)=0$ and thus $\left(l_{*} \circ f_{!}\right)(\alpha)=0$. Hence $f_{!}(\alpha) \in K H_{k}(X, F)$.

Acknowledgment. I would like to thank S. Finashin and H.Önsiper for stimulating conversations from which I benefited greatly.

References

[1] S. Akbulut and H. King, A relative Nash theorem, Trans. Amer. Math. Soc. 267 (1981), 465-481.
[2] -, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ., 25, SpringerVerlag, New York, 1992.
[3] R. Benedetti and A. Tognoli, Théorèmes d'approximation en géométrie algébrique réelle, Séminaire sur la géométrie algébrique réelle, Publ. Math. Univ. Paris VII, 9, pp. 123-145, Univ. Paris VII.
[4] J. Bochnak, M. Coste, and M. F. Roy, Géometrie algébrique réelle, Ergeb. Math. Grenzgeb. (3), 12, Springer-Verlag, Berlin, 1987.
[5] J. Bochnak and W. Kucharz, Algebraic approximations of mappings into spheres, Michigan Math. J. 34 (1987), 119-125.
[6] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, Boston, 1972.
[7] ——, Topology and geometry, Springer-Verlag, New York, 1993.
[8] K. H. Dovermann, Equivariant algebraic realization of smooth manifolds and vector bundles, Contemp. Math., 182, pp. 11-28, Amer. Math. Soc., Providence, RI, 1995.
[9] P. Griffiths, Topics in transcendental algebraic geometry, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984.
[10] R. S. Kulkarni, On complexifications of differentiable manifolds, Invent. Math. 44 (1978), 46-64.
[11] A. Landman, On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities, Trans. Amer. Math. Soc. 181 (1973), 89-126.
[12] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, SpringerVerlag, Berlin, 1990.
[13] Y. Ozan, On entire rational maps in real algebraic geometry, Michigan Math. J. 42 (1995), 141-145.
[14] -, Real algebraic principal abelian fibrations, Contemp. Math., 182, pp. 121-133, Amer. Math. Soc., Providence, RI, 1995.
[15] ——, Quotients of real algebraic sets via finite groups, Turkish J. Math. 21 (1997), 493-499.
[16] -, On homology of real algebraic sets, preprint.
[17] C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), 539-554.

Department of Mathematics
Middle East Technical University
Ankara 06531
Turkey
ozan@rorqual.cc.metu.edu.tr

