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1. Introduction

Let J be a bounded Jordan curve in the complex plane. It divides the Riemann
sphere into two simply connected Jordan domains�,�∗ with Riemann mapsg, g∗
from the unit discU and the exterior of the closed discU∗,which extend as home-
omorphisms of the boundary. We study the Grunsky operator0g (defined in the
next section) and its relationship to the welding homeomorphismh = g−1

∗ B g of
the unit circle to itself for certain classes of smooth quasicircles. We recall two
theorems (which are equivalent).

Theorem 1.1 (Pommerenke [7]). Letg be a conformal map of the unit disc to a
simply connected region�. Then∂� is a quasicircle if and only if the Grunsky
operator0g, acting on the Dirichlet space, has norm less than1.

Theorem 1.2 (Beurling and Ahlfors [3]). Let J be a Jordan curve in the plane
with weldingh. ThenJ is a quasicircle if and only if the composition operator
Vh : f(z)→ f(h(z)) is bounded on the Dirichlet space.

These theorems are related by the idea of a conformal map acting as a composi-
tion operator. We will sketch this in Section 2, and in the remainder of the paper
will prove the following two theorems.

Theorem 1.3. Letg be a conformal map of the unit disc to the interior of a Jor-
dan curve. The Grunsky operator lies in thep th Schatten idealγp (p ≥ 1) of
operators on the Dirichlet space if and only iflogg ′ ∈Bp, the Besov space.

Theorem 1.4. LetJ be a quasicircle with weldingh. The commutator[Vh,H ]
of Vh with the Hilbert transformH lies in γp if and only if logg ′ ∈ Bp, whereg
is the conformal map to the interior.

The proofs of the theorems will be straightforward applications of atomic decom-
positions of Bergman spaces and quasiconformal estimates, given our initial de-
scriptions of the welding and the Grunsky operator. We note the obvious analogy
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with unimodular multiplication operators onL2(S1). I should like to thank Prof.
N. G. Makarov for his interest and encouragement.

2. Composition Operators

We start by working with conformal maps as composition operators. LetA(S1)

denote those analytic functions analytic in a neighbourhood ofS1, and letA(�)
denote the analytic functions in a region�. Consider the composition operator
W : f → f(g−1(·)) that acts fromA(S1) to A(U) + A(U ∗) by first passing to
A(�)+ A(�∗), under composition and the Cauchy integral, and then by the con-
formal isomorphisms toA(U)+ A(U ∗). Working in the topology of locally uni-
form convergence, one needs only perform the Cauchy integral on smooth curves.

One checks that, with respect to analytic functions onU andU ∗, W has a matrix
of the form (

I 0

0 1

)
.

Now 0 is commonly referred to as the Grunsky operator, and1 consists of the
Faber transform [4] (i.e., composition byg−1 followed by analytic projection to
� via the Cauchy integral), followed by the composition withg. In the same way,
g−1
∗ induces a mapW∗ with matrix(

1∗ 0
0∗ I

)
.

We may study the operator

3J =
(
0 1∗
1 0∗

)
j,

where the operatorj acts asf(z) → f(1/z) onA(S1) and the operator3J acts
onA(U)+A(U∗). Grunsky, using an integral representation, proved that3J is an
isometry ofD(S1), the Dirichlet space, if and only ifJ has zero area [7, Thm. 4.1].
We recall that

D(S1) = { f(z) =∑ anz
n ∈L2(S1) : |f |2D =

∑
|n||an|2

}
<∞.

This splits intoD+ andD− = D ª D+, the analytic and co-analytic parts with
projectionsP+ andP−. We can now show equivalence of the first two theorems
as follows. IfJ is a quasi-circle then the welding operatorf → f B h is bounded
on the Dirichlet space, by Theorem 1.2. ButVh : f → f B h has matrix

Vh = W−1W∗ =
(
1∗ − 01−10∗ −01−1

1−10∗ 1−1

)
.

Hence, ifJ is a quasicircle then1 is invertible. Since3J is an isometry, the
invertibility of 1 forces|0| < 1. Now, by Theorem1.1,J is a quasicircle.

The action of the Hilbert transform is that of the matrix(
I 0
0 −I

)
,
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so

[Vh,H ] = 2

(
0 01−1

1−10∗ 0

)
.

Therefore, if1 is invertible then conditions for compactness et cetera of the Grun-
sky operators are equivalent to conditions on the welding commutator. To prove
the Schatten class criterion, we will look at the necessity in terms of the Grunsky
operator in the next section, and the sufficiency will be studied from the viewpoint
of welding.

3. The Grunsky Operator

In this section we prove the necessary part of Theorem 1.3. Grunsky defined the
operator0, which appeared in the previous section, using the kernel

log
g(z)− g(ζ)
(z− ζ) =

∑
k,l

bk,lz
kζ l .

This induces an operator0 on the Dirichlet spaceD+ (via the matrix{bk,l}with re-
spect to the basis{zn/n1/2}). Hence by differentiating we obtain an operator0g =
0j on the Bergman spaceL2

+(U) of square-integrable holomorphic functions on
the unit disc:

0gf(z) =
∫
Sg(z, ζ)f(1/ζ) dA(ζ),

with

Sg(z, ζ) = 1

(z− ζ)2 −
g ′(z)g ′(ζ)

(g(z)− g(ζ))2 .

We note that 6Sg(z, z) = Sg(z) is the Schwarzian derivative ofg at z and is re-
lated to the deviation from conformality [5]. Recall that0g lies in thepth Schatten
classγp (p ≥ 1) if and only if∑

|〈0gen, en〉|p <∞
for any orthonormal basisen.

Lemma 3.1. Letg be a conformal mapg : U → �, and letp ≥ 1. If the Grunsky
operator0g lies inγp of the Dirichlet space, then∫

U

|Sg(z, z)|p(1− |z|2)2p−2 dm(z) <∞.

We denote the hyperbolic area densitydλ(z) = dm(z)/(1− |z|2)2; the hyperbolic
metric isρ.

Proof. Pick r > 0 sufficiently small as well as a hyperbolic lattice{zi} in the unit
disc so thatρ(zi, zj ) ≥ rδi,j and infj 6=i ρ(zi, zj ) ≤ 2r. Let en denote the standard
basis ofl2. Now define a mapA : l2 → L2

+(U) by Aen = kzn, wherekzn(ζ) =
1−|zn|2/(1−znζ)2, the unit reproducing kernel forzn inL2

+(U). From [9], it now



96 Gavin L. Jones

follows thatA is bounded and surjective forr sufficiently small; hence, if0g ∈ γp
thenA∗0gA∈ γp. But ∑

|〈A∗0gAen, en〉|p <∞
implies ∑

|〈0gkzn, kzn〉|p =
∑
|Sg(zn, zn)|p(1− |zn|2)2p <∞.

From [6] we have that ifdλα(z) = (1− |z|2)αdm(z) for α > −1 then

|f |pLp(dλ(α)) ≈
∑
|f(zn)|p(1− |zn|2)α+2. (∗)

Applying this forα = 2p − 2, we have

|0g|γp ≥ cp
∫
U

|Sg(z, z)|p(1− |z|2)2p−2 dm(z),

proving the lemma.

However, Theorem1.3 gave a criterion in terms of logg ′ rather than the Schwarzian
derivative. The Besov spacesBp for p > 1 are defined as those analytic functions
in the discf with

(1− |z|)f ′(z)∈Lp(dλ).
The minimal spaceB1 consists off with f ′′ ∈L1.

Lemma 3.2. Let g be a conformal map of the unit disc. Then the Schwarzian
derivativeSg lies inLp(dλ2p−2) if and only if logg ′ ∈Bp for p ≥ 1.

Proof. Given a discDi, we write

|Sg|Di = sup
z∈Di
|Sg(z)|d(z, ∂Di)

2.

Now coverU by isometric hyperbolic discsDi, having centerszi, with at most
finite multiplicity. From(∗)we have thatSg ∈Lp(dλ2p−2) implies

∑|Sg|pDi <∞.
Recall [5] that ifg is a conformal map of the discu to the complex plane with
|Sg|U < 2, theng extends toG a quasiconformal map of the plane withG|U = g
and dilatationµG such that|µG|∞ = 1

2|Sg|U . Setφg = g ′′/g ′. From [5] we then
have

|φg(0)| ≤ |Sg|U .
OnDi (centerzi) this gives|φg(zi)|(1−|zi |2) ≤ C|Sg|Di . HenceSG ∈Lp(dλ2p−2)

shows that
∑

[|φg(zi)|(1− |zi |2)]p converges, and(∗) implies logg ′ ∈ Bp for
p > 1. At p = 1, Sg ∈L1(dm) givesφg ∈L2(dm). Soφ ′g = Sg + 1

2φ
2
g ∈L1(dm)

and logg ′ ∈B1.

Conversely, easy estimates show that

|Sg|Lp(dλ2p−2) ≤ 2|logg ′|Bp .
We may also give the condition in terms of the dilatationµ of G as follows.
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Lemma 3.3 [2; 8]. Letg be a conformal map ofU to the interior of a Jordan curve
J so thatlim sup|z|→1|Sg(z)|(1− |z|2)2 = 0. Theng extends to a quasiconformal
mapG of a neighborhood of the unit disc with dilatation

µG(1/z̄) = − 1
2(z/z̄)

2(1− |z|2)2Sg(z).

This yields our next lemma.

Lemma 3.4. Let g be a conformal map ofU to the interior of a Jordan curve
J, and letp ≥ 1. Then the operator0g ∈ γp only if there is a quasiconformal
extensionG of g withµG ∈Lp(dλ).

4. Welding and Sufficiency

In this section we conclude the proofs of Theorems 1.3 and 1.4 by showing that the
Besov condition is sufficient forγp membership. We do this by simple quasicon-
formal calculations, and we will only compute the casesp = 1,2 since the others
follow by trivial applications of Holder’s inequality.

To prove the sufficiency of Theorem 1.4 we need to show that if logg ′ ∈ Bp
thenP−VhP+ ∈ γp. From Lemmas 3.2 and 3.3 we may assume thath is a quasi-
symmetric homeomorphism of the circle with quasiconformal extensionH to the
unit disc such thatµH ∈Lp(dλ), and withH smooth [5].

Lemma 4.1. Let f be a Dirichlet finite analytic function in the unit disc, and
let h be a quasisymmetric homeomorphism ofS1. If H is a C1 quasiconformal
homeomorphism of the unit discU with boundary maph, then

|P−Vhf |D ≤ |∂̄f BH |L2.

We identifyf with its boundary values, recalling that the Poisson kernelP takes
functions onS1 to functions on the unit disc. The inner product onD is of the
form

〈f, g〉D = 〈∂f, ∂g〉L2 + 〈∂̄f, ∂̄g〉L2.

Now observe that Dirichlet finite functions in the unit disc split into three orthog-
onal subspaces,D+,D−,D0. Hencef BH = F+ + F− + F0 and we have

|P−Vhf |D = |∂̄F−|L2 ≤ |∂̄f BH |L2.

We now need to control theγp norms ofP−Vh, recalling that (forp ≥ 2) B ∈
γp if and only if

∑|Ben|p <∞ for all orthonormal basesen [9].

Lemma 4.2. LetH be aC1 quasiconformal map of the unit disc. ThenP−VH ,
the operator of composition withH followed by the antiholomorphic projection,
lies inγp(D+,D−) for p ≥ 2 if∫

|µH−1(z)|p dλ <∞.
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From the previous lemma,|P−VHen|L2 ≤ |∂̄en(H(·))|L2. Hence

|P−VHen|2 ≤
∫
U

|∂̄en(H(z))|2 dm(z)

=
∫
U

|∂en(H(z))∂̄H(z)|2 dm(z)
and, settingζ = H(z),

=
∫
U

|∂en(ζ)|2|∂̄H(H−1ζ)|2 dm(z).

But JH (z)dm(z) = dm(ζ) andJH (z) = |∂H(z)|2 − |∂̄H(z)|2, so

|P−VHen|2 ≤ 1

1− |µ|2∞

∫
U

|∂en(ζ)|2|µH−1(ζ)|2 dm(ζ).
Thus

|P−VHen|2 ≤ 2K
∫
U

|∂en(ζ)|2|µH−1(ζ)|2 dm(ζ).

Working in the Bergman space [9], we have∑
|∂en(z)|2 = 1/(1− |z|2)2,

so ∑
|P−VHen|2 ≤ 2K

∫
U

|µH−1(ζ)|2 dλ(ζ).

This gives thep = 2 condition. To controlp ∈ (2,∞), we apply Holder’s in-
equality with exponentsp/2 andp/p − 2, recalling that

∫ |∂en(ζ)|2 dm(ζ) = 1
sinceen are unit vectors.

We must work a little harder forp ∈ [1,2).

Lemma 4.3. LetH be aC1 quasiconformal map of the unit disc. ThenP−VH ,
the operator of composition withH followed by the antiholomorphic projection,
lies inγ1(D+,D−) if ∫

|µH−1(z)| dλ <∞.

From [9], it is sufficient to show that our condition forces∑
|〈P−VHen, en〉| <∞

for any orthonormal basisen of D+. We then estimate

|〈P−VHen, en〉D|
≤
∫
|∂en(H(z))||µH(z)||∂H(z)||∂en(z)| dm(z)

≤
[ ∫
|∂en(z)|2|µH(z)| dm(z)

]1/2

×
[ ∫
|∂en(H(z))|2|µH(z)||∂H(z)|2 dm(z)

]1/2

by the Cauchy–Schwarz inequality.
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The second of these integrals, changing variables toζ = H(z) for H,K quasi-
conformal, gives

≤
[ ∫
|∂en(ζ)||µH(H−1(ζ))|JH (H−1(ζ))J−1

H (H−1(ζ))2K dm(ζ)

]1/2

≤ (2K)1/2

[ ∫
|∂en(ζ)|2|µH−1(ζ)| dm(ζ)

]1/2

.

Therefore,∑
|〈P−VHen, en〉|

≤ (2K)1/2
∑[∫

|∂en(z)|2|µH(z)| dm(z)
]1/2

×
[ ∫
|∂en(z)|2|µH−1(z)| dm(z)

]1/2

≤ (2K)1/2

[∑∫
|∂en(z)|2|µH(z)| dm(z)

]1/2

×
[∑∫

|∂en(z)|2|µH−1(z)| dm(z)
]1/2

≤ (2K)1/2

[ ∫
|µH(z)| dλ(z)

]1/2[ ∫
|µH−1(z)| dλ(z)

]1/2

.

But our mapH is a quasi-isometry of the hyperbolic metric, so

c ′ < |JH (z)|dλ(z) < C ′

for c ′, C ′ bounded by constants depending on(1− |µH |∞)−2 [1]. Settingz =
H−1(x), we thus have[ ∫

|µH(z)| dλ(z)
]1/2

=
[ ∫
|µH(H−1(x))| dλ(z)

]1/2

≤
[ ∫

C ′|µH−1(x)| dλ(x)
]1/2

.

This yields

|P−VH |γ1 ≤ C
∫
|µH−1(z)| dλ(z),

whereC has a bound of order at worst(1− |µH |∞)−3/2. To deal withp ∈ (1,2)
we use Holder’s inequality as before. We observe thatµH ∈Lp(dλ) if and only if
µH−1 ∈Lp(dλ).
Proofs of Theorem 1.3 and Theorem 1.4.The theorems stated at the outset now
follow. For Theorem1.3, Lemmas 3.1and 3.2 prove necessity. Conversely, given a
Jordan curveJ with conformal mappingg fromU to the interior, suppose logg ′ ∈
Bp. ThenJ is a quasicircle, by Lemma 3.2 and 3.3. Therefore the operator1−1 is
bounded, and0g ∈ γp if there is a quasiconformal extensionG of g with dilatation
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µG satisfyingµG ∈Lp(dλ), by Lemmas 4.1 and 4.2. Such an extension is given
by Lemma 3.3. This proves Theorem 1.3.

In order to prove Theorem 1.4, first we note that if [Vh,H ] ∈ γp then0g ∈ γp,
and so logg ′ ∈Bp. Conversely, givenJ a Jordan curve andg a conformal map to
its interior with logg ′ ∈Bp, we have (from Lemma 3.4) thatg extends to a quasi-
conformal homeomorphism of the plane withµG ∈Lp(dλ). Thus, the welding
homeomorphismh of the unit circle has a quasiconformal extensionH to the unit
disc withµH ∈Lp(dλ). Hence, from Lemmas 4.2 and 4.3,P−VhP+ ∈ γp and,
running the same arguments, we obtainP+VhP−∈ γp, proving the theorem.

From the argument we see that Theorems1.3 and1.4 remain true if logg ′ ∈Bp is
replaced bySg ∈Lp(dλ2p−2), or by the condition thatg admits a quasiconformal
extension to the plane withµG ∈Lp(dλ).
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