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0. Introduction

In order to understand the Bergman kernel for a complex domain� inCn atz close
to the boundary∂�, we usually insert the biholomorphic image of a polydiscD
centered atz in � to generate the upper bound for the Bergman kernel on�:

K�(z, z) ≤ KD(z, z) = 1

Vol(D) .

On the other hand, Catlin [3] showed by using a∂̄ estimate that, on a finite type
pseudoconvex domain� in C2, there exists a polydiscD such that

K�(z, z) ≥ c · 1

Vol(D) ;
the same formula was later shown by McNeal [8] on convex domains inCn. A
question arises: Are polydiscs enough to describe the Bergman kernel for smooth
bounded domains?

For a general domain inCn, it is not always possible to find a polydiscD that
models the domain. Consider� ⊂ C3 defined by|z1|10+|z2|10+|z1z2|2+|z3|2 <
1, and letz = (0,0,1− ε). It is easy to show that all polydiscs centered atz in �
have maximal volume of approximatelyε4; thus, the upper bound of the Bergman
kernel atz obtained by inserting polydiscs is roughlyε−4. But consider a Rein-
hardt domainR centered atz bounded by|z1| < 1, |z2| < 1, |z3 − (1− ε)| <
ε/2, and |z1z2| < ε/2. The volume ofR is roughlyε4(− logε + 1), which is
much larger thanε4 whenε � 1; therefore, the upper bound atz given byR is
1/ε4(− logε +1), much smaller than the ones given by any polydiscs.

The preceding example shows that polydiscs do not provide a good enough way
of estimating upper bounds for the Bergman kernel. Instead of trying to fit a poly-
discD about the pointz into�, it seems better to try to fit the largest “monomial
polyhedron”P aboutz into�, where a monomial polyhedronP associated with
a finite subcollectionB of index spaceN n, N = N ∪ {0}, is defined as follows.

Definition 1.1. A domainP in Cn is amonomial polyhedronif there exists a
subsetB = {α1, . . . , αm} ofN n and, for eachα ∈B, there exists a uniqueCα ∈R
such thatP = P(B) = { z∈Cn : |zα| < eCα, α ∈B }.
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Note thatR in the foregoing example is a monomial polyhedron. Also, it is obvious
that the log domain ofP defined as

log(P ) = {w ∈Rn : α · w < cα = logdα, α ∈B } (1)

is an unbounded polyhedron containing(−∞, . . . ,−∞).
It is possible that, among the inequalities in (1) that define log(P ), some may

be redundant. However we will show that we can assumeB satisfies: (i)B is a
minimal collection definingP ; and (ii) forα = (α1, . . . , αn)∈B, α1, . . . , αn are
relatively prime. Such a setB is unique with respect toP. We call such a setB a
regular index setfor P.

In order to precisely define our estimate of the Bergman kernel, we must first
define the representation of the faces of the convex monomial polyhedron log(P ).

For eachA ⊆ B, define a faceF = F(A) of ∂ log(P ) determined byA by

F(A) = {w ∈ log(P ) : α · w = cα ∀α ∈A andα · w < cα ∀α ∈B −A }.
Of course, there is no guarantee that such a faceF is not empty. However, if it
is not empty then we can conversely determine a subcollectionA = A(F ) of
B by A(F ) = {α ∈ B : α · w = cα ∀w ∈ F }, and we will show (in Proposi-
tion 1.8) that it is a one-to-one correspondence map between non-empty faces and
the subcollections that determine non-empty faces.

We will see later that, in order to estimate the Bergman kernel, we need only
study the bounded faces of log(P ). Thus we will defineF = {F : F is bounded}
andU(F ) = {β ∈N n : β =∑α∈A(F ) λαα, 0 < λα ≤ 1}. Notice that if we let
|K| be the cardinality ofK, then both|F| and|U(F )| are finite.

DefineP as(M, ε)-nondegeneratefor someM andε > 0 if: (i)
∑n

j=1αj ≤
M for all α = (α1, . . . , αn) ∈ B; (ii) A(F ) is a linearly independent set for all
F ∈ B; and (iii) everyF ∈ B contains anε-ball in the corresponding dimension.
We will give a more precise description in Definition1.10. Now let usstate our
theorem.

Theorem 3.1. Let P be an(M, ε)-nondegenerate bounded monomial polyhe-
dron, and letζβ(z) = zβ. Then there are constantsC > c > 0 depending onM,
ε, andn such that the Bergman kernel forP can be estimated as

c ·KP (z, z) <
∑
F∈F

( ∏
α∈A(F )

1

(1− |(zα/dα)|2)2 ·
∑

β+1̄∈U(F )

|zβ |2
‖ζβ‖2

)
< C ·KP (z, z).

Furthermore, forβ + 1̄∈ U(F ) and with constantsC > c > 0 depending on
ε, M, andn, we have

c · ‖zβ‖2 < |z̃β+1̄|2 · An−k(F ) < C · ‖zβ‖2,
wherez̃ = ew̃ for anyw̃ ∈F andAn−k(F ) is the volume ofF in its corresponding
dimension, which will be described more precisely in Sections 2 and 3.

Remark 3.1. |z̃β+1̄| is independent of the choice ofw̃ as long asβ + 1̄∈ U(F )
andw̃ ∈F .
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1. Geometry of Bounded Monomial Polyhedrons

In order to describe the Bergman kernelK(z,w) for a Reinhardt domain by uti-
lizing the formula, withζβ(z) = zβ,

K(z,w) =
∑
β∈N n

zβw̄β

‖ζβ‖2 , (1.1)

whereN = N ∪ {0}, it is desirable to estimate‖zβ‖ for all β ∈ N n. Thus it
becomes important to better understand the geometry of the underlying domains.

In our paper, we assumeN n = { (α1, . . . , αn) : αj ∈ N ∪ {0} }. Let � be a
bounded Reinhardt domain and let

log(�) = { (w1, . . . , wn)∈Rn : (ew1, . . . , ewn)∈� }.
We want to give a definition for monomial polyhedrons.

Definition 1.1. A domainP in Cn is amonomial polyhedronif there exists a
subsetB = {α1, . . . , αm} ofN n and, for eachα ∈B, there exists a uniqueCα ∈R
such that

P = P(B) = { z∈Cn : |zα| < eCα, α ∈B }. (1.2)

Because a monomial polyhedronP thus defined is a Reinhardt domain, we see
that

log(P ) = {w ∈Rn : α · w < Cα, α ∈B }.
Definition 1.2. We sayα = (a1, . . . , an) ∈N n is prime if a1, . . . , an are rela-
tively prime.

Without loss of generality, we can assume that allα in B are prime. Let us denote

Wα = {w ∈Rn : α · w < Cα }.
Definition 1.3. We sayα is essentialin B if there exists aw ∈ Rn such that
α · w ≥ Cα butβ · w < Cβ for all β in B andβ 6= α. It is equivalent to say that( ⋂

β∈B−{α}
Wβ

)
∩W C

α 6= ∅. (1.3)

Also, we sayα is non-essential inB if it is not essential—that is, if for allw ∈
Rn such thatα ·w ≥ Cα there exists aβ ∈B such thatβ ·w ≥ Cβ. It is equivalent
to say that ⋂

β∈B−{α}
Wβ ⊆Wα. (1.4)
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Let us denote ess(B) = {α ∈B : α is essential}. First we would like to show that
essential indices will remain essential even after we take off non-essential indices
away fromB.
Lemma 1.4. Let α be non-essential inB, and letB ′ = B − {α}. Theness(B) =
ess(B ′).
Proof. It is obvious from (1.3) that ess(B) ⊆ ess(B ′). Supposeγ is non-essential
in B but essential inB ′, and letP̃ =⋂β∈B−{α,γ }Wβ.

Since bothα andγ are non-essential inB, by (1.4) we haveP̃ ∩Wα ⊆ Wγ

and P̃ ∩Wγ ⊆ Wα. By intersecting withP̃, this meansP̃ ∩Wγ = P̃ ∩Wα.

But the assumption thatγ is essential inB ′ and (1.3) imply thatP̃ ∩W C
γ 6= ∅.

Notice thatWγ andWα are both half-spaces. For any two half-spacesW1 and
W2, if there exists an open neighborhoodU such that bothW1∩ U andW C

1 ∩ U
are non-empty and ifW1 ∩ U = W2 ∩ U, thenW1 = W2. Thus, by taking
U = P̃, we haveWγ = Wα. Finally, since all indices inB are prime,γ = α, a
contradiction.

Now denote ess log(P ) = {w ∈Rn : α · w < Cα, α ∈ ess(B) }. It is obvious that

log(P ) =
⋂
α∈B
Wα and ess log(P ) =

⋂
α∈ess(B)

Wα. (1.5)

We would like to show the following.

Lemma 1.5. ess log(P ) = log(P ).

Proof. From (1.4) and (1.5), we see that log(P ) = ⋂
β∈B−{α}Wβ for any non-

essential indexα in B. And Lemma 1.4 shows that the essential indices inB and
B ′ are identical, whereB ′ = B − {α}. By repeated application of this procedure
for (finitely many times), the result follows.

From Definition 1.3, there exists an open neighborhoodU for eachα in ess(B)
such thatU ∩ ∂ log(P ) 6= ∅ andU ∩ log(P ) = U ∩Wα. Thus, we can think of
essential indices as normal vectors to local neighborhoods of∂ log(P ).

Obviously,Bmust contain such normal vectors. However, if we take only those
normal vectors, Lemma 1.5 implies that we obtain a unique collection of indices,
B, which describes the monomial polyhedronP. We would like to give a name to
such a collection.

Definition 1.6. B ⊂ N n is aregular index setwith respect toP if, for all α ∈
B, α is prime and essential inB.
It is easy to see that a monomial polyhedronP uniquely corresponds to a regular
indexB, and we will assume thatB is regular throughout this paper.

Remark 1.1. Since we requireP to be bounded, from (1.2) it is easy to see
that ej = (0, . . . ,0,1,0, . . . ,0) ∈ B for all j = 1, . . . , n. For if not, then
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(0, . . . ,0, z,0, . . . ,0) satisfies all the inequalities in (1.2) for allz ∈ C. Thus
P would be unbounded.

Next, we would like to describe the faces oflog(P ).

Definition 1.7. F is a face oflog(P ) if there exists a subcollectionA of B such
that

F = F(A) = {w ∈ log(P ) : α · w = Cα for all α ∈A and

α · w < Cα for all α ∈B −A }. (1.6)

It follows from (1.6) that ifA1 andA2 are subcollections ofB such thatA1 6= A2

and one ofF(A1) andF(A2) is not empty, thenF(A1) 6= F(A2). Thus, for each
non-empty faceF there corresponds an index set

A = A(F ) = {α ∈B : α · w = Cα for all w ∈F }.
But it follows directly from the definition that

A(F(A0)) = A0 and F(A(F0)) = F0 (1.7)

onceF(A0) andF0 are not empty. Thus, by collecting all non-empty faces and
corresponding index sets as

F̄ = {F ⊆ log(P ) : F is a non-empty face}
and

Ā = {A ⊆ B : F(A) is non-empty},
we have the following proposition.

Proposition 1.8.

(i) There exists a one-to-one onto map betweenF̄ and Ā;
(ii) log(P ) is a disjoint union of allF in F.

We also need the following.

Lemma 1.9. For F1,F2 ∈ F̄, F̄1= F̄2 if and only if F1= F2.

Proof. The “if ” part is obvious. For the “only if ” part, first notice that for each
F there exists anA such that (1.6) holds. But then̄F becomes

F̄ = {w ∈ log(P ) : α · w = Cα for all α ∈A and

α · w ≤ Cα for all α ∈B −A }
=

⋃
A⊆A′
{w ∈ log(P ) : α · w = Cα for all α ∈A′ and

α · w < Cα for all α ∈B −A′ }
=

⋃
A⊆A′

F(A′). (1.8)
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By Proposition 1.8(ii), this expression is a disjoint union. It follows that, ifF1 =
F(A1) andF2 = F(A2), thenF̄1 = F̄2 impliesF1 ⊆ F̄2 andF2 ⊆ F̄1, which
impliesA1= A2, which in turn impliesF1= F2.

To make our computation manageable, we need to impose some extra conditions
on our monomial polyhedrons.

Definition 1.10. Amonomial polyhedronP is (M, ε)-nondegeneratefor some
M, ε > 0 if all of the following conditions hold.

(i) For all α = (α1, . . . , αn)∈B, α1+ · · · + αn ≤ M.
(ii) For all A in Ā, the set of elements inA is linearly independent inRn.

(iii) For all F in F̄, let Bε(w) be an Euclidean ball centered atw with radiusε,
and letWF = {w : α · w = Cα for all α ∈A(F ) }; then there exists aw in
F such thatBε(w) ∩WF ⊆ F .

Notice that, for any monomial polyhedronP, there existM, ε > 0 that satisfy
conditions (i) and (iii). We emphasize the roles played byM andε > 0 because
our result will depend on bothM andε.

In order to sum(1.1), weneed to suitably decompose the index spaceN n. One
natural way of doing so is by decomposing the index space into a finite disjoint
union of convex cones generated by elements inĀ, as follows.

LetA = {α1, . . . , αk} ⊂ N n. We sayα is anonnegativecombination ofA if
there existλ1, . . . , λk andλj ≥ 0 for all j = 1, . . . , k such thatα =∑k

j=1λjαj ;
we sayα is apositivecombination ofA if α is a nonnegative combination ofA as
just described while also requiringλj > 0 for all j = 1, . . . , k. We say0(A) is
theopenconvex cone generated byA if 0(A) = {α : α is a positive combination
of A }.

Note that the term “open” used here is not in a traditional sense, for the set0(A)
is discrete. Rather, we use “open” to emphasize that this cone does not contain
the boundary.

The following proposition will imply that the index spaceN n is a (finite) disjoint
union of all open convex cones0(A) for all A in Ā.

Proposition 1.11. Let P be (M, ε)-nondegenerate. Then the following are
equivalent:

(i) β in N n is a positive combination ofA—that is,β ∈0(A);
(ii) the linear functionalfβ defined byfβ(w) = β ·w,when restricted tolog(P ),

reaches its maximum at all points and only at points ofF(A).
Proof. For (i)⇒ (ii), let A = {α1, . . . , αk} ∈ Ā and assume there exist
λ1, . . . , λk > 0 such thatβ =∑k

j=1λjαj . Letw be any point inlog(P )−F(A).
From (1.8), we see that there must exist aj ∈ {1, . . . , k} such thatαj · w < Cαj ;
therefore,

fβ(w) = β · w =
k∑
j=1

λjαj · w <
k∑
j=1

λjCαj .
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But forw ∈F(A),
fβ(w) =

k∑
j=1

λjCαj ,

so the result follows.
For (ii)⇒ (i), first note thatA = {α1, . . . , αk} = {α ∈ A : α · w = Cα

for all w ∈ F̄ }, and thatF is non-empty. By Definition1.10(ii), A is linearly
independent. Thus, by solving the system

α1 · w = Cα1

...

αk · w = Cαk ,

we have an(n − k)-dimensional linear affine spaceW containingF . Let w0 be
a point inF satisfying Definition1.10(iii), and letβk+1, . . . , βn be a basis of
W − w0 that is ann− k dimensional vector space. Then we can expressW as

W =
{
w0 +

n∑
j=k+1

sjβj : sj ∈R
}
,

where

(a) w0 +
∑n

j=k+1 sjβj ∈F = F(A) for |sj | small;
(b) {α1, . . . , αk, βk+1, . . . , βn} is a linear basis.

Thus, by (b),β =∑k
j=1λjαj +

∑n
j=k+1λjβj . But fβ reaches its maximum at all

points ofF̄, and (a) implies thatλj = 0 for j = k + 1, . . . , n. For if not (say,
λj > 0 for somej > k) then we can findw1= w0+ sjβj wheresj > 0 is so small
thatw1 ∈ F . But thenf(w1) > f(w0), a contradiction. This means thatβ is a
linear combination ofA.

Supposeβ is not a nonnegative combination ofA. We can assumeβ =∑k
j=1λjαj, λ1, . . . , λl ≥ 0 andλl+1, . . . , λk < 0. But we can always findw

such that
α1 · w = Cα1

...

αl · w = Cαl
αl+1 · w < Cαl+1

...

αk · w < Cαk .

It is easy to see thatw ∈ log(P ) andfβ(w) ° fβ(w0) forw0 ∈F, a contradiction.
Finally, supposeβ is not a positive combination ofA; then it is a positive com-

bination of someA′ ( A. By the proof of (i)⇒ (ii), fβ reaches its maximum on
F(A′) ) F(A), a contradiction.

Proposition 1.11 will allow us to represent allβ in N n as a positive combination
of a uniqueA. We thus have the following result.
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Corollary 1.12. N n can be decomposed into a finite disjoint union of open
convex cones0(A) for A in Ā. That is,

N n =
⋃
A∈Ā

0(A).

Proof. For everyβ inN n, fβ must reach its maximum at all points ofF̄ for some
F in F̄. By Proposition 1.11,β is in 0(A) for someA in Ā. But fβ, as a linear
functional, can reach its maximum on only oneF̄, soA is unique.

Definition 1.13. We sayA ∈ Ā is bounded (unbounded) ifF(A) is bounded
(unbounded).

Lemma 1.14. Let A = {α1, . . . , αk} and αj = (α1
j , . . . , α

n
j ). ThenA is un-

bounded if and only if there exists anl ∈ {1, . . . , n} such thatαlj = 0 for all j =
1, . . . , k.

Proof. (⇒) SinceP is bounded, for a faceF in log(P ) to be unbounded there
must exist anl ∈ {1, . . . , n} such that ifw0 = (w1

0, . . . , w
n
0)∈F then

(w1
0, . . . , w

j , . . . , wn
0)∈F for all wj < w

j

0.

For Remark 1.1 shows that ifP is bounded andw = (w1, . . . , wn)∈ log(P ), then
every componentwj is bounded above. Thus, from Definition 1.7, we haveαlj =
0 for all j = 1, . . . , k.
(⇐) From Definition 1.7, if there exists anl ∈ {1, . . . , n} such thatαlj = 0 for

all j = 1, . . . , k, thenF must be unbounded.

Let us define

F = {F ⊆ log(P ) : F is a non-empty bounded face} (1.9)

and
A = {A ⊆ B : F(A) is a non-empty bounded face}. (1.10)

Then we have the following.

Proposition 1.15.
Nn =

⋃
A∈A

0(A).

Moreover, no components of elements inA∈A will be simultaneously zero.

Proof. If A∈ Ā− A then by Lemma1.14, for allβ = (b1, . . . , bn)∈0(A) there
exists anl ∈ {1, . . . , n} such thatbl = 0,—that isβ ∈ N n − Nn. Therefore,
0(A) ⊆ N n − Nn and ⋃

A∈Ā−A
0(A) ⊆ N n − Nn.

But for β = (b1, . . . , bn) ∈ N n − Nn there exists anl ∈ {1, . . . , n} such that
bl = 0, and by Corollary1.12 there exists anA such thatβ ∈ 0(A). Yet this
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means thatβ is a positive combination ofA, so if A = {α1, . . . , αk} andαj =
(α1
j , . . . , α

n
j ) thenαlj = 0 for all j = 1, . . . , k. By Lemma1.14,A ∈ Ā − A.

Therefore, ⋃
A∈Ā−A

0(A) ⊇ N n − Nn.

This shows ⋃
A∈Ā−A

0(A) = N n − Nn.

Now using Corollary1.12 again, the result follows.

2. Estimates forL2-norms of zβββ

We wish to calculate the Bergman kernel forP. Since a monomial polyhedron is
a Reinhardt domain, by lettinḡ1= (1, . . . ,1) andζβ(z) = zβ we have

KP (z0, w0) =
∑
β∈N n

z
β

0w̄
β

0

‖ζβ‖2 =
∑

β+1̄∈Nn

z
β

0w̄
β

0

‖ζβ‖2 =
∑
A∈A

∑
β+1̄∈0(A)

z
β

0w̄
β

0

‖ζβ‖2 . (2.1)

Note that the first summation in the last expression is a finite sum.
Let β + 1̄be in0(A) for someA in A, and letwβ+1̄ be a point onF = F(A).

Define

Sβ+1̄(t) = log(P ) ∩ {w : (β + 1̄) · w = (β + 1̄) · wβ+1̄− t }.

Since the functione2(β+1̄)·w is a constant onSβ+1̄(t) for fixedt, if we defineAβ+1̄(t)

to be the function measuring the(n−1)-dimensional area ofSβ+1̄(t) then

‖ζβ‖2 =
∫
P

|zβ |2 dV(z)

= (2π)n
∫

log(P )
e2(β+1̄)·w dV(w)

= (2π)n

‖β + 1̄‖
∫ ∞

0
e

2(β+1̄)·wβ+1̄−2t
Aβ+1̄(t) dt.

The last equality is gained by performing a unitary change of coordinates so that
dt = d(β + 1̄), whereβ + 1̄= (β1+ 1, . . . , βn + 1).

For the convenience of discussion, let us use the following notation:

�β+1̄(t) = log(P ) ∩ {w : (β + 1̄) · w ≥ (β + 1̄) · wβ+1̄− t };
1β+1̄(δ) = {w : w = wβ+1̄+ s · (w ′ − wβ+1̄) for all w ′ ∈ Sβ+1̄(δ) ands ≥ 0 };

1β+1̄(δ, t) = 1β+1̄(δ) ∩ {w : (β + 1̄) · w ≥ (β + 1̄) · wβ+1̄− t }.
Note that1β+1̄(δ) = 1β+1̄(δ,∞).
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Now notice ∫
log(P )

=
∫
�β+1̄(δ)

+
∫

log(P )−�β+1̄(δ)

,

∫
�β+1̄(δ)

≥
∫
1β+1̄(δ,δ)

, and
∫
1β+1̄(δ)−1β+1̄(δ,δ)

≥
∫

log(P )−�β+1̄(δ)

.

The inequalities are obtained from

�β+1̄(δ) ⊇ 1β+1̄(δ, δ) and 1β+1̄(δ)−1β+1̄(δ, δ) ⊇ log(P )−�β+1̄(δ),

which in turn are results of the convexity of log(P ). The first inclusion is easy to
show. For the second inclusion, supposew ∈ log(P )−�β+1̄(δ); the line segment
betweenw andwβ+1̄ must be in log(P ), which intersectsSβ+1̄(δ) at one point.
Thusw is a point in1β+1̄(δ), but it cannot be in1β+1̄(δ, δ). The result follows.

If we can show there exists a constantc = c(δ) > 0 such that∫
1β+1̄(δ,δ)

≥ c
∫
1β+1̄(δ)−1β+1̄(δ,δ)

, (2.2)

then by(
1+ 1

c

)∫
�β+1̄(δ)

≥
∫
�β+1̄(δ)

+
∫

log(P )−�β+1̄(δ)

=
∫

log(P )
≥
∫
�β+1̄(δ)

we have ∫
log(P )

≈
∫
�β+1̄(δ)

. (2.3)

To prove (2.2), we will instead show that there exists a constantc > 0 such that∫
1β+1̄(δ,δ)

≥ c
∫
1β+1̄(δ)

.

In general, however,∫
1β+1̄(δ,s)

e2(β+1̄)·w dV(w) =
∫ s

0
e

2(β+1̄)·wβ+1̄−2t
Aβ+1̄(δ)

(
t

δ

)n−1

dt

= e
2(β+1̄)·wβ+1̄Aβ+1̄(δ)

δn−1

∫ s

0
e−2tt n−1dt.

Set

f(s) =
∫ s

0
e−2tt n−1dt

and observe that

f(δ) >
(n−1)!

2n
· (2δ)

n

e2δ · n! and lim
s→∞ f(s) =

(n−1)!

2n
.

With c(δ) = (2δ)n/(e2δ · n!), we have
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1β+1̄(δ,δ)

e2(β+1̄)·w dV(w) > c(δ)

∫
1β+1̄(δ)

e2(β+1̄)·w dV(w).

Therefore, by (2.3), we can state the following proposition.

Proposition 2.1. With c = c(δ) = (2δ)n/(e2δ · n!), we have∫
�β+1̄(δ)

e2(β+1̄)·w dV(w) ≤ ‖zβ‖2 ≤
(

1+ 1

c

)∫
�β+1̄(δ)

e2(β+1̄)·w dV(w). (2.4)

Moreover,∫
�β+1̄(δ)

e2(β+1̄)·w dV(w) = e
2(β+1̄)·wβ+1̄

‖β + 1̄‖
∫ δ

0
e−2tAβ+1̄(t) dt. (2.5)

Notice that Proposition 2.1 is true for all Reinhardt domains, not necessarily mono-
mial polyhedrons.

In order to sum (2.1) we must take a closer look atAβ+1̄(t) for t ∈ [0, δ], where
δ = δ(M, ε) will be determined later, and apply certain elementary linear alge-
braic computation to carry out a formula forAβ+1̄(t) and thus‖zβ‖2. Here we
will make use of the properties of monomial polyhedra and Definition1.10 of
(M, ε)-nondegeneracy.

Letβ+ 1̄∈0(A) for someA = {α1, . . . , αk} inA, letF = F(A), and assume
thatAn−k(F ) is the area ofF measured as an(n− k)-dimensional object. Notice
thatAn−k(F ) is never zero (by the definition of(M, ε)-nondegeneracy) whereas
Aβ+1̄(0), measuring the same faceF as a(n − 1)-dimensional object, is usually
zero unless|A(F )| = 1.

Our purpose for the rest of this section is to show that

Aβ+1̄(t) ≈
‖β + 1̄‖t k−1 · An−k(F )

λ1 · · · λk .

Combining (2.4) and (2.5), this implies

‖ζβ‖2 =
∫
P

|zβ |2 dV(z) ≈ e
2(β+1̄)·wβ+1̄ · An−k(F )

λ1 · · · λk ,

where the ratio depends only onM, ε, andn.
First let us simplify the domain. Let

A(A) = {A′ ∈A : A ⊂ A′ }
and

B(A) =
⋃

A′∈A(A)
A′ = {α1, . . . , αk, αk+1, . . . , αk+m}.

Notice that the boundary ofF(A) is a union of all facesF(A′), whereA ( A′ ∈
A(A).

By a unitary change of coordinates, we can assumeαj = (αj,1, . . . , αj,j,

0, . . . ,0) for j = 1, . . . , k. ThusF will be defined by
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α1 · w = 0
...

αk · w = 0
αk+1 · w < C1

...

αk+m · w < Cm,

and log(P ) aroundF will be defined by

α1 · w < 0
...

αk · w < 0
αk+1 · w < C1

...

αk+m · w < Cm.

By writing all elementsx in Rn into x ′ in Rk andx ′′ in Rn−k, wherex ′ consists of
the firstk components whilex ′′ consists of the rest, we can see that

α1 · w = α ′1 · w ′
...

αk · w = α ′k · w ′

and that�β+1̄(t), for t ∈ [0, δ], is defined by

(β + 1̄)′ · w ′ > −t
α ′1 · w ′ < 0

...

α ′k · w ′ < 0

(2.6)

and
α ′′k+1 · w ′′ < C1− α ′k+1 · w ′

...

α ′′k+m · w ′′ < Cm − α ′k+m · w ′.
(2.7)

Note that(β + 1̄) · w = (β + 1̄)′ · w ′.
For eachw ′ satisfying (2.6), defineW(w ′) = {w ′′ : (w ′, w ′′) ∈ log(P ) }. We

know that whenw ′ = 0, the set of all possiblew ′′ satisfying system (2.7) (i.e.,
W(0)) is exactlyF,and we want to understand by how much the volume ofW(w ′)
can vary whenw ′ changes.

The possible values thatw ′ can take are controlled only by the system of in-
equalities (2.6) fort ∈ [0, δ], which defines ak-simplex. Since all inequalities in-
volved in (2.7) are linear, we know the maximal change of the volume ofW(w ′)
happens on the extreme points of thek-simplex defined by (2.6) witht ∈ [0, δ].
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The extreme points are either 0 or the solution to the system of equations

α ′1 · (wj )′ = 0
...

α ′j−1 · (wj )′ = 0

(β + 1̄)′ · (wj )′ = −t
α ′j+1 · (wj )′ = 0

...

α ′k · (wj )′ = 0

for j = 1, . . . , k. By plugging inβ + 1̄=∑k
j=1λjαj and writing [α ] k = [ αi,j ],

i, j = 1, . . . , k, we have a unique solution

(wj )′ = [ α ]−1
k

(−t
λj

)
ej, where ej =


0
...

1
...

0

 .
But plugging this information back into

α ′′k+1 · w ′′ < C1− α ′k+1 · w ′
...

α ′′k+m · w ′′ < Cm − α ′k+m · w ′

(system (2.7)) whenα ′k+i =
∑k

j=1λi,jαj, we have

α ′k+i · (wj )′ = −tλi,j
λj

.

Thus, for allj = 1, . . . , k,

α ′′k+1 · w ′′ < C1+ tλ1,j /λj
...

α ′′k+m · w ′′ < Cm + tλm,j /λj .
Notice thatα has positive integer components in the original coordinates and,

by Definition1.10(i), the sum ofcomponents ofα is less thanM. Henceλj is pos-
itive and bounded away from 0 by a constant depending only onM, andλi,j is
positive and bounded byM. Thus there existC = C(M) > 0 such that∣∣∣∣λi,jλj

∣∣∣∣ < C(M), i = 1, . . . , m, j = 1, . . . , k.

Next, using Definition1.10(iii) onF (whereF can be expressed by the system
(2.7) whenw ′ = 0) and takingw ′′ = ε · α ′′k+i/‖α ′′k+i‖, since‖w ′′‖ = ε andw ′′ ∈
F̄ we haveε · ‖α ′′k+i‖ ≤ Ci. But ‖α ′′k+i‖ ≥ c for somec = c(M) > 0. Therefore,
Ci ≥ ε · c(M).
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Now setδ = εc(M)/2C(M), defineFd = {w ′′ ∈ Rn−k : α ′′k+i · w ′′ < d · Ci,
i = 1, . . . , m }, and defineLβ+1̄(t) = {w ′ ∈Rn : α ′j ·w ′ < 0 for j = 1, . . . , k and

(β + 1̄)′ · w ′ = −t }. First, noticeF = F1. We also have

Lβ+1̄(t)× F1/2 ⊆ Sβ+1̄(t) ⊆ Lβ+1̄(t)× F2 for t ∈ [0, δ]. (2.8)

Now letPβ+1̄(δ) =
⋃
t∈[0,δ] Lβ+1̄(t). ThenPβ+1̄(δ) is ak-simplex with extreme

points at 0 and(wj )′ for j = 1, . . . , k, where(wj )′ = [ α ]−1
k (−t/λj )ej . But

for anyk-simplex with extreme points at 0 andai = (ai,j ), i, j = 1, . . . , k, the
volume is exactly1

k! det[ai,j ]. Thus, the volume ofPβ+1̄(t) is

Ak(Pβ+1̄(t)) =
t k

k! · det[α ] k · λ1 · · · λk .
However,

Ak(Pβ+1̄(t)) =
1

‖β + 1̄‖
∫ t

0
Ak−1(Lβ+1̄(η)) dη.

By taking derivatives with respect tot on both ends of the preceding equations,
we have the volume ofLβ+1̄(t) as

Ak−1(Lβ+1̄(t)) =
‖β + 1̄‖ · t k−1

(k −1)! · det[α ] k · λ1 · · · λk .
Also note that

An−k(Fd) = d n−k · An−k(F1), where F1= F .
Thus, by (2.8), fort ∈ [0, δ] we have

2−n · ‖β + 1̄‖ · t k−1 · An−k(F )
(k −1)! · det[α ] k · λ1 · · · λk ≤ Aβ+1̄(t)

≤ 2n · ‖β + 1̄‖ · t k−1 · An−k(F )
(k −1)! · det[α ] k · λ1 · · · λk

or simply

Aβ+1̄(t) ≈
‖β + 1̄‖ · t k−1 · An−k(F )

(k −1)! · det[α ] k · λ1 · · · λk , (2.9)

where the ratio depends only on the total dimensionn.

Combining (2.4), (2.5), and (2.9) withζβ(z) = zβ, we have

‖ζβ‖2 ≈ e
2(β+1̄)·wβ+1̄ · An−k(F )

(k −1)! · det[α ] k · λ1 · · · λk

∫ δ

0
e−2tt k−1dt

≈ e
2(β+1̄)·wβ+1̄ · An−k(F )
det[α ] k · λ1 · · · λk ,

where the first approximation depends only onn while the second approximation
depends onn andδ, which in turn is defined as a function ofM andε.
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Let us summarize in the form of a proposition.

Proposition 2.2. Let log(P ) be(M, ε)-nondegenerate. For anyβ inN n, there
exists a uniqueA in A such thatβ + 1̄ is in 0(A). For anywβ+1̄ in F = F(A)
we have, with the ratio depending onM, ε, andn,

‖zβ‖2 ≈ e
2(β+1̄)·wβ+1̄ · An−k(F )
det[α ] k · λ1 · · · λk ,

whereAn−k(F ) is the(n−k)-dimensional volume ofF.Whenk = n, A0(F ) = 1.

Remark 2.1. Because(β+1̄) ·w is constant forw inF, it does not matter which
wβ+1̄ we choose inF for Proposition 2.2. Also, the log term we usually see in the
Bergman kernel will come out naturally from the calculation of the termAn−k(F )
whenk < n.

3. Estimate for the Bergman Kernel on a Diagonal

Using (2.1) on the diagonal withζβ(z) = zβ, we have

KP (z0, z0) =
∑
A∈A

∑
β+1̄∈0(A)

|zβ0 |2
‖ζβ‖2 . (3.1)

The first summation is a finite sum, for there are only finitely manyA in A. We
want to express the second one as a finite sum, too, by considering the fundamental
setU(A) of the open cone0(A), where

U(A) = 0(A) ∩
{
α : α =

k∑
j=1

λjαj, 0< λj ≤ 1

}
.

Notice thatU(A) contains only finitely many indices, and that the open cone
0(A) can be decomposed into the fundamental setU(A) and its integral multiple
translationsU(m1,. . . ,mn)(A), where

U(m1,. . . ,mk)(A) =
k∑
j=1

mjαj + U(A)

for mj = 0,1,2, . . . (j = 1, . . . , k). That is, forβ + 1̄∈ 0(A), there exist non-
negative integersm1, . . . , mk and nonnegative numbersλ1, . . . , λk such that 0<
λj ≤ 1 and

β + 1̄=
k∑
j=1

(mj + λj )αj .

But notice that, since all components inβ + 1̄ take positive integer values and
the sum of components for all elements inA is bounded byM, the value forλj
(j = 1, . . . , k) is bounded away from 0 where the lower bound depends only on
M. Thus we have, with the ratio depending only onM,

mj + λj ≈ mj +1.
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By lettingw0 = log|z0| andzF = ewF , wherewF is any point onF = F(A),
we have∑

β+1̄∈0(A)

|zβ0 |2
‖zβ‖2

≈
∞∑

m1=0

· · ·
∞∑

mk=0

∑
β+1̄∈U(A)

(m1+1) · · · (mk +1) ·
∣∣∣zβ+∑k

j=1mjαj

0

∣∣∣2∣∣∣z(β+1̄)+∑k
j=1mjαj

F
∣∣∣2 · An−k(F )

≈
k∏
j=1

( ∞∑
m=0

(m+1)e2mαj ·(w0−wF )
)
·

∑
β+1̄∈U(A)

|zβ0 |2
‖zβ‖2

=
k∏
j=1

1

(1− e2αj ·(w0−wF ))2
·

∑
β+1̄∈U(A)

|zβ0 |2
‖zβ‖2

=
k∏
j=1

1

(1− |(z0/zF )αj |2)2 ·
∑

β+1̄∈U(A)

|zβ0 |2
‖zβ‖2

≈
k∏
j=1

1

(1− |(z0/zF )αj |)2 ·
∑

β+1̄∈U(A)

|zβ0 |2
‖zβ‖2 .

Finally by (3.1), we have the following result.

Theorem 3.1. Let P be an(M, ε)-nondegenerate bounded monomial polyhe-
dron, and letζβ(z) = zβ. Then forA = {α1, . . . , αk} we have

KP (z0, z0) ≈
∑
A∈A

( k∏
j=1

1

(1− |(z0/zF )αj |)2 ·
∑

β+1̄∈U(A)

|zβ0 |2
‖ζβ‖2

)
, (3.2)

with the ratio depending only onM, ε, andn. That is, there exist constantsC =
C(M, ε, n) andc = c(M, ε, n) such thatC > c > 0 and the Bergman kernel for
P can be estimated as

c ·
∑
A∈A

( k∏
j=1

1

(1− |(z0/zF )αj |)2 ·
∑

β+1̄∈U(A)

|zβ0 |2
‖ζβ‖2

)
≤ KP (z0, z0)

≤ C ·
∑
A∈A

( k∏
j=1

1

(1− |(z0/zF )αj |)2 ·
∑

β+1̄∈U(A)

|zβ0 |2
‖ζβ‖2

)
,

wherelog|zF | ∈F = F(A).

Remark 3.1. |zαjF | does not depend on the choice ofzF as long as log|zF | ∈
F(A) andαj ∈A.
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