The Bergman Kernel on Monomial Polyhedra

CHIEH-HSIEN T1ao

0. Introduction

In order to understand the Bergman kernel for a complex dof@airC” atz close
to the boundary$2, we usually insert the biholomorphic image of a polydi3c
centered at in 2 to generate the upper bound for the Bergman kerné&ton

Kq(z,2) < Kp(z,2) =

Vol(D)*

On the other hand, Catlin [3] showed by using estimate that, on a finite type
pseudoconvex domaif in C?, there exists a polydisP such that

1
K >c- :
elz,z2) > c¢ VoI (D)’

the same formula was later shown by McNeal [8] on convex domaifis'inA
guestion arises: Are polydiscs enough to describe the Bergman kernel for smooth
bounded domains?

For a general domain i@"”, it is not always possible to find a polydigz that
models the domain. Consid@rc C2 defined bylz1|*°+ |22/ 4 |z122|° +|z3]? <
1, andletz = (0,0,1— ¢). Itis easy to show that all polydiscs centered at
have maximal volume of approximated§y; thus, the upper bound of the Bergman
kernel atz obtained by inserting polydiscs is roughly*. But consider a Rein-
hardt domairR centered at bounded byiz1] < 1, |z2] < 1 |z3— 1 —¢)| <
e/2, and|z1z0| < /2. The volume ofR is roughlys*(—loge + 1), which is
much larger thar* whene « 1; therefore, the upper bound agiven byR is
1/e*(—loge + 1), much smaller than the ones given by any polydiscs.

The preceding example shows that polydiscs do not provide a good enough way
of estimating upper bounds for the Bergman kernel. Instead of trying to fit a poly-
discD about the point into €2, it seems better to try to fit the largest “monomial
polyhedron”P aboutz into ©2, where a monomial polyhedraP associated with
a finite subcollectior8 of index spaceV”, N' = N U {0}, is defined as follows.

DEeFINITION 1.1. AdomainP in C" is amonomial polyhedroiif there exists a
subseB3 = {ay, . .., a,} of N" and, for each: € BB, there exists a uniqué, € R
suchthatP = P(B) = {ze€C" : |z%| < e, a € B}.
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Note thatR in the foregoing example is a monomial polyhedron. Also, itis obvious
that the log domain oP defined as

log(P)={weR":a-w<c, =l0gd,, x€B} D

is an unbounded polyhedron containi@goo, . . ., —c0).

It is possible that, among the inequalities in (1) that defing fog some may
be redundant. However we will show that we can assisatisfies: (i)5 is a
minimal collection defining?; and (ii) fora = (a1, ..., a,) € B, a1, ..., a, are
relatively prime. Such a sé is unique with respect t&#. We call such a sd8 a
regular index sefor P.

In order to precisely define our estimate of the Bergman kernel, we must first
define the representation of the faces of the convex monomial polyhedralog
For eachA C B, define a faceF = F(A) of 3 log(P) determined by4 by

FA) ={welog(P) :a-w=cy, VaeAanda -w < c, Ya e B— A}.

Of course, there is no guarantee that such a faée not empty. However, if it

is not empty then we can conversely determine a subcollectica A(F) of

Bby A(F) ={aeB:a-w=c Yw € F}, and we will show (in Proposi-

tion 1.8) that it is a one-to-one correspondence map between non-empty faces and
the subcollections that determine non-empty faces.

We will see later that, in order to estimate the Bergman kernel, we need only
study the bounded faces of Ig@). Thus we will defindf = { F : F is bounded
andU(F) ={BeN" B =2 ,car ra, 0 <L, <1} Notice thatif we let
|K| be the cardinality ofC, then both|[F| and |l (F)| are finite.

Define P as (M, ¢)-nondegeneratéor someM andes > 0 if: (i) Z;?:laj <
M forall @ = (ay, ..., a,) € B; (i) A(F) is a linearly independent set for all
F € B; and (iii) everyF e B contains are-ball in the corresponding dimension.
We will give a more precise description in Definitiari0. Now let usstate our
theorem.

THeorREM 3.1. Let P be an(M, ¢)-nondegenerate bounded monomial polyhe-
dron, and let¢z(z) = z#. Then there are constant > ¢ > 0 depending onV,
¢, andn such that the Bergman kernel fér can be estimated as

|28

1
ke <X T goyomme X o) <C K@D

FeF Nae A(F) B+1cU(F)

Furthermore, forg + 1€ U (F) and with constant§ > ¢ > 0 depending on
e, M, andn, we have

2 ~B+1,2 - 2
c- 12217 < 12772 AR ) < € 127015

wherez = ¢” foranyw e F and A" ¥(F) is the volume ofF in its corresponding
dimension, which will be described more precisely in Sections 2 and 3.

REMARK 3.1. |Zﬁ+i| is independent of the choice éf as long a8 + 1€ U(F)
andw € F.
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This paper is part of my thesis. The problem was provided by my thesis advisor,
David Catlin. During the study, he always inspired me with valuable ideas and
suggestions. Therefore | would like to express my sincere gratitude to him.

1. Geometry of Bounded Monomial Polyhedrons

In order to describe the Bergman ker&(z, w) for a Reinhardt domain by uti-
lizing the formula, withzs(z) = z*,

BB
K@wﬁ:Z:%%? L)
peNn 158

where N = N U {0}, it is desirable to estimatgz?| for all 8 € N'". Thus it
becomes important to better understand the geometry of the underlying domains.

In our paper, we assum&” = {(a1,...,a,) : o; € NU{0}}. Let 2 be a
bounded Reinhardt domain and let

0g(R2) = {(wy, ..., w,) €R™: (", ..., e")eQ}.

We want to give a definition for monomial polyhedrons.

DEeFINITION 1.1.  AdomainP in C" is amonomial polyhedroiif there exists a
subse3 = {ay, . . ., a,} of N and, for each: € B, there exists a uniqué, € R
such that

P=PB)={zeC":|z% < e, acB}. (1.2)

Because a monomial polyhedrdhthus defined is a Reinhardt domain, we see
that
log(P) ={weR":a-w < Cy, x€B}.

DEerFINITION 1.2, We say = (ay, . . ., a,) e N isprimeif ay, . . ., a, are rela-
tively prime.

Without loss of generality, we can assume thatvah B are prime. Let us denote

Wey={weR":a -w<Cy}.

DErINITION 1.3.  We saw is essentialin B if there exists av € R" such that
a-w>Cyhutg-w < Cgforall ginBandg # «a. Itis equivalent to say that

( N w@mmf#n (1.3)
peB—{a)

Also, we say is non-essential il if it is not essential—that is, if for allb €
R” such thatr - w > C, there exists @ € B such thaf - w > Cy. Itis equivalent
to say that

() W5 S W (1.4)
peB—{a)
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Let us denote e$B8) = {«a € B : « is essentia). First we would like to show that
essential indices will remain essential even after we take off non-essential indices
away froms5.

LeEmMMA 1.4. Leta be non-essential i, and let3’ = B — {«}. ThenesgB) =
esgs’).

Proof. Itis obvious from (1.3) that e¢8) C esgB’). Suppose is non-essential
in B but essential ins’, and letP = (N, 5_,,) Ws-

Since bothx andy are non-essential if, by (1.4) we haveP N W, C W,
andP N W, € W,. By intersecting withP, this meansP N W, = P N W,.
But the assumption that is essential i3’ and (1.3) imply that? N WVC # (.
Notice thatW, andW, are both half-spaces. For any two half-spakgsand
W, if there exists an open neighborha@dsuch that bothW; N U ande NnU
are non-empty and W, N = W, N U, thenW; = W,. Thus, by taking
U=P we haveV, = W,. Finally, since all indices i8 are prime,y = «, a
contradiction. O

Now denote essla®) = {w eR" : @ - w < Cy, @ € €sgB) }. It is obvious that

log(P) = (| W. and esslogP) = () W (1.5)

aeB acessB)
We would like to show the following.

LemMma 1.5. esslogP) = log(P).

Proof. From (1.4) and (1.5), we see that (@) = () peB—(w) YV fOr any non-
essential index in B. And Lemma 1.4 shows that the essentlal indices mnd
B’ are identical, wher&’ = B — {«}. By repeated application of this procedure
for (finitely many times), the result follows. O

From Definition 1.3, there exists an open neighborhtiofibr eacha in esgB)
such that/ N 3 log(P) # ¥ andUd Nlog(P) = U N W,. Thus, we can think of
essential indices as normal vectors to local neighborhood$ogf( P).

Obviously,B must contain such normal vectors. However, if we take only those
normal vectors, Lemma 1.5 implies that we obtain a unique collection of indices,
B, which describes the monomial polyhedrBnWe would like to give a name to
such a collection.

DerINITION 1.6. B C N'" is aregular index sewith respect toP if, for all « €
B, « is prime and essential .

It is easy to see that a monomial polyhed®mniquely corresponds to a regular
index B, and we will assume tha is regular throughout this paper.

RemARk 1.1. Since we requireP to be bounded, from (1.2) it is easy to see
thate; = (0,...,0,1,0,...,0) € Bforall j = 1,...,n. For if not, then
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©,...,0,z,0,...,0) satisfies all the inequalities in (1.2) for alle C. Thus
P would be unbounded.

Next, we would like to describe the faceslo§(P).

DEerINITION 1.7.  F is a face oflog(P) if there exists a subcollectian of B such
that

F=FA) ={welog(P):a-w=C, foralla e A and
a-w<CyforallaeB— A} (1.6)

It follows from (1.6) that if.A4; and.A; are subcollections df such thatd; = A,
and one ofF (A;) andF(A>) is not empty, thetF(A;) # F(Az). Thus, for each
non-empty facer there corresponds an index set

A=AF)={aeB:a-w=C,forallwe F}.
But it follows directly from the definition that
A(F(Ap)) = Ag and F(A(Fo)) = Fo @.7)

onceF(Aop) andFy are not empty. Thus, by collecting all non-empty faces and
corresponding index sets as

F = { F C log(P) : Fis a non-empty facg
and )
A={ACB:F(A)is non-empty,

we have the following proposition.

ProprosITION 1.8.

(i) There exists a one-to-one onto map betwiBemd A;
(ii) log(P) is a disjoint union of allF in FF.

We also need the following.
LEmmA 1.9. For Fy, F, € F, Fy = F,ifand only if Fy = Fo.

Proof. The “if” part is obvious. For the “only if” part, first notice that for each
F there exists am such that (1.6) holds. But thefi becomes

F={welog(P):a-w=C,foralaec.Aand
a-w<C,forallaeB— A}

= |J {welog(P) :a-w=C, foralle e A and

AC A’
a-w<CyforaleeB— A}

= |J Fn. (1.8)

ACA
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By Proposition 1.8(ii), this expression is a disjoint union. It follows thatif=
F(A) andF, = F(Ay), thenF, = F, implies 71 C F, andF, € F1, which
implies.A; = A5, which in turn impliesF; = F». O

To make our computation manageable, we need to impose some extra conditions
on our monomial polyhedrons.

DEeFINITION 1.10.  Amonomial polyhedror? is (M, ¢)-nondegeneratéor some
M, ¢ > 0 if all of the following conditions hold.

(i) Foralla = (g, ...,ap)€eB, a1+ - +a, <M.
(i) Forall Ain A, the set of elements in is linearly independent iR”.
(ii) Forall FinT, let B,(w) be an Euclidean ball centeredwatwith radiuss,
andleWg ={w:a-w = C, forall @ € A(F) }; then there exists @ in
F such thaB,(w) N W C F.

Notice that, for any monomial polyhedra® there existM, ¢ > 0 that satisfy
conditions (i) and (iii). We emphasize the roles playedWyandes > 0 because
our result will depend on both ande.

In order to sur(1.1), weneed to suitably decompose the index sp&ce One
natural way of doing so is by decomposing the index space into a finite disjoint
union of convex cones generated by elements,ias follows.

Let A = {ay, ..., ar} C N". We saywx is anonnegativesombination ofA if
there exist.y, ..., Ar andi; > Oforall j =1, ...,k such thatx = Z’;zlxjaj;
we sayw is apositivecombination ofA if « is a nonnegative combination gf as
just described while also requiriig > O forall j =1,..., k. We sayI'(A) is
theopenconvex cone generated byif I'(A4) = {« : « is a positive combination
of A}.

Note that the term “open” used here is not in a traditional sense, for tivg.det
is discrete. Rather, we use “open” to emphasize that this cone does not contain
the boundary.

The following proposition willimply that the index spasé” is a (finite) disjoint
union of all open convex cond¥ A) for all Ain A.

ProrosiTION 1.11. Let P be (M, ¢)-nondegenerate. Then the following are

equivalent

(i) Bin A" is a positive combination afl—that is,8 € I'(A);

(ii) thelinear functionalfs defined byfg(w) = B -w, when restricted tdog(P),
reaches its maximum at all points and only at points/tA).

Proof. For (i)= (i), let A = {a1,...,a} € A and assume there exist
M.....h > Osuchthap = Y %_; Ae;. Letw be any point idog(P) — 7(A).
From (1.8), we see that there must exista {1, ..., k} such thaty; - w < C;;
therefore,

k k
fpw) =6 -w= ijqi cw < Z)LjCaj.
j=1 j=1
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But for w € F(A),
k
fsw) =" 2;Ca,,
j=1

so the result follows.

For (ii)= (i), first note thatd = {a1,...,. 4} = {a e A a-w = C,
for all w € F}, and thatF is non-empty. By DefinitiorL.10(ii), A is linearly
independent. Thus, by solving the system

ar-w = Cy

ak'w = Cak»

we have ann — k)-dimensional linear affine spad® containingF. Let wq be
a point in F satisfying Definition1.10(iii), and letB;.1, ..., 8, be a basis of
W — wq that is arm — k dimensional vector space. Then we can expié'sas

W:{w0+ Z Sj,Bj:SjGR},

j=k+1
where

() wo+ X" 1518 € F = F(A) for |s;| small;
(b) {ag, ..., o, Brsts - - -, Bu}is alinear basis.

Thus, by (b),8 = Z’;zlkjaj + > k412 B;- But fg reaches its maximum at all
points of 7, and (a) implies thak; = O for j = k+1,...,n. Forif not (say,
A;j > 0forsomej > k) then we can findv; = wo +s;8; wheres; > 0is so small
thatw; € F. But then f(w1) > f(wg), a contradiction. This means thatis a
linear combination of4.

Supposeg is not a nonnegative combination of. We can assum¢g =
Z’J‘.zlkjaj, A ....As > 0andig, ..., Ax < 0. But we can always findo

such that
ay-w = Cy,

o] - w
o w < C

Il
0O
2

ap-w < Cg.

Itis easy to see that € log(P) and fg(w) > fz(wo) for we € F, a contradiction.
Finally, supposé is not a positive combination o4; then it is a positive com-

bination of somed’ C A. By the proof of (i)= (ii), fs reaches its maximum on

F(A) 2 F(A), a contradiction. O

Proposition 1.11 will allow us to represent gllin " as a positive combination
of a uniqueA. We thus have the following result.
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CoroLLARY 1.12. A" can be decomposed into a finite disjoint union of open
convex conef(A) for Ain A. Thatis,

N"= [ T(A).

AecA

Proof. Foreverygin N'", fz mustreach its maximum at all points Bffor some
F in F. By Proposition 1.118 is in I'(A) for someA in A. But fg, as a linear
functional, can reach its maximum on only afigso A is unique. O

DeFINITION 1.13.  We sayA € A is bounded (unbounded) J(A) is bounded
(unbounded).

LEmmA 114, Let A = {og,...,o} and o = (ajl, ...,a]). ThenAis un-

bounded if and only if there exists && {1, . . ., n} such thata]? =Oforall j =
1L... k

Proof. (=) SinceP is bounded, for a fac& in log(P) to be unbounded there
must exist ard € {1, . . ., n} such that ifwg = (wg, . . ., w§) € F then

(wé,...,w-i,...,wg)e}' for all w’ < wy.

For Remark 1.1 shows that# is bounded ands = (w, . .., w") e log(P), then
every componend’ is bounded above. Thus, from Definition 1.7, we hayez
Oforallj=1,... k.

(<) From Definition 1.7, if there exists dre {1, . . ., n} such thatx} = 0 for
all j =1,...,k, thenF must be unbounded. 0

Let us define

F = {F Clog(P) : Fis a non-empty bounded fage (1.9
and
A={ACB:F(A)isanon-empty bounded fage (1.10)

Then we have the following.

ProrosiTION 1.15.
N" = | r.

AecA
Moreover, no components of elementsiig A will be simultaneously zero.

Proof. If Ae A — A then by Lemmad.14, for allg = (b%, ..., b") e T'(A) there
exists an/ € {1,...,n} such thatt’ = 0,—that isg € N — N". Therefore,
r) CcN"—N"and
U ra c AN
AchA-A
But for 8 = (b%,...,b") e N" — N” there exists ah € {1, . . ., n} such that
b' = 0, and by Corollaryl.12 there exists amd such thatg € T'(A). Yet this
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means thap is a positive combination afl, so if A = {ay, ..., o} ande; =
(@} ....af) thena! = Oforall j = 1,....k. By Lemmall4, A e A — A.
Therefore,

U ron N

Aeh-A
This shows
U r=n"—nN"
AehA-A
Now using Corollaryl.12 agin, the result follows. O

2. Estimates forL2-norms of z#

We wish to calculate the Bergman kernel for Since a monomial polyhedron is
a Reinhardt domain, by lettifg= (1, . . ., 1) andz(z) = z# we have

B-B B-B B-B

_ ZoWo _ ZoWo _ ZoWo

Kp(zo,wo) = Izsl2 2 Izsl2 2 2 2 @Y
peNn 5B p+lenn 1°P Aeh gyiera "°P

Note that the first summation in the last expression is a finite sum.
LetB +1beinT'(A) for someAin A, and Ietwﬂ+1 be a point onF = F(A).
Define

Spia(t) =Tog(PY N {w: (B+D)-w=(B+D w5 —1}.

Since the functioa2#+2¥ is a constant o8, 1(2) for fixed:, if we defineA 5 5(r)
to be the function measuring tie — 1)-dimensional area 03/3+1(t) then

Igsll? = /IZﬁIZdV(Z)
P

= (27)" / 2D W gy ()
log(P)

n oo -
18+1l Jo
The last equality is gained by performing a unitary change of coordinates so that
dt =d(B+1,wheref +1=(p1+1,...,8,+1).
For the convenience of discussion, let us use the following notation:

Q1) =Tog(P) N{w: (B+D - w>(B+D) wyg—1})

Ag i) ={w:w=wg3+s-(w —wg ) forallw’e Sy 1(8) ands > 0};
Agi.0) =0 i@ N{w:(B+D-w=(B+D) wy—1}
Note thatA,,5(8) = A,5(8, 00).
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[ |
/|09(P) /S;ﬂ_'.l(s) log(P)—24,7(8)
Qﬁ+i(5) Aﬁ+i(8,8) Aﬁ+1(8)—Aﬁ+i(8,8) |Og(P)—Qﬂ+i(8)

The inequalities are obtained from

Now notice

Q,.,100) 2 A4,1(6.8) and Ay, i(8) — Ay, (8, ) 2 log(P) — 24,1(5),

which in turn are results of the convexity of Ia@). The first inclusion is easy to
show. For the second inclusion, suppase log(P) — 2,,1(3); the line segment
betweenw andwyg_ ; must be in logP), which intersectsS, ,;(5) at one point.
Thusw is a point inAﬁ+i(8), but it cannot be imﬁ+i(8, 8). The result follows.

If we can show there exists a constant ¢(8) > 0 such that

[ o= , (2.2)
Ag,1(8,8) A i) —Ag5(5,8)
then by

1
T AT A N Y
/) Ja, a6 Q4,36 Jlog(P)-2,,30) log(P) Q

we have

5418

/ ~ / . (2.3)
log(P)  J,,5(8)

To prove (2.2), we will instead show that there exists a constan® such that

/ > C/ .
Aﬁﬁ(é,é) Aﬁ+i(5)
In gellel’al, hOWeVer,

_ K _ n—1
/ 2BV gy (w) = / 62(ﬁ+1)'wﬂ+1_2lAﬁ+i(5)<£> dt
A4.16.5) 0 8

2(B+1) w5 B s
_ A 0) / 2y,
0

Snfl
Set .
f(s):/ e 2" Ldr
0

and observe that
n=2! (25" . (n—1!
o o and vE}r{po f(s) = .

f(©) > o
With ¢(8) = (28)"/(¢?® - n!), we have
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/ 2D gy () > ¢(8) 2BDY gy ().
Ay ,3(5,8) Ay i)

Therefore, by (2.3), we can state the following proposition.

PropOSITION 2.1.  Withc = ¢(8) = (28)"/(e?® - n!), we have

J

Moreover,

- 1 -
PP gy (w) < ||2f|1? < <1+ —) / PPV gy (w).  (2.4)
Q

54106) 5416)

62(,3+1)-wﬂ+1

8
/ e %A, (1) dt. (2.5)

/ PP gy () = —————
Q,.,16) 18+1 Jo

Notice that Proposition 2.1 is true for all Reinhardt domains, not necessarily mono-
mial polyhedrons.

In order to sum (2.1) we must take a closer lookat i(¢) for 7 € [0, 5], where
8§ = 8(M, &) will be determined later, and apply certain elementary linear alge-
braic computation to carry out a formula far,  ;(r) and thus||z#||°. Here we
will make use of the properties of monomial polyhedra and Definitid® of
(M, g)-nondegeneracy.

Letg+1eT(A)forsomed = {an, . .., ax} in A, let F = F(A), and assume
that A" ~*(F) is the area ofF measured as am — k)-dimensional object. Notice
that A"~*(F) is never zero (by the definition @M, ¢)-nondegeneracy) whereas
A,4,1(0), measuring the same fadéas a(n — 1)-dimensional object, is usually
zero unlessA(F)| =1

Our purpose for the rest of this section is to show that

1B + L =t - AnKF)
A Ak :
Combining (2.4) and (2.5), this implies

Apii(t) ~

ez(ﬁ+i)'wﬂ+1 . A"ik(j—-)
RRERD W

)

sl = f 12%12dV(z) ~
P

where the ratio depends only a#, ¢, andn.
First let us simplify the domain. Let

AA) ={AecA: Ac A}
and
B(.A)Z U .A/:{Ol]_,...,(xk,Olk+1,...,()lk+m}.
A'eA(A)

Notice that the boundary of (A) is a union of all faces-(A’), whereA C A’
A(A).

By a unitary change of coordinates, we can assume= («j 1, ...,
0,....,0forj=1,..., k. ThusF will be defined by
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a-w =0

oap-w =0
apr1-w < Cp

Cfpm =W < Cmv
and log P) aroundF will be defined by

ap-w < 0

op-w < 0
1w < Cp

O - W < Cy.

By writing all elements: in R” into x” in RF andx” in R"~*, wherex’ consists of
the firstk components whila” consists of the rest, we can see that

aL-w = oW

W = oy - w

and that2, . 3(2), for z €[0, 5], is defined by

B+ w > —t
aj-w <0

(2.6)

ap-w' <0
and
afw’ < Ci—ogqw'
(2.7)
W < Cp =y, - w'.
Note that(8 +1) - w = (8 +1) - w'.

For eachw’ satisfying (2.6), defineV(w’) = {w” : (w’, w”) € log(P) }. We
know that wherw’ = 0, the set of all possiblev” satisfying system (2.7) (i.e.,
W(0)) is exactlyF, and we want to understand by how much the volum@igiv”)
can vary wherw’ changes.

The possible values that’ can take are controlled only by the system of in-
equalities (2.6) for € [0, 8], which defines &-simplex. Since all inequalities in-
volved in (2.7) are linear, we know the maximal change of the voluma/¢i’)
happens on the extreme points of #ieimplex defined by (2.6) withe [0, §].
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The extreme points are either 0 or the solution to the system of equations

ar-(w/) =0

aj 4wy =0
B+ (/) = —1
@y (w/) =0

o - (wl) =0
for j =1,....k. By plugginging +1="_; ;a; and writing [ ], = [, ;].
i,j =1 ...,k we have a unique solution
0
N _f ;
w’) =[a]; <A_)€j’ wheree; = | 1
j
But plugging this information back into
g w” < Ci—og - w'
af o w < Cp—oyy, -w
(system (2.7)) when; ; = Z’;zlki,jaj, we have
o —thi
@y (Wl = T
Thus, forallj =1, ...k,

(X]/C/Jrl- w” < C1+ t)»l,j/)\.j

" "
Ay W < G+ thp j /2.

Notice thate has positive integer components in the original coordinates and,
by Definition1.10(i), the sum otomponents ok is less thar/. Hencel; is pos-
itive and bounded away from O by a constant depending onlyfpand},; ; is
positive and bounded by/. Thus there exis€ = C(M) > 0 such that

Aij

<CWM), i=1....m, j=1... k.

j

Next, using Definitiorl.10(iii) on F (whereF can be expressed by the system
(2.7) whenw’” = 0) and takingw” = ¢ - o/ /[l 1l sincel|lw”|| = e andw” €
F we haves - |/, Il < C;. But|lay, ;|| > c for somec = c¢(M) > 0. Therefore,

Ci>¢e-c(M).
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Now sets = ec(M)/2C(M), defineF,; = {w" eR"* 1 af - w”" <d-C;,
i=1,...,m},anddefineLﬂ+1(t) ={w' eR" :cxjf-w’< Oforj=1...,kand
(B+1) - w' = —rt}. First, noticeF = F;. We also have

Ly i(t) x Fiyp € Spq(t) € Ly 5(t) x Fo for 1€[0,8].  (2.8)

Now let Py 1(8) = U,e[o,a] L, i(t). ThenPg 5(3) is ak-simplex with extreme
points at 0 andw/)’ for j = 1,...,k, where(w’) = [a];*(—t/A;)e;. But
for any k-simplex with extreme points at 0 arg = (a; ;), i, j = 1...,k, the
volume is exactly,% det[a; ;]. Thus, the volume of’ ,;(t) is

k P it
A (Pﬂ“(’))_k!-det[a]k.xl...xk'
However,
AK(P, 5(1) = _/AHL- dn.
( ﬁ+1(t)) 18 +11 Jo ( ;3+1(77)) n

By taking derivatives with respect toon both ends of the preceding equations,
we have the volume ot (1) as

I8 +1) - 52
k—D! -det[a]k~)»1-~-/\k'

AN L a(0) =
Also note that

AN Fy =a"t - AK(F), where Fr = F.
Thus, by (2.8), for € [0, §] we have

277 |IB + 1| - kL ATRF)
(k — D! ‘det[()l]k U RERD W

= AﬂJri(t)

_ 2B AT AR
- (k=D! 'det[a]k')»l-“)»k

or simply
1B +1] -1+ A HF)
k—D!- det[O[]k WYRER )Lk’
where the ratio depends only on the total dimension
Combining (2.4), (2.5), and (2.9) witfy (z) = z#, we have

2(B+D-wy 5 An—k )
€ (F) / o= 21k=1 gy
(k—l)'det[a]kklkk 0

(2.9)

Ap i) ~

lIgs 12 ~

_ 62(ﬁ+i)'wﬂ+1 . Anfk(j:)
det[a]k cA1 Ak

where the first approximation depends onlyrmowhile the second approximation
depends on and$, which in turn is defined as a function 8f ande.

9
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Let us summarize in the form of a proposition.

ProposiTION 2.2, Letlog(P) be (M, £)-nondegenerate. For angin N, there
exists a uniqued in A such thatg + 1is in I'(A). For anywg. jin F = F(A)
we have, with the ratio depending o ¢, andn,

62(/3+1)-w}3+1 X Anfk(f')
det[a]k CAL Ak
whereA"k(F) is the(n — k)-dimensional volume of. Wherk = n, A°%(F) = L

2 o,
I12° 117 ~

k]

REMARK 2.1. BecauséB +1) - w is constant fow in F, it does not matter which
wg ., We choose i for Proposition 2.2. Also, the log term we usually see in the

Bergman kernel will come out naturally from the calculation of the terim(F)
whenk < n.

3. Estimate for the Bergman Kernel on a Diagonal

Using (2.1) on the diagonal witty (z) = z#, we have

12512
Kp(z0,20) = Z Z ” 0”2. (3.1
AeA giler(A) &p
The first summation is a finite sum, for there are only finitely mahin A. We
want to express the second one as a finite sum, too, by considering the fundamental
setld(A) of the open con&'(A), where

k
UA) =T(A) N {a f = ija,, 0< 2 51}.
j=1
Notice thatZ/(A) contains only finitely many indices, and that the open cone
I'(A) can be decomposed into the fundamental&et) and its integral multiple
translationg4(,,,. . . m,)(A), where

k
Uny,. . ..mpy(A) = mja; +U(A)
j=1

J

form; =0,1,2,... (j =1,...,k). Thatis, forg + 1€ I'(4), there exist non-
negative integerss, . . ., m; and nonnegative numbeks, . . ., A, such that O<

A; <land
k

ﬂ + 1= Z(m] + )\.j)O(j.
j=1
But notice that, since all components n+ 1 take positive integer values and
the sum of components for all elementsAnis bounded by, the value fori;
(j=1,...,k) is bounded away from O where the lower bound depends only on
M. Thus we have, with the ratio depending only &

mj+)»j%mj+l
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By letting wg = log|zo| andz+ = e“7, wherew is any point onF = F(A),
we have

s lar
lz#2

B+1el(A)

B+ Z mja; |2
$p oy b g ="
m1=0 me=0 giicui(A) ’Zf+l)+2 _1m]a/ . An*k(]:)

k 00 ) |ZO|2
~ H( Z(m + 1)3 e (o= wjr)) Z ” ,8”2
j=1\m=0 pricua ¢
k
S R S
o — e20j-(wo—wF))2 B2
j=1 (d—e™ ) B+1eU(A) 17

| 2

Il
:]»

1 . Izo
(- (zo/zF)¥1)? Z llz#112

1 BH1eU(A)

~.
II

&
:] ~

1 |z I?
1A [(zo/zF)¥1)? Z 2112

B+1el(A)

~.
Il

Finally by (3.1), we have the following result.

THEOREM 3.1. Let P be an(M, ¢)-nondegenerate bounded monomial polyhe-

dron, and let;(z) = z#. Then forA = {a, . . ., @k} we have
Kp (20, 20) Z(ﬁ : 3 'Zg|2) (3.2)
p(20,20) ~ P ) .
fei\ o A= 1(zo/zF) i])2 Py llzl12

with the ratio depending only oM, ¢, andn. That is, there exist constants =
C(M, e,n) andc = ¢(M, ¢, n) such thatC > ¢ > 0 and the Bergman kernel for
P can be estimated as

c- Z (ﬁ : ’ Z |Zg|2 )
(1= (zo/zF)¥])? 155112

Aech \ j=1 B+1eU(A)
< Kp(zo0, z0)
1 |Z}3|2
e (11 X 1)
S\ A= 1Go/zp)®D? |, o gl

wherelog|zx| € F = F(A).

REMARK 3.1. |z_°,i_"| does not depend on the choicezf as long as log 7| €
F(A) anda; € A.
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