The Bergman Kernel on Monomial Polyhedra

CHIEH-HSIEN TIAO

0. Introduction

In order to understand the Bergman kernel for a complex domain Ω in \mathbb{C}^n at z close to the boundary $\partial\Omega$, we usually insert the biholomorphic image of a polydisc \mathcal{D} centered at z in Ω to generate the upper bound for the Bergman kernel on Ω :

$$K_{\Omega}(z,z) \leq K_{\mathcal{D}}(z,z) = \frac{1}{\operatorname{Vol}(\mathcal{D})}.$$

On the other hand, Catlin [3] showed by using a $\bar{\partial}$ estimate that, on a finite type pseudoconvex domain Ω in \mathbb{C}^2 , there exists a polydisc \mathcal{D} such that

$$K_{\Omega}(z,z) \ge c \cdot \frac{1}{\text{Vol}(\mathcal{D})};$$

the same formula was later shown by McNeal [8] on convex domains in \mathbb{C}^n . A question arises: Are polydiscs enough to describe the Bergman kernel for smooth bounded domains?

For a general domain in \mathbb{C}^n , it is not always possible to find a polydisc D that models the domain. Consider $\Omega \subset \mathbb{C}^3$ defined by $|z_1|^{10} + |z_2|^{10} + |z_1z_2|^2 + |z_3|^2 < 1$, and let $z = (0,0,1-\varepsilon)$. It is easy to show that all polydiscs centered at z in Ω have maximal volume of approximately ε^4 ; thus, the upper bound of the Bergman kernel at z obtained by inserting polydiscs is roughly ε^{-4} . But consider a Reinhardt domain $\mathcal R$ centered at z bounded by $|z_1| < 1$, $|z_2| < 1$, $|z_3 - (1-\varepsilon)| < \varepsilon/2$, and $|z_1z_2| < \varepsilon/2$. The volume of $\mathcal R$ is roughly $\varepsilon^4(-\log \varepsilon + 1)$, which is much larger than ε^4 when $\varepsilon \ll 1$; therefore, the upper bound at z given by $\mathcal R$ is $1/\varepsilon^4(-\log \varepsilon + 1)$, much smaller than the ones given by any polydiscs.

The preceding example shows that polydiscs do not provide a good enough way of estimating upper bounds for the Bergman kernel. Instead of trying to fit a polydisc \mathcal{D} about the point z into Ω , it seems better to try to fit the largest "monomial polyhedron" P about z into Ω , where a monomial polyhedron P associated with a finite subcollection \mathcal{B} of index space \mathcal{N}^n , $\mathcal{N} = \mathbb{N} \cup \{0\}$, is defined as follows.

DEFINITION 1.1. A domain P in \mathbb{C}^n is a monomial polyhedron if there exists a subset $\mathcal{B} = \{\alpha_1, \ldots, \alpha_m\}$ of \mathcal{N}^n and, for each $\alpha \in \mathcal{B}$, there exists a unique $C_\alpha \in \mathbb{R}$ such that $P = P(\mathcal{B}) = \{z \in \mathbb{C}^n : |z^\alpha| < e^{C_\alpha}, \alpha \in \mathcal{B}\}.$

Received October 23, 1997. Revision received July 22, 1998. Michigan Math. J. 46 (1999).

Note that \mathcal{R} in the foregoing example is a monomial polyhedron. Also, it is obvious that the log domain of P defined as

$$\log(P) = \{ w \in \mathbb{R}^n : \alpha \cdot w < c_\alpha = \log d_\alpha, \ \alpha \in \mathcal{B} \}$$
 (1)

is an unbounded polyhedron containing $(-\infty, \ldots, -\infty)$.

It is possible that, among the inequalities in (1) that define $\log(P)$, some may be redundant. However we will show that we can assume \mathcal{B} satisfies: (i) \mathcal{B} is a minimal collection defining P; and (ii) for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathcal{B}, \alpha_1, \ldots, \alpha_n$ are relatively prime. Such a set \mathcal{B} is unique with respect to P. We call such a set \mathcal{B} a regular index set for P.

In order to precisely define our estimate of the Bergman kernel, we must first define the representation of the faces of the convex monomial polyhedron $\log(P)$. For each $\mathcal{A} \subseteq \mathcal{B}$, define a face $\mathcal{F} = \mathcal{F}(\mathcal{A})$ of $\partial \log(P)$ determined by \mathcal{A} by

$$\mathcal{F}(\mathcal{A}) = \{ w \in \overline{\log(P)} : \alpha \cdot w = c_{\alpha} \ \forall \alpha \in \mathcal{A} \text{ and } \alpha \cdot w < c_{\alpha} \ \forall \alpha \in \mathcal{B} - \mathcal{A} \}.$$

Of course, there is no guarantee that such a face \mathcal{F} is not empty. However, if it is not empty then we can conversely determine a subcollection $\mathcal{A}=\mathcal{A}(\mathcal{F})$ of \mathcal{B} by $\mathcal{A}(\mathcal{F})=\{\alpha\in\mathcal{B}:\alpha\cdot w=c_{\alpha}\ \forall w\in\mathcal{F}\}$, and we will show (in Proposition 1.8) that it is a one-to-one correspondence map between non-empty faces and the subcollections that determine non-empty faces.

We will see later that, in order to estimate the Bergman kernel, we need only study the bounded faces of $\log(P)$. Thus we will define $\mathbb{F} = \{ \mathcal{F} : \mathcal{F} \text{ is bounded } \}$ and $\mathcal{U}(\mathcal{F}) = \{ \beta \in \mathcal{N}^n : \beta = \sum_{\alpha \in \mathcal{A}(\mathcal{F})} \lambda_{\alpha} \alpha, \ 0 < \lambda_{\alpha} \leq 1 \}$. Notice that if we let $|\mathcal{K}|$ be the cardinality of \mathcal{K} , then both $|\mathbb{F}|$ and $|\mathcal{U}(\mathcal{F})|$ are finite.

Define P as (M, ε) -nondegenerate for some M and $\varepsilon > 0$ if: (i) $\sum_{j=1}^{n} \alpha_j \le M$ for all $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathcal{B}$; (ii) $\mathcal{A}(\mathcal{F})$ is a linearly independent set for all $\mathcal{F} \in \mathcal{B}$; and (iii) every $\mathcal{F} \in \mathcal{B}$ contains an ε -ball in the corresponding dimension. We will give a more precise description in Definition 1.10. Now let us state our theorem.

Theorem 3.1. Let P be an (M, ε) -nondegenerate bounded monomial polyhedron, and let $\zeta_{\beta}(z) = z^{\beta}$. Then there are constants C > c > 0 depending on M, ε , and n such that the Bergman kernel for P can be estimated as

$$c\cdot K_P(z,z)<\sum_{\mathcal{F}\in\mathbb{F}}\left(\prod_{\alpha\in\mathcal{A}(\mathcal{F})}\frac{1}{(1-|(z^\alpha/d_\alpha)|^2)^2}\cdot\sum_{\beta+\tilde{\mathbf{1}}\in\mathcal{U}(\mathcal{F})}\frac{|z^\beta|^2}{\|\zeta_\beta\|^2}\right)< C\cdot K_P(z,z).$$

Furthermore, for $\beta + \bar{\mathbf{1}} \in \mathcal{U}(\mathcal{F})$ and with constants C > c > 0 depending on ε , M, and n, we have

$$c\cdot \|z^\beta\|^2 < |\tilde{z}^{\beta+\bar{1}}|^2\cdot A^{n-k}(\mathcal{F}) < C\cdot \|z^\beta\|^2,$$

where $\tilde{z} = e^{\tilde{w}}$ for any $\tilde{w} \in \mathcal{F}$ and $A^{n-k}(\mathcal{F})$ is the volume of \mathcal{F} in its corresponding dimension, which will be described more precisely in Sections 2 and 3.

Remark 3.1. $|\tilde{z}^{\beta+\bar{1}}|$ is independent of the choice of \tilde{w} as long as $\beta+\bar{1}\in\mathcal{U}(\mathcal{F})$ and $\tilde{w}\in\mathcal{F}$.

This paper is part of my thesis. The problem was provided by my thesis advisor, David Catlin. During the study, he always inspired me with valuable ideas and suggestions. Therefore I would like to express my sincere gratitude to him.

1. Geometry of Bounded Monomial Polyhedrons

In order to describe the Bergman kernel K(z, w) for a Reinhardt domain by utilizing the formula, with $\zeta_{\beta}(z) = z^{\beta}$,

$$K(z, w) = \sum_{\beta \in \mathcal{N}^n} \frac{z^{\beta} \bar{w}^{\beta}}{\|\zeta_{\beta}\|^2}, \tag{1.1}$$

where $\mathcal{N} = \mathbb{N} \cup \{0\}$, it is desirable to estimate $||z^{\beta}||$ for all $\beta \in \mathcal{N}^n$. Thus it becomes important to better understand the geometry of the underlying domains.

In our paper, we assume $\mathcal{N}^n = \{ (\alpha_1, \dots, \alpha_n) : \alpha_j \in \mathbb{N} \cup \{0\} \}$. Let Ω be a bounded Reinhardt domain and let

$$\log(\Omega) = \{ (w_1, \ldots, w_n) \in \mathbb{R}^n : (e^{w_1}, \ldots, e^{w_n}) \in \Omega \}.$$

We want to give a definition for monomial polyhedrons.

DEFINITION 1.1. A domain P in \mathbb{C}^n is a *monomial polyhedron* if there exists a subset $\mathcal{B} = \{\alpha_1, \ldots, \alpha_m\}$ of \mathcal{N}^n and, for each $\alpha \in \mathcal{B}$, there exists a unique $C_\alpha \in \mathbb{R}$ such that

$$P = P(\mathcal{B}) = \{ z \in \mathbb{C}^n : |z^{\alpha}| < e^{C_{\alpha}}, \ \alpha \in \mathcal{B} \}.$$
 (1.2)

Because a monomial polyhedron P thus defined is a Reinhardt domain, we see that

$$\log(P) = \{ w \in \mathbb{R}^n : \alpha \cdot w < C_{\alpha}, \ \alpha \in \mathcal{B} \}.$$

DEFINITION 1.2. We say $\alpha = (a_1, \dots, a_n) \in \mathcal{N}^n$ is *prime* if a_1, \dots, a_n are relatively prime.

Without loss of generality, we can assume that all α in \mathcal{B} are prime. Let us denote

$$\mathcal{W}_{\alpha} = \{ w \in \mathbb{R}^n : \alpha \cdot w < C_{\alpha} \}.$$

DEFINITION 1.3. We say α is *essential* in \mathcal{B} if there exists a $w \in \mathbb{R}^n$ such that $\alpha \cdot w \geq C_{\alpha}$ but $\beta \cdot w < C_{\beta}$ for all β in \mathcal{B} and $\beta \neq \alpha$. It is equivalent to say that

$$\left(\bigcap_{\beta\in\mathcal{B}-\{\alpha\}}\mathcal{W}_{\beta}\right)\cap\mathcal{W}_{\alpha}^{C}\neq\emptyset.$$
(1.3)

Also, we say α is non-essential in \mathcal{B} if it is not essential—that is, if for all $w \in \mathbb{R}^n$ such that $\alpha \cdot w \geq C_{\alpha}$ there exists a $\beta \in \mathcal{B}$ such that $\beta \cdot w \geq C_{\beta}$. It is equivalent to say that

$$\bigcap_{\beta \in \mathcal{B} - \{\alpha\}} \mathcal{W}_{\beta} \subseteq \mathcal{W}_{\alpha}. \tag{1.4}$$

Let us denote $ess(\mathcal{B}) = \{ \alpha \in \mathcal{B} : \alpha \text{ is essential } \}$. First we would like to show that essential indices will remain essential even after we take off non-essential indices away from \mathcal{B} .

LEMMA 1.4. Let α be non-essential in \mathcal{B} , and let $\mathcal{B}' = \mathcal{B} - \{\alpha\}$. Then $ess(\mathcal{B}) = ess(\mathcal{B}')$.

Proof. It is obvious from (1.3) that $\operatorname{ess}(\mathcal{B}) \subseteq \operatorname{ess}(\mathcal{B}')$. Suppose γ is non-essential in \mathcal{B} but essential in \mathcal{B}' , and let $\tilde{P} = \bigcap_{\beta \in \mathcal{B} - \{\alpha, \gamma\}} \mathcal{W}_{\beta}$.

Since both α and γ are non-essential in \mathcal{B} , by (1.4) we have $\tilde{P} \cap \mathcal{W}_{\alpha} \subseteq \mathcal{W}_{\gamma}$ and $\tilde{P} \cap \mathcal{W}_{\gamma} \subseteq \mathcal{W}_{\alpha}$. By intersecting with \tilde{P} , this means $\tilde{P} \cap \mathcal{W}_{\gamma} = \tilde{P} \cap \mathcal{W}_{\alpha}$. But the assumption that γ is essential in \mathcal{B}' and (1.3) imply that $\tilde{P} \cap \mathcal{W}_{\gamma}^{C} \neq \emptyset$. Notice that \mathcal{W}_{γ} and \mathcal{W}_{α} are both half-spaces. For any two half-spaces \mathcal{W}_{1} and \mathcal{W}_{2} , if there exists an open neighborhood \mathcal{U} such that both $\mathcal{W}_{1} \cap \mathcal{U}$ and $\mathcal{W}_{1}^{C} \cap \mathcal{U}$ are non-empty and if $\mathcal{W}_{1} \cap \mathcal{U} = \mathcal{W}_{2} \cap \mathcal{U}$, then $\mathcal{W}_{1} = \mathcal{W}_{2}$. Thus, by taking $\mathcal{U} = \tilde{P}$, we have $\mathcal{W}_{\gamma} = \mathcal{W}_{\alpha}$. Finally, since all indices in \mathcal{B} are prime, $\gamma = \alpha$, a contradiction.

Now denote $\operatorname{ess} \log(P) = \{ w \in \mathbb{R}^n : \alpha \cdot w < C_\alpha, \alpha \in \operatorname{ess}(\mathcal{B}) \}$. It is obvious that

$$\log(P) = \bigcap_{\alpha \in \mathcal{B}} \mathcal{W}_{\alpha} \quad \text{and} \quad \operatorname{ess} \log(P) = \bigcap_{\alpha \in \operatorname{ess}(\mathcal{B})} \mathcal{W}_{\alpha}. \tag{1.5}$$

We would like to show the following.

LEMMA 1.5. ess log(P) = log(P).

Proof. From (1.4) and (1.5), we see that $\log(P) = \bigcap_{\beta \in \mathcal{B} - \{\alpha\}} \mathcal{W}_{\beta}$ for any non-essential index α in \mathcal{B} . And Lemma 1.4 shows that the essential indices in \mathcal{B} and \mathcal{B}' are identical, where $\mathcal{B}' = \mathcal{B} - \{\alpha\}$. By repeated application of this procedure for (finitely many times), the result follows.

From Definition 1.3, there exists an open neighborhood \mathcal{U} for each α in $\operatorname{ess}(\mathcal{B})$ such that $\mathcal{U} \cap \partial \log(P) \neq \emptyset$ and $\mathcal{U} \cap \log(P) = \mathcal{U} \cap \mathcal{W}_{\alpha}$. Thus, we can think of essential indices as normal vectors to local neighborhoods of $\partial \log(P)$.

Obviously, \mathcal{B} must contain such normal vectors. However, if we take only those normal vectors, Lemma 1.5 implies that we obtain a unique collection of indices, \mathcal{B} , which describes the monomial polyhedron P. We would like to give a name to such a collection.

DEFINITION 1.6. $\mathcal{B} \subset \mathcal{N}^n$ is a *regular index set* with respect to P if, for all $\alpha \in \mathcal{B}$, α is prime and essential in \mathcal{B} .

It is easy to see that a monomial polyhedron P uniquely corresponds to a regular index \mathcal{B} , and we will assume that \mathcal{B} is regular throughout this paper.

REMARK 1.1. Since we require P to be bounded, from (1.2) it is easy to see that $e_j = (0, ..., 0, 1, 0, ..., 0) \in \mathcal{B}$ for all j = 1, ..., n. For if not, then

 $(0, \ldots, 0, z, 0, \ldots, 0)$ satisfies all the inequalities in (1.2) for all $z \in \mathbb{C}$. Thus P would be unbounded.

Next, we would like to describe the faces of $\overline{\log(P)}$.

DEFINITION 1.7. \mathcal{F} is a face of $\overline{\log(P)}$ if there exists a subcollection \mathcal{A} of \mathcal{B} such that

$$\mathcal{F} = \mathcal{F}(\mathcal{A}) = \{ w \in \overline{\log(P)} : \alpha \cdot w = C_{\alpha} \text{ for all } \alpha \in \mathcal{A} \text{ and}$$

$$\alpha \cdot w < C_{\alpha} \text{ for all } \alpha \in \mathcal{B} - \mathcal{A} \}.$$
(1.6)

It follows from (1.6) that if A_1 and A_2 are subcollections of \mathcal{B} such that $A_1 \neq A_2$ and one of $\mathcal{F}(A_1)$ and $\mathcal{F}(A_2)$ is not empty, then $\mathcal{F}(A_1) \neq \mathcal{F}(A_2)$. Thus, for each non-empty face \mathcal{F} there corresponds an index set

$$\mathcal{A} = \mathcal{A}(\mathcal{F}) = \{ \alpha \in \mathcal{B} : \alpha \cdot w = C_{\alpha} \text{ for all } w \in \mathcal{F} \}.$$

But it follows directly from the definition that

$$\mathcal{A}(\mathcal{F}(\mathcal{A}_0)) = \mathcal{A}_0 \quad \text{and} \quad \mathcal{F}(\mathcal{A}(\mathcal{F}_0)) = \mathcal{F}_0$$
 (1.7)

once $\mathcal{F}(\mathcal{A}_0)$ and \mathcal{F}_0 are not empty. Thus, by collecting all non-empty faces and corresponding index sets as

$$\bar{\mathbb{F}} = \{ \mathcal{F} \subseteq \overline{\log(P)} : \mathcal{F} \text{ is a non-empty face } \}$$

and

$$\bar{\mathbb{A}} = \{ \mathcal{A} \subseteq \mathcal{B} : \mathcal{F}(\mathcal{A}) \text{ is non-empty } \},$$

we have the following proposition.

Proposition 1.8.

- (i) There exists a one-to-one onto map between $\bar{\mathbb{F}}$ and $\bar{\mathbb{A}}$;
- (ii) $\overline{\log(P)}$ is a disjoint union of all \mathcal{F} in \mathbb{F} .

We also need the following.

Lemma 1.9. For
$$\mathcal{F}_1, \mathcal{F}_2 \in \overline{\mathbb{F}}, \bar{\mathcal{F}}_1 = \bar{\mathcal{F}}_2$$
 if and only if $\mathcal{F}_1 = \mathcal{F}_2$.

Proof. The "if" part is obvious. For the "only if" part, first notice that for each \mathcal{F} there exists an \mathcal{A} such that (1.6) holds. But then $\bar{\mathcal{F}}$ becomes

$$\bar{\mathcal{F}} = \{ w \in \overline{\log(P)} : \alpha \cdot w = C_{\alpha} \text{ for all } \alpha \in \mathcal{A} \text{ and}$$

$$\alpha \cdot w \leq C_{\alpha} \text{ for all } \alpha \in \mathcal{B} - \mathcal{A} \}$$

$$= \bigcup_{\mathcal{A} \subseteq \mathcal{A}'} \{ w \in \overline{\log(P)} : \alpha \cdot w = C_{\alpha} \text{ for all } \alpha \in \mathcal{A}' \text{ and}$$

$$\alpha \cdot w < C_{\alpha} \text{ for all } \alpha \in \mathcal{B} - \mathcal{A}' \}$$

$$= \bigcup_{\mathcal{A} \subseteq \mathcal{A}'} \mathcal{F}(\mathcal{A}').$$

$$(1.8)$$

By Proposition 1.8(ii), this expression is a disjoint union. It follows that, if $\mathcal{F}_1 = \mathcal{F}(\mathcal{A}_1)$ and $\mathcal{F}_2 = \mathcal{F}(\mathcal{A}_2)$, then $\bar{\mathcal{F}}_1 = \bar{\mathcal{F}}_2$ implies $\mathcal{F}_1 \subseteq \bar{\mathcal{F}}_2$ and $\mathcal{F}_2 \subseteq \bar{\mathcal{F}}_1$, which implies $\mathcal{A}_1 = \mathcal{A}_2$, which in turn implies $\mathcal{F}_1 = \mathcal{F}_2$.

To make our computation manageable, we need to impose some extra conditions on our monomial polyhedrons.

DEFINITION 1.10. A monomial polyhedron P is (M, ε) -nondegenerate for some $M, \varepsilon > 0$ if all of the following conditions hold.

- (i) For all $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathcal{B}, \alpha_1 + \dots + \alpha_n \leq M$.
- (ii) For all A in $\bar{\mathbb{A}}$, the set of elements in A is linearly independent in \mathbb{R}^n .
- (iii) For all \mathcal{F} in $\overline{\mathbb{F}}$, let $\mathbf{B}_{\varepsilon}(w)$ be an Euclidean ball centered at w with radius ε , and let $\mathcal{W}_{\mathcal{F}} = \{ w : \alpha \cdot w = C_{\alpha} \text{ for all } \alpha \in \mathcal{A}(\mathcal{F}) \}$; then there exists a w in \mathcal{F} such that $\mathbf{B}_{\varepsilon}(w) \cap \mathcal{W}_{\mathcal{F}} \subset \mathcal{F}$.

Notice that, for any monomial polyhedron P, there exist $M, \varepsilon > 0$ that satisfy conditions (i) and (iii). We emphasize the roles played by M and $\varepsilon > 0$ because our result will depend on both M and ε .

In order to sum (1.1), we need to suitably decompose the index space \mathcal{N}^n . One natural way of doing so is by decomposing the index space into a finite disjoint union of convex cones generated by elements in $\bar{\mathbb{A}}$, as follows.

Let $A = \{\alpha_1, \dots, \alpha_k\} \subset \mathcal{N}^n$. We say α is a *nonnegative* combination of A if there exist $\lambda_1, \dots, \lambda_k$ and $\lambda_j \geq 0$ for all $j = 1, \dots, k$ such that $\alpha = \sum_{j=1}^k \lambda_j \alpha_j$; we say α is a *positive* combination of A if α is a nonnegative combination of A as just described while also requiring $\lambda_j > 0$ for all $j = 1, \dots, k$. We say $\Gamma(A)$ is the *open* convex cone generated by A if $\Gamma(A) = \{\alpha : \alpha \text{ is a positive combination of } A\}.$

Note that the term "open" used here is not in a traditional sense, for the set $\Gamma(A)$ is discrete. Rather, we use "open" to emphasize that this cone does not contain the boundary.

The following proposition will imply that the index space \mathcal{N}^n is a (finite) disjoint union of all open convex cones $\Gamma(\mathcal{A})$ for all \mathcal{A} in $\bar{\mathbb{A}}$.

PROPOSITION 1.11. Let P be (M, ε) -nondegenerate. Then the following are equivalent:

- (i) β in \mathcal{N}^n is a positive combination of \mathcal{A} —that is, $\beta \in \Gamma(\mathcal{A})$;
- (ii) the linear functional f_{β} defined by $f_{\beta}(w) = \beta \cdot w$, when restricted to $\overline{\log(P)}$, reaches its maximum at all points and only at points of $\overline{\mathcal{F}(A)}$.

Proof. For (i) \Rightarrow (ii), let $\mathcal{A} = \{\alpha_1, \ldots, \alpha_k\} \in \overline{\mathbb{A}}$ and assume there exist $\lambda_1, \ldots, \lambda_k > 0$ such that $\beta = \sum_{j=1}^k \lambda_j \alpha_j$. Let w be any point in $\overline{\log(P)} - \overline{\mathcal{F}(\mathcal{A})}$. From (1.8), we see that there must exist a $j \in \{1, \ldots, k\}$ such that $\alpha_j \cdot w < C_{\alpha_j}$; therefore,

$$f_{\beta}(w) = \beta \cdot w = \sum_{j=1}^{k} \lambda_j \alpha_j \cdot w < \sum_{j=1}^{k} \lambda_j C_{\alpha_j}.$$

But for $w \in \overline{\mathcal{F}(\mathcal{A})}$,

$$f_{\beta}(w) = \sum_{i=1}^{k} \lambda_{i} C_{\alpha_{i}},$$

so the result follows.

For (ii) \Rightarrow (i), first note that $\mathcal{A} = \{\alpha_1, \dots, \alpha_k\} = \{\alpha \in \mathcal{A} : \alpha \cdot w = C_\alpha \text{ for all } w \in \overline{\mathcal{F}}\}$, and that \mathcal{F} is non-empty. By Definition 1.10(ii), \mathcal{A} is linearly independent. Thus, by solving the system

$$\alpha_1 \cdot w = C_{\alpha_1}$$

$$\vdots$$

$$\alpha_k \cdot w = C_{\alpha_k},$$

we have an (n-k)-dimensional linear affine space \mathcal{W} containing \mathcal{F} . Let w_0 be a point in \mathcal{F} satisfying Definition 1.10(iii), and let $\beta_{k+1}, \ldots, \beta_n$ be a basis of $\mathcal{W} - w_0$ that is an n-k dimensional vector space. Then we can express \mathcal{W} as

$$\mathcal{W} = \left\{ w_0 + \sum_{j=k+1}^n s_j \beta_j : s_j \in \mathbb{R} \right\},\,$$

where

- (a) $w_0 + \sum_{j=k+1}^n s_j \beta_j \in \mathcal{F} = \mathcal{F}(\mathcal{A})$ for $|s_j|$ small;
- (b) $\{\alpha_1, \ldots, \alpha_k, \beta_{k+1}, \ldots, \beta_n\}$ is a linear basis.

Thus, by (b), $\beta = \sum_{j=1}^k \lambda_j \alpha_j + \sum_{j=k+1}^n \lambda_j \beta_j$. But f_β reaches its maximum at all points of $\bar{\mathcal{F}}$, and (a) implies that $\lambda_j = 0$ for $j = k+1, \ldots, n$. For if not (say, $\lambda_j > 0$ for some j > k) then we can find $w_1 = w_0 + s_j \beta_j$ where $s_j > 0$ is so small that $w_1 \in \mathcal{F}$. But then $f(w_1) > f(w_0)$, a contradiction. This means that β is a linear combination of A.

Suppose β is not a nonnegative combination of \mathcal{A} . We can assume $\beta = \sum_{j=1}^k \lambda_j \alpha_j, \ \lambda_1, \ldots, \lambda_l \geq 0$ and $\lambda_{l+1}, \ldots, \lambda_k < 0$. But we can always find w such that

$$\alpha_{1} \cdot w = C_{\alpha_{1}}$$

$$\vdots$$

$$\alpha_{l} \cdot w = C_{\alpha_{l}}$$

$$\alpha_{l+1} \cdot w < C_{\alpha_{l+1}}$$

$$\vdots$$

$$\alpha_{k} \cdot w < C_{\alpha_{k}}.$$

It is easy to see that $w \in \overline{\log(P)}$ and $f_{\beta}(w) \geq f_{\beta}(w_0)$ for $w_0 \in \mathcal{F}$, a contradiction. Finally, suppose β is not a positive combination of \mathcal{A} ; then it is a positive combination of some $\mathcal{A}' \subseteq \mathcal{A}$. By the proof of (i) \Rightarrow (ii), f_{β} reaches its maximum on $\overline{\mathcal{F}(\mathcal{A}')} \supseteq \overline{\mathcal{F}(\mathcal{A})}$, a contradiction.

Proposition 1.11 will allow us to represent all β in \mathcal{N}^n as a positive combination of a unique \mathcal{A} . We thus have the following result.

COROLLARY 1.12. \mathcal{N}^n can be decomposed into a finite disjoint union of open convex cones $\Gamma(\mathcal{A})$ for \mathcal{A} in $\bar{\mathbb{A}}$. That is,

$$\mathcal{N}^n = \bigcup_{\mathcal{A} \in \bar{\mathbb{A}}} \Gamma(\mathcal{A}).$$

Proof. For every β in \mathcal{N}^n , f_β must reach its maximum at all points of $\bar{\mathcal{F}}$ for some \mathcal{F} in $\bar{\mathbb{F}}$. By Proposition 1.11, β is in $\Gamma(\mathcal{A})$ for some \mathcal{A} in $\bar{\mathbb{A}}$. But f_β , as a linear functional, can reach its maximum on only one $\bar{\mathcal{F}}$, so \mathcal{A} is unique.

Definition 1.13. We say $A \in \bar{\mathbb{A}}$ is bounded (unbounded) if $\mathcal{F}(A)$ is bounded (unbounded).

LEMMA 1.14. Let $\mathcal{A} = \{\alpha_1, \ldots, \alpha_k\}$ and $\alpha_j = (\alpha_j^1, \ldots, \alpha_j^n)$. Then \mathcal{A} is unbounded if and only if there exists an $l \in \{1, \ldots, n\}$ such that $\alpha_j^l = 0$ for all $j = 1, \ldots, k$.

Proof. (\Rightarrow) Since P is bounded, for a face \mathcal{F} in $\overline{\log(P)}$ to be unbounded there must exist an $l \in \{1, \ldots, n\}$ such that if $w_0 = (w_0^1, \ldots, w_0^n) \in \mathcal{F}$ then

$$(w_0^1, \ldots, w^j, \ldots, w_0^n) \in \mathcal{F}$$
 for all $w^j < w_0^j$.

For Remark 1.1 shows that if P is bounded and $w = (w^1, \ldots, w^n) \in \overline{\log(P)}$, then every component w^j is bounded above. Thus, from Definition 1.7, we have $\alpha_j^l = 0$ for all $j = 1, \ldots, k$.

(\Leftarrow) From Definition 1.7, if there exists an $l \in \{1, ..., n\}$ such that $\alpha_j^l = 0$ for all i = 1, ..., k, then \mathcal{F} must be unbounded.

Let us define

$$\mathbb{F} = \{ \mathcal{F} \subseteq \overline{\log(P)} : \mathcal{F} \text{ is a non-empty bounded face } \}$$
 (1.9)

and

$$\mathbb{A} = \{ \mathcal{A} \subseteq \mathcal{B} : \mathcal{F}(\mathcal{A}) \text{ is a non-empty bounded face } \}. \tag{1.10}$$

Then we have the following.

Proposition 1.15.

$$\mathbb{N}^n = \bigcup_{\mathcal{A} \in \mathbb{A}} \Gamma(\mathcal{A}).$$

Moreover, no components of elements in $A \in \mathbb{A}$ *will be simultaneously zero.*

Proof. If $A \in \bar{\mathbb{A}} - \mathbb{A}$ then by Lemma 1.14, for all $\beta = (b^1, \ldots, b^n) \in \Gamma(A)$ there exists an $l \in \{1, \ldots, n\}$ such that $b^l = 0$,—that is $\beta \in \mathcal{N}^n - \mathbb{N}^n$. Therefore, $\Gamma(A) \subseteq \mathcal{N}^n - \mathbb{N}^n$ and

$$\bigcup_{\mathcal{A}\in\bar{\mathbb{A}}-\mathbb{A}}\Gamma(\mathcal{A})\subseteq\mathcal{N}^n-\mathbb{N}^n.$$

But for $\beta = (b^1, \ldots, b^n) \in \mathcal{N}^n - \mathbb{N}^n$ there exists an $l \in \{1, \ldots, n\}$ such that $b^l = 0$, and by Corollary 1.12 there exists an \mathcal{A} such that $\beta \in \Gamma(\mathcal{A})$. Yet this

П

means that β is a positive combination of \mathcal{A} , so if $\mathcal{A} = \{\alpha_1, \ldots, \alpha_k\}$ and $\alpha_j = (\alpha_j^1, \ldots, \alpha_j^n)$ then $\alpha_j^l = 0$ for all $j = 1, \ldots, k$. By Lemma 1.14, $\mathcal{A} \in \bar{\mathbb{A}} - \mathbb{A}$. Therefore,

$$\bigcup_{\mathcal{A}\in\bar{\mathbb{A}}-\mathbb{A}}\Gamma(\mathcal{A})\supseteq\mathcal{N}^n-\mathbb{N}^n.$$

This shows

$$\bigcup_{\mathcal{A}\in\bar{\mathbb{A}}-\mathbb{A}}\Gamma(\mathcal{A})=\mathcal{N}^n-\mathbb{N}^n.$$

Now using Corollary 1.12 again, the result follows.

2. Estimates for L^2 -norms of z^{β}

We wish to calculate the Bergman kernel for P. Since a monomial polyhedron is a Reinhardt domain, by letting $\bar{\mathbf{1}} = (1, ..., 1)$ and $\zeta_{\beta}(z) = z^{\beta}$ we have

$$K_{P}(z_{0}, w_{0}) = \sum_{\beta \in \mathcal{N}^{n}} \frac{z_{0}^{\beta} \bar{w}_{0}^{\beta}}{\|\zeta_{\beta}\|^{2}} = \sum_{\beta + \bar{\mathbf{1}} \in \mathbb{N}^{n}} \frac{z_{0}^{\beta} \bar{w}_{0}^{\beta}}{\|\zeta_{\beta}\|^{2}} = \sum_{\mathcal{A} \in \mathbb{A}} \sum_{\beta + \bar{\mathbf{1}} \in \Gamma(\mathcal{A})} \frac{z_{0}^{\beta} \bar{w}_{0}^{\beta}}{\|\zeta_{\beta}\|^{2}}.$$
 (2.1)

Note that the first summation in the last expression is a finite sum.

Let $\beta + \overline{\mathbf{1}}$ be in $\Gamma(\mathcal{A})$ for some \mathcal{A} in \mathbb{A} , and let $w_{\beta + \overline{\mathbf{1}}}$ be a point on $\mathcal{F} = \mathcal{F}(\mathcal{A})$. Define

$$S_{\beta+\bar{\mathbf{1}}}(t) = \overline{\log(P)} \cap \{ w : (\beta+\bar{\mathbf{1}}) \cdot w = (\beta+\bar{\mathbf{1}}) \cdot w_{\beta+\bar{\mathbf{1}}} - t \}.$$

Since the function $e^{2(\beta+\bar{\mathbf{I}})\cdot w}$ is a constant on $S_{\beta+\bar{\mathbf{I}}}(t)$ for fixed t, if we define $A_{\beta+\bar{\mathbf{I}}}(t)$ to be the function measuring the (n-1)-dimensional area of $S_{\beta+\bar{\mathbf{I}}}(t)$ then

$$\begin{split} \|\zeta_{\beta}\|^{2} &= \int_{P} |z^{\beta}|^{2} dV(z) \\ &= (2\pi)^{n} \int_{\log(P)} e^{2(\beta + \bar{\mathbf{1}}) \cdot w} dV(w) \\ &= \frac{(2\pi)^{n}}{\|\beta + \bar{\mathbf{1}}\|} \int_{0}^{\infty} e^{2(\beta + \bar{\mathbf{1}}) \cdot w_{\beta + \bar{\mathbf{1}}} - 2t} A_{\beta + \bar{\mathbf{1}}}(t) dt. \end{split}$$

The last equality is gained by performing a unitary change of coordinates so that $dt = d(\beta + \bar{1})$, where $\beta + \bar{1} = (\beta_1 + 1, \dots, \beta_n + 1)$.

For the convenience of discussion, let us use the following notation:

$$\begin{split} &\Omega_{\beta+\bar{\mathbf{I}}}(t) = \overline{\log(P)} \cap \{\, w : (\beta+\bar{\mathbf{I}}) \cdot w \geq (\beta+\bar{\mathbf{I}}) \cdot w_{\beta+\bar{\mathbf{I}}} - t \,\}; \\ &\Delta_{\beta+\bar{\mathbf{I}}}(\delta) = \{\, w : w = w_{\beta+\bar{\mathbf{I}}} + s \cdot (w' - w_{\beta+\bar{\mathbf{I}}}) \text{ for all } w' \in S_{\beta+\bar{\mathbf{I}}}(\delta) \text{ and } s \geq 0 \,\}; \\ &\Delta_{\beta+\bar{\mathbf{I}}}(\delta,t) = \Delta_{\beta+\bar{\mathbf{I}}}(\delta) \cap \{\, w : (\beta+\bar{\mathbf{I}}) \cdot w \geq (\beta+\bar{\mathbf{I}}) \cdot w_{\beta+\bar{\mathbf{I}}} - t \,\}. \end{split}$$

Note that $\Delta_{\beta+\bar{1}}(\delta) = \Delta_{\beta+\bar{1}}(\delta, \infty)$.

Now notice

$$\begin{split} \int_{\log(P)} &= \int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} + \int_{\log(P) - \Omega_{\beta+\bar{\mathbf{I}}}(\delta)}, \\ \int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} &\geq \int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta,\delta)}, \quad \text{and} \quad \int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta) - \Delta_{\beta+\bar{\mathbf{I}}}(\delta,\delta)} &\geq \int_{\log(P) - \Omega_{\beta+\bar{\mathbf{I}}}(\delta)}. \end{split}$$

The inequalities are obtained from

$$\Omega_{\beta+\bar{\mathbf{1}}}(\delta) \supseteq \Delta_{\beta+\bar{\mathbf{1}}}(\delta,\delta) \quad \text{and} \quad \Delta_{\beta+\bar{\mathbf{1}}}(\delta) - \Delta_{\beta+\bar{\mathbf{1}}}(\delta,\delta) \supseteq \log(P) - \Omega_{\beta+\bar{\mathbf{1}}}(\delta),$$

which in turn are results of the convexity of $\log(P)$. The first inclusion is easy to show. For the second inclusion, suppose $w \in \log(P) - \Omega_{\beta+\bar{\mathbf{1}}}(\delta)$; the line segment between w and $w_{\beta+\bar{\mathbf{1}}}$ must be in $\log(P)$, which intersects $S_{\beta+\bar{\mathbf{1}}}(\delta)$ at one point. Thus w is a point in $\Delta_{\beta+\bar{\mathbf{1}}}(\delta)$, but it cannot be in $\Delta_{\beta+\bar{\mathbf{1}}}(\delta,\delta)$. The result follows.

If we can show there exists a constant $c = c(\delta) > 0$ such that

$$\int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta,\delta)} \ge c \int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta)-\Delta_{\beta+\bar{\mathbf{I}}}(\delta,\delta)},\tag{2.2}$$

then by

$$\left(1+\frac{1}{c}\right)\int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} \geq \int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} + \int_{\log(P)-\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} = \int_{\log(P)} \geq \int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)}$$

we have

$$\int_{\log(P)} \approx \int_{\Omega_{\beta+\bar{1}}(\delta)}.$$
 (2.3)

To prove (2.2), we will instead show that there exists a constant c > 0 such that

$$\int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta,\delta)} \ge c \int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta)}.$$

In general, however,

$$\begin{split} \int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta,s)} e^{2(\beta+\bar{\mathbf{I}})\cdot w} \, dV(w) &= \int_0^s e^{2(\beta+\bar{\mathbf{I}})\cdot w_{\beta+\bar{\mathbf{I}}}-2t} A_{\beta+\bar{\mathbf{I}}}(\delta) \left(\frac{t}{\delta}\right)^{n-1} dt \\ &= \frac{e^{2(\beta+\bar{\mathbf{I}})\cdot w_{\beta+\bar{\mathbf{I}}}} A_{\beta+\bar{\mathbf{I}}}(\delta)}{\delta^{n-1}} \int_0^s e^{-2t} t^{n-1} \, dt. \end{split}$$

Set

$$f(s) = \int_0^s e^{-2t} t^{n-1} dt$$

and observe that

$$f(\delta) > \frac{(n-1)!}{2^n} \cdot \frac{(2\delta)^n}{e^{2\delta} \cdot n!}$$
 and $\lim_{s \to \infty} f(s) = \frac{(n-1)!}{2^n}$.

With $c(\delta) = (2\delta)^n/(e^{2\delta} \cdot n!)$, we have

$$\int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta,\delta)} e^{2(\beta+\bar{\mathbf{I}})\cdot w} \, dV(w) > c(\delta) \int_{\Delta_{\beta+\bar{\mathbf{I}}}(\delta)} e^{2(\beta+\bar{\mathbf{I}})\cdot w} \, dV(w).$$

Therefore, by (2.3), we can state the following proposition.

PROPOSITION 2.1. With $c = c(\delta) = (2\delta)^n/(e^{2\delta} \cdot n!)$, we have

$$\int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} e^{2(\beta+\bar{\mathbf{I}})\cdot w} \, dV(w) \le \|z^{\beta}\|^2 \le \left(1+\frac{1}{c}\right) \int_{\Omega_{\beta+\bar{\mathbf{I}}}(\delta)} e^{2(\beta+\bar{\mathbf{I}})\cdot w} \, dV(w). \quad (2.4)$$

Moreover.

$$\int_{\Omega_{\beta+\bar{1}}(\delta)} e^{2(\beta+\bar{1})\cdot w} \, dV(w) = \frac{e^{2(\beta+\bar{1})\cdot w_{\beta+\bar{1}}}}{\|\beta+\bar{1}\|} \int_0^\delta e^{-2t} A_{\beta+\bar{1}}(t) \, dt. \tag{2.5}$$

Notice that Proposition 2.1 is true for all Reinhardt domains, not necessarily monomial polyhedrons.

In order to sum (2.1) we must take a closer look at $A_{\beta+\bar{1}}(t)$ for $t \in [0, \delta]$, where $\delta = \delta(M, \varepsilon)$ will be determined later, and apply certain elementary linear algebraic computation to carry out a formula for $A_{\beta+\bar{1}}(t)$ and thus $\|z^{\beta}\|^2$. Here we will make use of the properties of monomial polyhedra and Definition 1.10 of (M, ε) -nondegeneracy.

Let $\beta + \bar{\mathbf{1}} \in \Gamma(\mathcal{A})$ for some $\mathcal{A} = \{\alpha_1, \dots, \alpha_k\}$ in \mathbb{A} , let $\mathcal{F} = \mathcal{F}(\mathcal{A})$, and assume that $A^{n-k}(\mathcal{F})$ is the area of \mathcal{F} measured as an (n-k)-dimensional object. Notice that $A^{n-k}(\mathcal{F})$ is never zero (by the definition of (M, ε) -nondegeneracy) whereas $A_{\beta+\bar{\mathbf{1}}}(0)$, measuring the same face \mathcal{F} as a (n-1)-dimensional object, is usually zero unless $|\mathcal{A}(\mathcal{F})| = 1$.

Our purpose for the rest of this section is to show that

$$A_{\beta+\bar{\mathbf{1}}}(t) \approx \frac{\|\beta+\bar{\mathbf{1}}\|t^{k-1}\cdot A^{n-k}(\mathcal{F})}{\lambda_1\cdots\lambda_k}.$$

Combining (2.4) and (2.5), this implies

$$\|\zeta_{\beta}\|^2 = \int_P |z^{\beta}|^2 dV(z) \approx \frac{e^{2(\beta+\bar{1}) \cdot w_{\beta+\bar{1}}} \cdot A^{n-k}(\mathcal{F})}{\lambda_1 \cdots \lambda_k},$$

where the ratio depends only on M, ε , and n.

First let us simplify the domain. Let

$$\mathbb{A}(\mathcal{A}) = \{ \mathcal{A}' \in \mathbb{A} : \mathcal{A} \subset \mathcal{A}' \}$$

and

$$\mathcal{B}(\mathcal{A}) = \bigcup_{\mathcal{A}' \in \mathbb{A}(\mathcal{A})} \mathcal{A}' = \{\alpha_1, \ldots, \alpha_k, \alpha_{k+1}, \ldots, \alpha_{k+m}\}.$$

Notice that the boundary of $\mathcal{F}(\mathcal{A})$ is a union of all faces $\mathcal{F}(\mathcal{A}')$, where $\mathcal{A} \subsetneq \mathcal{A}' \in \mathbb{A}(\mathcal{A})$.

By a unitary change of coordinates, we can assume $\alpha_j = (\alpha_{j,1}, \ldots, \alpha_{j,j}, 0, \ldots, 0)$ for $j = 1, \ldots, k$. Thus \mathcal{F} will be defined by

$$\alpha_{1} \cdot w = 0$$

$$\vdots$$

$$\alpha_{k} \cdot w = 0$$

$$\alpha_{k+1} \cdot w < C_{1}$$

$$\vdots$$

$$\alpha_{k+m} \cdot w < C_{m},$$

and log(P) around \mathcal{F} will be defined by

$$\alpha_{1} \cdot w < 0$$

$$\vdots$$

$$\alpha_{k} \cdot w < 0$$

$$\alpha_{k+1} \cdot w < C_{1}$$

$$\vdots$$

$$\alpha_{k+m} \cdot w < C_{m}.$$

By writing all elements x in \mathbb{R}^n into x' in \mathbb{R}^k and x'' in \mathbb{R}^{n-k} , where x' consists of the first k components while x'' consists of the rest, we can see that

$$\alpha_1 \cdot w = \alpha'_1 \cdot w'$$

$$\vdots$$

$$\alpha_k \cdot w = \alpha'_k \cdot w'$$

and that $\Omega_{\beta+\bar{1}}(t)$, for $t \in [0, \delta]$, is defined by

$$(\beta + \bar{\mathbf{1}})' \cdot w' > -t$$

$$\alpha'_{1} \cdot w' < 0$$

$$\vdots$$

$$\alpha'_{k} \cdot w' < 0$$
(2.6)

and

$$\alpha_{k+1}'' \cdot w'' < C_1 - \alpha_{k+1}' \cdot w'$$

$$\vdots$$

$$\alpha_{k+m}'' \cdot w'' < C_m - \alpha_{k+m}' \cdot w'.$$

$$(2.7)$$

Note that $(\beta + \overline{\mathbf{1}}) \cdot w = (\beta + \overline{\mathbf{1}})' \cdot w'$.

For each w' satisfying (2.6), define $\mathcal{W}(w') = \{w'' : (w', w'') \in \log(P)\}$. We know that when w' = 0, the set of all possible w'' satisfying system (2.7) (i.e., $\mathcal{W}(0)$) is exactly \mathcal{F} , and we want to understand by how much the volume of $\mathcal{W}(w')$ can vary when w' changes.

The possible values that w' can take are controlled only by the system of inequalities (2.6) for $t \in [0, \delta]$, which defines a k-simplex. Since all inequalities involved in (2.7) are linear, we know the maximal change of the volume of $\mathcal{W}(w')$ happens on the extreme points of the k-simplex defined by (2.6) with $t \in [0, \delta]$.

The extreme points are either 0 or the solution to the system of equations

$$\alpha'_{1} \cdot (w^{j})' = 0$$

$$\vdots$$

$$\alpha'_{j-1} \cdot (w^{j})' = 0$$

$$(\beta + \bar{\mathbf{1}})' \cdot (w^{j})' = -t$$

$$\alpha'_{j+1} \cdot (w^{j})' = 0$$

$$\vdots$$

$$\alpha'_{k} \cdot (w^{j})' = 0$$

for j = 1, ..., k. By plugging in $\beta + \bar{\mathbf{1}} = \sum_{j=1}^{k} \lambda_j \alpha_j$ and writing $[\alpha]_k = [\alpha_{i,j}]$, i, j = 1, ..., k, we have a unique solution

$$(w^j)' = [\alpha]_k^{-1} \left(\frac{-t}{\lambda_j}\right) e_j, \text{ where } e_j = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}.$$

But plugging this information back into

$$\alpha''_{k+1} \cdot w'' < C_1 - \alpha'_{k+1} \cdot w'$$

$$\vdots$$

$$\alpha''_{k+m} \cdot w'' < C_m - \alpha'_{k+m} \cdot w'$$

(system (2.7)) when $\alpha'_{k+i} = \sum_{j=1}^{k} \lambda_{i,j} \alpha_j$, we have

$$\alpha'_{k+i} \cdot (w^j)' = \frac{-t\lambda_{i,j}}{\lambda_j}.$$

Thus, for all $j = 1, \ldots, k$,

$$\alpha''_{k+1} \cdot w'' < C_1 + t\lambda_{1,j}/\lambda_j$$

$$\vdots$$

$$\alpha''_{k+m} \cdot w'' < C_m + t\lambda_{m,j}/\lambda_j$$

Notice that α has positive integer components in the original coordinates and, by Definition 1.10(i), the sum of components of α is less than M. Hence λ_j is positive and bounded away from 0 by a constant depending only on M, and $\lambda_{i,j}$ is positive and bounded by M. Thus there exist C = C(M) > 0 such that

$$\left|\frac{\lambda_{i,j}}{\lambda_i}\right| < C(M), \quad i = 1, \dots, m, \quad j = 1, \dots, k.$$

Next, using Definition 1.10(iii) on \mathcal{F} (where \mathcal{F} can be expressed by the system (2.7) when w'=0) and taking $w''=\varepsilon\cdot\alpha_{k+i}''/\|\alpha_{k+i}''\|$, since $\|w''\|=\varepsilon$ and $w''\in\bar{\mathcal{F}}$ we have $\varepsilon\cdot\|\alpha_{k+i}''\|\leq C_i$. But $\|\alpha_{k+i}''\|\geq c$ for some c=c(M)>0. Therefore, $C_i\geq\varepsilon\cdot c(M)$.

Now set $\delta = \varepsilon c(M)/2C(M)$, define $\mathcal{F}_d = \{ w'' \in \mathbb{R}^{n-k} : \alpha''_{k+i} \cdot w'' < d \cdot C_i, i = 1, \ldots, m \}$, and define $L_{\beta+\bar{\mathbf{1}}}(t) = \{ w' \in \mathbb{R}^n : \alpha'_j \cdot w' < 0 \text{ for } j = 1, \ldots, k \text{ and } (\beta+\bar{\mathbf{1}})' \cdot w' = -t \}$. First, notice $\mathcal{F} = \mathcal{F}_1$. We also have

$$L_{\beta+\bar{\mathbf{I}}}(t)\times\mathcal{F}_{1/2}\subseteq S_{\beta+\bar{\mathbf{I}}}(t)\subseteq L_{\beta+\bar{\mathbf{I}}}(t)\times\mathcal{F}_2\quad\text{for }t\in[0,\delta]. \tag{2.8}$$

Now let $P_{\beta+\bar{1}}(\delta) = \bigcup_{t \in [0,\delta]} L_{\beta+\bar{1}}(t)$. Then $P_{\beta+\bar{1}}(\delta)$ is a k-simplex with extreme points at 0 and $(w^j)'$ for $j=1,\ldots,k$, where $(w^j)'=[\alpha]_k^{-1}(-t/\lambda_j)e_j$. But for any k-simplex with extreme points at 0 and $a_i=(a_{i,j}),\ i,j=1,\ldots,k$, the volume is exactly $\frac{1}{k!}$ det $[a_{i,j}]$. Thus, the volume of $P_{\beta+\bar{1}}(t)$ is

$$A^{k}(P_{\beta+\bar{1}}(t)) = \frac{t^{k}}{k! \cdot \det[\alpha]_{k} \cdot \lambda_{1} \cdots \lambda_{k}}.$$

However,

$$A^{k}(P_{\beta+\bar{\mathbf{1}}}(t)) = \frac{1}{\|\beta+\bar{\mathbf{1}}\|} \int_{0}^{t} A^{k-1}(L_{\beta+\bar{\mathbf{1}}}(\eta)) d\eta.$$

By taking derivatives with respect to t on both ends of the preceding equations, we have the volume of $L_{\beta+\bar{1}}(t)$ as

$$A^{k-1}(L_{\beta+\bar{\mathbf{1}}}(t)) = \frac{\|\beta + \bar{\mathbf{1}}\| \cdot t^{k-1}}{(k-1)! \cdot \det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k}.$$

Also note that

$$A^{n-k}(\mathcal{F}_d) = d^{n-k} \cdot A^{n-k}(\mathcal{F}_1), \text{ where } \mathcal{F}_1 = \mathcal{F}.$$

Thus, by (2.8), for $t \in [0, \delta]$ we have

$$\begin{split} \frac{2^{-n} \cdot \|\beta + \bar{\mathbf{1}}\| \cdot t^{k-1} \cdot A^{n-k}(\mathcal{F})}{(k-1)! \cdot \det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k} &\leq A_{\beta + \bar{\mathbf{1}}}(t) \\ &\leq \frac{2^n \cdot \|\beta + \bar{\mathbf{1}}\| \cdot t^{k-1} \cdot A^{n-k}(\mathcal{F})}{(k-1)! \cdot \det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k} \end{split}$$

or simply

$$A_{\beta+\bar{\mathbf{1}}}(t) \approx \frac{\|\beta+\bar{\mathbf{1}}\| \cdot t^{k-1} \cdot A^{n-k}(\mathcal{F})}{(k-1)! \cdot \det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k},\tag{2.9}$$

where the ratio depends only on the total dimension n.

Combining (2.4), (2.5), and (2.9) with $\zeta_{\beta}(z) = z^{\beta}$, we have

$$\begin{split} \|\zeta_{\beta}\|^2 &\approx \frac{e^{2(\beta+\bar{\mathbf{I}})\cdot w_{\beta+\bar{\mathbf{I}}}}\cdot A^{n-k}(\mathcal{F})}{(k-1)!\cdot \det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k} \int_0^{\delta} e^{-2t} t^{k-1} dt \\ &\approx \frac{e^{2(\beta+\bar{\mathbf{I}})\cdot w_{\beta+\bar{\mathbf{I}}}}\cdot A^{n-k}(\mathcal{F})}{\det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k}, \end{split}$$

where the first approximation depends only on n while the second approximation depends on n and δ , which in turn is defined as a function of M and ε .

Let us summarize in the form of a proposition.

PROPOSITION 2.2. Let $\log(P)$ be (M, ε) -nondegenerate. For any β in \mathbb{N}^n , there exists a unique A in A such that $\beta + \overline{\mathbf{1}}$ is in $\Gamma(A)$. For any $w_{\beta + \overline{\mathbf{1}}}$ in $\mathcal{F} = \mathcal{F}(A)$ we have, with the ratio depending on M, ε , and n,

$$||z^{\beta}||^2 \approx \frac{e^{2(\beta + \bar{\mathbf{I}}) \cdot w_{\beta + \bar{\mathbf{I}}}} \cdot A^{n-k}(\mathcal{F})}{\det[\alpha]_k \cdot \lambda_1 \cdots \lambda_k},$$

where $A^{n-k}(\mathcal{F})$ is the (n-k)-dimensional volume of \mathcal{F} . When k=n, $A^0(\mathcal{F})=1$.

REMARK 2.1. Because $(\beta + \bar{1}) \cdot w$ is constant for w in \mathcal{F} , it does not matter which $w_{\beta + \bar{1}}$ we choose in \mathcal{F} for Proposition 2.2. Also, the log term we usually see in the Bergman kernel will come out naturally from the calculation of the term $A^{n-k}(\mathcal{F})$ when k < n.

3. Estimate for the Bergman Kernel on a Diagonal

Using (2.1) on the diagonal with $\zeta_{\beta}(z) = z^{\beta}$, we have

$$K_P(z_0, z_0) = \sum_{\mathcal{A} \in \mathbb{A}} \sum_{\beta + \bar{1} \in \Gamma(\mathcal{A})} \frac{|z_0^{\beta}|^2}{\|\xi_{\beta}\|^2}.$$
 (3.1)

The first summation is a finite sum, for there are only finitely many A in A. We want to express the second one as a finite sum, too, by considering the fundamental set $\mathcal{U}(A)$ of the open cone $\Gamma(A)$, where

$$\mathcal{U}(\mathcal{A}) = \Gamma(\mathcal{A}) \cap \left\{ \alpha : \alpha = \sum_{j=1}^{k} \lambda_j \alpha_j, \ 0 < \lambda_j \le 1 \right\}.$$

Notice that $\mathcal{U}(\mathcal{A})$ contains only finitely many indices, and that the open cone $\Gamma(\mathcal{A})$ can be decomposed into the fundamental set $\mathcal{U}(\mathcal{A})$ and its integral multiple translations $\mathcal{U}_{(m_1,\ldots,m_n)}(\mathcal{A})$, where

$$\mathcal{U}_{(m_1,\ldots,m_k)}(\mathcal{A}) = \sum_{i=1}^k m_j \alpha_j + \mathcal{U}(\mathcal{A})$$

for $m_j = 0, 1, 2, \ldots$ $(j = 1, \ldots, k)$. That is, for $\beta + \bar{\mathbf{1}} \in \Gamma(A)$, there exist non-negative integers m_1, \ldots, m_k and nonnegative numbers $\lambda_1, \ldots, \lambda_k$ such that $0 < \lambda_j \le 1$ and

$$\beta + \bar{\mathbf{1}} = \sum_{j=1}^{k} (m_j + \lambda_j) \alpha_j.$$

But notice that, since all components in $\beta + \bar{1}$ take positive integer values and the sum of components for all elements in A is bounded by M, the value for λ_j (j = 1, ..., k) is bounded away from 0 where the lower bound depends only on M. Thus we have, with the ratio depending only on M,

$$m_j + \lambda_j \approx m_j + 1.$$

By letting $w_0 = \log |z_0|$ and $z_{\mathcal{F}} = e^{w_{\mathcal{F}}}$, where $w_{\mathcal{F}}$ is any point on $\mathcal{F} = \mathcal{F}(\mathcal{A})$, we have

$$\begin{split} \sum_{\beta+\bar{\mathbf{I}}\in\Gamma(\mathcal{A})} \frac{|z_{0}^{\beta}|^{2}}{\|z^{\beta}\|^{2}} \\ &\approx \sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{k}=0}^{\infty} \sum_{\beta+\bar{\mathbf{I}}\in\mathcal{U}(\mathcal{A})} \frac{(m_{1}+1)\cdots(m_{k}+1)\cdot \left|z_{0}^{\beta+\sum_{j=1}^{k}m_{j}\alpha_{j}}\right|^{2}}{\left|z_{\mathcal{F}}^{(\beta+\bar{\mathbf{I}})+\sum_{j=1}^{k}m_{j}\alpha_{j}}\right|^{2}\cdot A^{n-k}(\mathcal{F})} \\ &\approx \prod_{j=1}^{k} \left(\sum_{m=0}^{\infty} (m+1)e^{2m\alpha_{j}\cdot(w_{0}-w_{\mathcal{F}})}\right)\cdot \sum_{\beta+\bar{\mathbf{I}}\in\mathcal{U}(\mathcal{A})} \frac{|z_{0}^{\beta}|^{2}}{\|z^{\beta}\|^{2}} \\ &= \prod_{j=1}^{k} \frac{1}{(1-e^{2\alpha_{j}\cdot(w_{0}-w_{\mathcal{F}})})^{2}}\cdot \sum_{\beta+\bar{\mathbf{I}}\in\mathcal{U}(\mathcal{A})} \frac{|z_{0}^{\beta}|^{2}}{\|z^{\beta}\|^{2}} \\ &= \prod_{j=1}^{k} \frac{1}{(1-|(z_{0}/z_{\mathcal{F}})^{\alpha_{j}}|^{2})^{2}}\cdot \sum_{\beta+\bar{\mathbf{I}}\in\mathcal{U}(\mathcal{A})} \frac{|z_{0}^{\beta}|^{2}}{\|z^{\beta}\|^{2}} \\ &\approx \prod_{j=1}^{k} \frac{1}{(1-|(z_{0}/z_{\mathcal{F}})^{\alpha_{j}}|)^{2}}\cdot \sum_{\beta+\bar{\mathbf{I}}\in\mathcal{U}(\mathcal{A})} \frac{|z_{0}^{\beta}|^{2}}{\|z^{\beta}\|^{2}}. \end{split}$$

Finally by (3.1), we have the following result.

THEOREM 3.1. Let P be an (M, ε) -nondegenerate bounded monomial polyhedron, and let $\zeta_{\beta}(z) = z^{\beta}$. Then for $A = \{\alpha_1, \ldots, \alpha_k\}$ we have

$$K_P(z_0, z_0) \approx \sum_{\mathcal{A} \in \mathbb{A}} \left(\prod_{j=1}^k \frac{1}{(1 - |(z_0/z_{\mathcal{F}})^{\alpha_j}|)^2} \cdot \sum_{\beta + \bar{\mathbf{1}} \in \mathcal{U}(\mathcal{A})} \frac{|z_0^{\beta}|^2}{\|\zeta_{\beta}\|^2} \right),$$
 (3.2)

with the ratio depending only on M, ε , and n. That is, there exist constants $C = C(M, \varepsilon, n)$ and $c = c(M, \varepsilon, n)$ such that C > c > 0 and the Bergman kernel for P can be estimated as

$$c \cdot \sum_{\mathcal{A} \in \mathbb{A}} \left(\prod_{j=1}^{k} \frac{1}{(1 - |(z_0/z_{\mathcal{F}})^{\alpha_j}|)^2} \cdot \sum_{\beta + \bar{\mathbf{1}} \in \mathcal{U}(\mathcal{A})} \frac{|z_0^{\beta}|^2}{\|\zeta_{\beta}\|^2} \right) \\ \leq K_P(z_0, z_0) \\ \leq C \cdot \sum_{\mathcal{A} \in \mathbb{A}} \left(\prod_{j=1}^{k} \frac{1}{(1 - |(z_0/z_{\mathcal{F}})^{\alpha_j}|)^2} \cdot \sum_{\beta + \bar{\mathbf{1}} \in \mathcal{U}(\mathcal{A})} \frac{|z_0^{\beta}|^2}{\|\zeta_{\beta}\|^2} \right),$$

where $\log |z_{\mathcal{F}}| \in \mathcal{F} = \mathcal{F}(\mathcal{A})$.

Remark 3.1. $|z_{\mathcal{F}}^{\alpha_j}|$ does not depend on the choice of $z_{\mathcal{F}}$ as long as $\log|z_{\mathcal{F}}| \in \mathcal{F}(\mathcal{A})$ and $\alpha_i \in \mathcal{A}$.

References

- [1] J. Bruna, A. Nagel, and S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. (2) 127 (1988), 333-365.
- [2] D. Catlin, Boundary invariants of pseudoconvex domain, Ann. of Math. (2) 120 (1984), 529–586.
- [3] ———, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429–466.
- [4] D. C. Chang, A. Nagel, and E. M. Stein, *Estimates for the* $\bar{\partial}$ -Neumann problem in pseudoconvex domains of finite type in \mathbb{C}^2 , Acta Math. 169 (1992), 153–228.
- [5] J. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), 615–637.
- [6] L. Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland, Amsterdam, 1990.
- [7] J. McNeal, Boundary behavior of the Bergman kernel function in \mathbb{C}^2 , Duke Math. J. 58 (1989), 499–512.
- [8] ——, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), 108–139.
- [9] A. Nagel, J. P. Rosay, E. M. Stein, and S. Wainger, *Estimates for the Bergman and Szegö kernels in* \mathbb{C}^2 , Ann. of Math. (2) 129 (1989), 113–149.

Department of Computer Sciences Purdue University Lafayette, IN 47907-1398

tiaoch@cs.purdue.edu