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1. Introduction

The investigation of commutative operator algebras by means of function space
techniques is due to M. H. Stone [7]. The notion of a space such that the closure
of every open setG, clos(G), is open (thus, clos(G) is clopen) was introduced by
Stone in [8]. Such spaces are calledextremely disconnected.Extremely discon-
nected spaces are also characterized as those topological spacesX for which (i) the
interior of a closed subsetF of X, int(F ), is clopen, or (ii) disjoint open subsets
of X have disjoint closures. A compact Hausdorff extremely disconnected space
X is also known as aStonean space.If A is an abelian von Neumann algebra then
A is isomorphic withC(X), whereX is a Stonean space (see [5, Thm. 5.2.1]).

In [4] (and [5]), Kadison studies a class of unbounded continuous complex-
valued (real-valued) functions on an extremely disconnected spaceX (callednor-
mal functionsandself-adjoint functionsand denoted byN(X) andS(X), respec-
tively), and he proves thatN(X) is an algebra [4, Thm. 2.11]. Starting with an
abelian von Neumann algebraA, Kadison introducesN(A), the algebra of (nor-
mal) operators affiliated withA andS(A), the algebra of self-adjoint operators
affiliated withA [4, Thm. 3.3], extending the isomorphism ofA with C(X) to
a ∗-isomoprhism ofN(A) ontoN(X) [4, Thm. 4.1]. In this direction, one is en-
abled to obtain the spectral theorem for self-adjoint and normal operators (see
also [2]).

In this article, we present a closely related approach to the study ofN(X), S(X),

and the spectral theorem for unbounded self-adjoint operators. We begin in Sec-
tion 2 with a theorem (Theorem 2.1) on continuous extensions from open dense
subsets of extremely disconnected spaces (see also [3, p. 96]). Theorem 2.1 leads
to a substantial simplification of the proof thatN(X) is an algebra, and it plays a
key role in our development. We continue, in Section 3, with a discussion on the
spectral analysis of a function inS(X), and we give an alternative proof of the
fact thatS(X) is a boundedly complete lattice. In Section 4 we prove the spec-
tral theorem and characterizations of the spectrum and the spectral projections for
unbounded self-adjoint operators.

Received September 23, 1997. Revision received January 5, 1998.
Michigan Math. J. 46 (1999).

39



40 Fot ios C. Pal iogianni s

2. N(X ) and S(X )

Theorem 2.1. LetX be an extremely disconnected space, and letY be a com-
pact Hausdorff space. Suppose thatU is an open dense subset ofX. If f : U →
Y is a continuous function, thenf has a unique continuous extensionf̃ onX.

Proof. The uniqueness is clear, since if two continuous functions agree on a dense
subset then they agree everywhere.

We prove the existence. For eachy ∈ Y, letAy =
⋂
G∈Ny f

−1(G) (closure de-
notes the closure inX), whereNy = {G : G is open inY, y ∈G }. Clearly,Ay is
a closed (possibly empty) subset ofX for all y ∈ Y.

Now, if x ∈ X then there is a net{xd} in U such thatxd → x. SinceY is
compact, the net{f(xd)} has a cluster point, sayy, in Y. We claim thatx ∈Ay.

If x /∈ Ay, then there is an open setG in Y such thaty ∈ G andx /∈ f −1(G).

Hence there exists ad0 such that, ford ≥ d0, xd /∈ f −1(G). In particular, ford ≥
d0 we havef(xd) /∈G. SinceG is a neighborhood ofy andy is a cluster point for
{f(xd)}, this is a contradiction. Thus,x ∈Ay.

We definef̃ (x) = y for x ∈ Ay. This is well-defined; for ify1 6= y2 then
Ay1 ∩ Ay2 = ∅. To see this, supposey1 6= y2. Then there exist open disjoint sets
G1,G2 in Y with y1∈G1 andy2 ∈G2. Hence,f −1(G1) andf −1(G2) are disjoint
and open inU. Therefore, they are disjoint and open inX. SinceX is extremely
disconnected, their closures are disjoint as well. Thus,Ay1 ∩ Ay2 = ∅.

To see thatf̃ (x) = f(x) for all x ∈U, letD be any directed set and takexd =
x for all d ∈ D. Thenf(xd) = f(x) andf(xd) → f(x), sox ∈ Af(x). Hence,
f̃ (x) = f(x).

It remains to show the continuity of̃f . Let F be any closed subset ofY and
NF = {G : G is open inY andF ⊆ G }.We claim thatf̃ −1(F ) =⋂G∈NF f

−1(G)

(which immediately gives the continuity of̃f ). In fact, ifx ∈ f̃ −1(F ) thenf̃ (x) =
y ∈F. Hencex ∈Ay ⊆

⋂
G∈NF f

−1(G).

Conversely, ifx /∈ f̃ −1(F ) thenf̃ (x) = y /∈ F. ChooseG1,G2 disjoint open
sets inY such thaty ∈G1 andF ⊆ G2. The same argument as before gives that
f −1(G1) andf −1(G2) are disjoint. Therefore,Ay ∩

⋂
G∈NF f

−1(G) = ∅. Since

x ∈Ay, we havex /∈⋂G∈NF f
−1(G).

Let Ċ = C ∪ {∞} denote the one-point compactification of the complex planeC
andR̈ = [−∞,+∞] the two-point compactification of the real lineR.

Definition. LetX be a Stonean space. A continuous functionf : X→ Ċ, such
thatUf = { x : f(x) 6= ∞ } is (open) dense inX, is called anormal functionon
X. We denote byN(X) the set of normal functions onX.

A continuous functionf : X→ R̈, such thatUf = { x : −∞ < f(x) < +∞}
is (open) dense inX, is called aself-adjoint functiononX. We denote byS(X)
the set of self-adjoint functions onX.
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Let f ∈ N(X). We definef ∗ to be the unique element ofN(X) that extendsf̄
defined onUf .

Proposition 2.2. N(X) is a ∗-algebra containingC(X), andS(X) is the sub-
algebra of self-adjoint elements ofN(X).

Proof. By definition off ∗, f ∗ ∈N(X) wheneverf ∈N(X).
To see thatN(X) is an algebra, suppose thatf andg are inN(X). WriteUf =
{ x : f(x) 6= ∞ } andUg = { x : g(x) 6= ∞ }. ThenUf ∩Ug is open and dense in
X, and bothf +g andfg are defined and continuous onUf ∩Ug. By Theorem 2.1,
f +g andfg both have unique continuous extensions onX, f +̇g andf ·g, respec-
tively. Now it is easy to see that, with these operations(+̇ and·), N(X) becomes
an algebra with the constant function 1 as unit andC(X) as a subalgebra.

It is also easy to see that, forf ∈N(X), f = f ∗ iff there is a uniqueg ∈ S(X)
such thatf = θ B g, whereθ : R̈→ Ċ is defined by

θ(λ) =
{
λ if λ∈R,

∞ if λ = ±∞.
ThusS(X) is the subalgebra of self-adjoint elements(f ∗ = f ) of N(X).

Note thatf is invertible inN(X) precisely when 1/f makes sense on a dense open
set ofX, iff int { x : f(x) = 0 } = ∅. Note also that, iff ∈N(X) ande is a projec-
tion inC(X)—that is,e = XG (the characteristic function ofG) with G a clopen
set inX—then

f · e(x) =
{
f(x) if x ∈G,
0 if x /∈G.

3. The Spectral Analysis of a Self-Adjoint Function

For real-valued functionsf, g in C(X), we will write f ≤ g if f(x) ≤ g(x) for
all x ∈ X. Let {fα}α∈� be a collection of real-valued functions inC(X). We de-
note by

∨
α∈� fα the l.u.b.{ fα : α ∈� }, that is,

∨
α∈� fα = f is such thatfa ≤

f for all α ∈ �, and if fα ≤ g for all α ∈ � thenf ≤ g. Similarly,
∧

α∈� fα
denotes the g.l.b.{ fα : α ∈� }.
Definition. Let {eλ}λ∈R be a collection of projections inC(X) andGλ =
{ x ∈ X : eλ(x) = 1}. The family {eλ}λ∈R is called aresolutionof the iden-
tity in C(X) if

(i)
∨
λ∈R eλ = 1 ⇐⇒ clos

(⋃
λ∈R Gλ

) = X,
(ii)

∧
λ∈R eλ = 0 ⇐⇒ int

(⋂
λ∈R Gλ

) = ∅,
(iii)

∧
µ>λ eµ = eλ ⇐⇒ int

(⋂
µ>λGµ

) = Gλ for all λ∈R.

Clearly, condition (iii) implies that{eλ}λ∈R is monotonic inλ.

Proposition 3.1. There is a bijective correspondence betweenS(X) and the
collection of all resolutions of the identity inC(X).
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Proof. Given anyϕ ∈ S(X), if Gλ = int{ x : ϕ(x) ≤ λ } for λ∈R, theneλ = XGλ
defines a resolution of the identity inC(X).

Moreover,Gλ = int{ x : ϕ(x) ≤ λ } is equivalent to{ x : ϕ(x) < λ } ⊆ Gλ ⊆
{ x : ϕ(x) ≤ λ },which in turn is equivalent toϕ · (1−eλ) ≥ λ(1−eλ) andϕ ·eλ ≤
λeλ for all λ∈R.

Conversely, let{eλ}λ∈R be any resolution of the identity inC(X), and letGλ =
{ x : eλ(x) = 1}. Define the functionϕ : X→ R̈ by

ϕ(x) =

+∞ on

(⋃
λGλ

)c
,

−∞ on
⋂

λGλ,

sup{ λ : x /∈Gλ } = inf { λ : x ∈Gλ } on
⋃
λGλ ∼

⋂
λGλ.

It is easy to see thatϕ as defined satisfies the condition{ x : ϕ(x) < λ } ⊆ Gλ ⊆
{ x : ϕ(x) ≤ λ } for all λ∈R, and this condition determinesϕ uniquely.

We now show thatϕ is continous. Supposeϕ(x0) = +∞. Let R be any pos-
itive real number. Choose anyλ > R. Thenx0 ∈ (Gλ)c and for allx ∈ (Gλ)c
we haveϕ(x) ≥ λ > R. Thus,U = (Gλ)c is an open neighborhood ofx0, and
ϕ(U) ⊆ (R,+∞]. Similarly, supposeϕ(x0) = −∞. Given anyR > 0, choose
λ < −R. ThenU = Gλ is an open neighborhood ofx0 andϕ(U) ⊆ [−∞, R).

Now suppose thatϕ(x0) is finite. Letα, β ∈ R such thatα < ϕ(x0) < β.

Chooseλ,µ ∈ R such thatα < λ < ϕ(x0) < µ < β. ThenU = Gµ ∩ (Gλ)c is
an open neighborhood ofx0, andϕ(U) ⊆ [λ,µ] ⊆ (α, β).

To see thatϕ ∈ S(X), note that
(⋃

λ Gλ
)c

and
⋂

λGλ both have empty interior.
Hence,Uϕ =

⋃
λ Gλ ∼

⋂
λ Gλ is dense inX.

Theorem 3.2. Let ϕ ∈ S(X) and with {eλ}λ∈R be the resolution of the iden-
tity in C(X) defined byϕ. For J = (α, β] with −∞ < α < β < +∞, let
fJ = eβ − eα. If 5 = {λ0, λ1, . . . , λn} with α = λ0 < λ1 < · · · < λn = β

is any partition of [α, β], if ξj ∈ [λj−1, λj ] for j = 1,2, . . . , n, and if ‖5‖ =
maxj=1,2,. . . ,n(λj − λj−1), then∥∥∥∥ϕ · fJ − n∑

j=1

ξJ(eλj − eλj−1)

∥∥∥∥
C(X)

≤ ‖5‖;

that is,ϕ · fJ =
∫ β
α
λ deλ (in the Riemann–Stieltjes sense).

Proof. Setϕ5,ξ =
∑n

j=1ξj(eλj − eλj−1). For x ∈ Gβ ∼ Gα we haveeλ0(x) =
eα(x) = 0 andeλn(x) = eβ(x) = 1. Hence there exists a uniquej = 1,2, . . . , n
such thateλj−1(x) = 0 andeλj (x) = 1. Thenϕ5,ξ (x) = ξj andϕ ·fJ(x) = ϕ(x)∈
[λj−1, λj ], so

|ϕ · fJ(x)− ϕ5,ξ (x)| = |ϕ(x)− ξj | < (λj − λj−1) ≤ ‖5‖.
Forx ∈Gα we haveϕ · fJ(x) = 0 andeλ0(x) = eα(x) = 1. Hence,ϕ5,ξ (x) =

0 and the estimate trivially holds. Forx /∈Gβ we haveϕ ·fJ(x) = 0 andeλn(x) =
eβ(x) = 0, and again the estimate trivially holds.

Remark 3.3. Note thatϕ, the element ofS(X) associated with{eλ}λ∈R is the
unique element ofS(X) satisfyingϕ · fJ =

∫ β
α
λ deλ. In fact, if ψ ∈ S(X) with
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ψ ·fJ = ϕ ·fJ for all J = (α, β], thenψ = ϕ on
⋃
J { x : fJ(x) 6= 0 } =⋃λ Gλ ∼⋂

λGλ, which is dense inX. Therefore,ψ = ϕ everywhere.

Definition. Let{eλ}λ∈R be a resolution of the identity inC(X).We defineeλ− =∨
µ<λ eµ andGλ− = { x ∈X : eλ−(x) = 1}.

Note thateλ− is a projection and thateλ− ≤ eλ. Moreover,Gλ− = clos
(⋃

µ<λGµ
)
.

For eachf ∈N(X), thespectrumof f is defined to be the set

σ(f ) = { λ∈C : f − λ1 is not invertible inN(X) }.
Proposition 3.4. Letϕ be a self-adjoint function and let{eλ}λ∈R be its resolution
of the identity. Thenλ∈ σ(ϕ) iff eλ − eλ− 6= 0.

Proof. Givenϕ ∈ S(X), defineG0
λ = int{ x : ϕ(x) = λ } for all λ∈R. We prove

thateλ − eλ− = XG0
λ
.

First observe thatG0
λ and

⋃
µ<λGµ are disjoint open sets. SinceX is extremely

disconnected, their closures are disjoint as well; that is,G0
λ ∩Gλ− = ∅. Moreover,

Gλ− ⊆ Gλ andG0
λ ⊆ Gλ, soGλ− ∪G0

λ ⊆ Gλ.
To get equality, supposex ∈ Gλ ∼ G0

λ . Then, sinceGλ is open, there exists a
netxd → x such thatxd ∈Gλ andxd /∈ { x : ϕ(x) = λ }, soϕ(xd) < λ for all d;
but thenxd ∈

⋃
µ<λGµ. Hencexd ∈ clos

(⋃
µ<λGµ

)
. Thus, for allλ ∈ R, Gλ =

Gλ− ∪G0
λ andeλ − eλ− = XG0

λ
.

There is a natural partial ordering inS(X) that may be defined as follows:ϕ ≥ ψ
whenϕ −̇ψ ≥ 0, that is,ϕ(x) ≥ ψ(x) for all x ∈Uϕ ∩Uψ. This partial ordering
induces a lattice structure onS(X), for if ϕ,ψ ∈ S(X) then the functionsϕ∨ψ =
1
2(ϕ +̇ψ) +̇ 1

2|ϕ −̇ψ | andϕ ∧ ψ = 1
2(ϕ +̇ψ) −̇ 1

2|ϕ −̇ψ | are, respectively, the
least upper and greatest lower bounds ofϕ andψ in S(X).

Lemma 3.5. Let ϕ,ψ ∈ S(X), and let{eλ}λ∈R, {fλ}λ∈R be their respective res-
olutions of the identity. Thenϕ ≤ ψ iff fλ ≤ eλ iff Hλ ⊆ Gλ for all λ∈R, where
Hλ = int{ x : ψ(x) ≤ λ } andGλ = int{ x : ϕ(x) ≤ λ }.
The proof is obvious.

In the following theorem we prove thatS(X) has the least upper bound prop-
erty—or, in Kadison’s terminology, thatS(X) is a boundedly complete lattice.

Theorem 3.6. If X is Stonean, thenS(X) has the least upper bound property.

Proof. SupposeF = {ϕα}α∈� is a nonempty subset ofS(X)with an upper bound
(say,ψ0) in S(X). We prove that there isϕ0 in S(X) such thatϕ0 is the least upper
bound ofF = {ϕα}α∈�.

DefineGλ = int
(⋂

α∈�
{
x : ϕα(x) ≤ λ

})
and leteλ = XGλ for all λ ∈R. We

claim that the family{eλ}λ∈R is a resolution of the identity inC(X).
Let λ = ψ0(x) < +∞. Thenϕα(x) ≤ λ for all α ∈� and hence

{ x : ψ0(x) < +∞} ⊆ Gλ.
Since{ x : ψ0(x) < +∞} is dense inX, we have clos

(⋃
λ∈R Gλ

) = X.
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Next note that
⋂

λ∈R Gλ ⊆
⋂

α∈�{ x : ϕα(x) = −∞}. Thus, int
(⋂

λ∈R Gλ
) ⊆

int
(⋂

α∈�
{
x : ϕα(x) = −∞

}) = ∅.
To complete the proof of our claim, letλ andµ be real numbers withµ >

λ. Clearly,Gλ ⊆ Gµ and soGλ ⊆ int
(⋂

µ>λGµ
)
. On the other hand, ifx ∈⋂

µ>λGµ then, for allα ∈� and allµ > λ, we haveϕα(x) ≤ µ. Henceϕα(x) ≤
λ for all α ∈ �. Therefore,

⋂
µ>λGµ ⊆

⋂
α∈�{ x : ϕα(x) ≤ λ } and soGλ =

int
(⋂

µ>λGµ
)
.

Now letϕ0 be the (unique) function inS(X) that corresponds to the resolution
of the identity{eλ}λ∈R. Note now thatGλ = int{ x : ϕ0(x) ≤ λ }. From Lemma
3.5, we haveϕα ≤ ϕ0 for all α ∈�.

Moreover, ifψ ∈ S(X) is such thatϕα ≤ ψ for all α ∈� and ifHλ = int{ x :
ψ(x) ≤ λ }, thenHλ ⊆ int{ x : ϕα(x) ≤ λ } for all α ∈ �. It follows thatHλ ⊆
Gλ and, from Lemma 3.5 again, we getϕ0 ≤ ψ. This completes the proof.

4. The Spectral Theorem

Let B(H ) be the algebra of bounded linear operators on a Hilbert spaceH, and
let Op(H ) be the set of unbounded densely defined linear operators onH. We re-
call that, forA,B ∈Op(H ), B is called anextensionof A, denoted byA ⊂ B, if
D(A) ⊆ D(B) andAx = Bx for all x ∈D(A).

Let A ∈ Op(H ) be a closed operator, and letT ∈ B(H ). We say thatT com-
muteswithA if TA ⊂ AT ; that is, ifx ∈D(A) thenTx ∈D(A) andTAx = ATx.
We denote by{A}′ the set of all operators inB(H ) that commute with the operator
A in the foregoing sense:

{A}′ = { T ∈B(H ) : TA ⊂ AT }.
It is easy to see that{A}′ is a subalgebra ofB(H ) that is closed in the strong op-

erator topology (s.o.t.). Note also thatT ∈ {A}′ iff T ∗ ∈ {A∗}′. Thus,{A}′ ∩ {A∗}′
is a von Neumann algebra. We write{A}′′ = {{A}′ }′ for the commutant of{A}′.
Definition. LetA be a von Neumann algebra of operators onH, and letA ∈
Op(H ) be a closed operator. We say thatA is affiliated with A, denotedAηA,
whenA′ ⊂ {A}′. We denote byS(A) the family of self-adjoint operators affiliated
with the algebraA.
Note thatAηA iff A′ ⊂ {A}′ ∩ {A∗}′ iff {{A}′ ∩ {A∗}′ }′ ⊂ A. Note also that
W ∗(A) = {{A}′ ∩ {A∗}′ }′ is the smallest von Neumann algebra with whichA is
affiliated, and is referred to as the von Neumann algebragenerated byA. Clearly,
if A is self-adjoint(A = A∗), then

AηA iff W ∗(A) = {A}′′ ⊂ A.
At this point, we recall some facts from the basic theory of self-adjoint oper-

ators. Letσ(A) denote the spectrum of a self-adjoint operatorA. Thenσ(A) ⊆
R andV = (iI − A)−1 is a bounded operator with adjointV ∗ = (−iI − A)−1

(see [1, p. 318]). It is easy to see thatV is a normal operator inB(H ). In fact,
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V ∗V = VV ∗ = (V ∗ − V )/2i. Moreover,{A}′ = {V }′. Thus,W ∗(A) = {A}′′ =
{V }′′, where{V }′′ is the abelian von Neumann algebra generated byV (i.e., the
s.o.t.-closure of the set of polynomials inV ).

Let A be an abelian von Neumann algebra, and letX = XA be the Gelfand
space (or maximal ideal space) ofA. From the Gelfand–Naimark representation
theorem for abelianC∗-algebras, the Gelfand map0 : A→ C(X) (where0(A) =
Â is the Gelfand transform ofA forA∈A) is an isometric∗-isomorphism fromA
ontoC(X). As we noted in the introduction,N(A) is a (commutative)∗-algebra
and the isomorphism0 extends to a∗-isomorphism ofN(A)withN(X). Although
the algebraic properties ofN(A) and the extension of0 will not be used in the
sequel, we shall also extend0 to a bijection ofS(A) with S(X).

Theorem 4.1. LetAbe a self-adjoint operator, and letA be any abelian von Neu-
mann algebra such thatAηA. LetX = XA. Then there exists a uniqueϕ ∈ S(X)
such that(AB)̂ = ϕ · B̂,wheneverB ∈A andAB ∈A. We write0̇(A) = ˙̂

A = ϕ.
Proof. Let V = (iI − A)−1. SinceAηA and{V }′′ = {A}′′, we have thatV ∈A.
Let v = V̂ ∈C(X) be the Gelfand transform ofV.

Note thatAV = −(iI − A)V + iV = −I + iV ∈A. Hence(AV )̂ = −1+ iv.
If F is the projection onto Ker(V ), thenF is the largest projection inA such that
VF = 0. Therefore,F̂ = XG, whereG is the largest clopen set contained in{ x :
v(x) = 0 }, that is,G = int{ x : v(x) = 0 }. SinceV is one-to-one,F = 0 and so
G = ∅. Thus, 1/v exists inN(X).

Defineϕ = −1/v + i. Note thatϕ∗ − ϕ = −2i + (v̄ − v)/v̄v. Furthermore,
sinceV ∗V = VV ∗ = (V ∗ − V )/2i, it follows thatϕ∗ = ϕ. Hence,ϕ ∈ S(X).

Note also that, on{ x : v(x) 6= 0 }, an open dense subset ofX, ϕv = −1+ iv =
(AV )̂ . Thus, by Theorem 2.1,ϕv has a unique continuous extension,ϕ · v =
(AV )̂ , onX.

Now, if C = AB with B,C ∈A, then

VC = VAB = −V(iI − A)B + iVB ⊂ −B + iVB.
SinceVC ∈B(H ), it follows thatVC = −B + iVB.

Let b, c ∈ C(X) be such thatb = B̂ andc = Ĉ. Thenvc = (−1+ iv)b. This
impliesc = (−1/v+i)b on{ x : v(x) 6= 0 }. Therefore,c = ϕ ·b; that is,(AB)̂ =
ϕ · B̂.

To see that the restriction of0̇ inA is0, letA be a bounded self-adjoint opera-
tor inA whose Gelfand transform̂A = a. Thenv = 1/(i − a) and0̇(A) = ϕ =
α = 0(A).
Lemma 4.2. LetA be a self-adjoint operator, and letA be any abelian von Neu-

mann algebra such thatAηA. Let ϕ = ˙̂
A. SupposeB ∈A andsupp(B̂) ⊆ Uϕ =

{ x : −∞ < ϕ(x) < +∞}. ThenAB ∈A.
Proof. Let V = (iI − A)−1, v = V̂, andb = B̂. SetG = supp(b) = clos{ x :
b(x) 6= 0 } (the support ofb). ThenG is a clopen set andG ⊆ { x : v(x) 6= 0 }.
Now, if e = XG andE ∈A with Ê = e, thenEB = B.
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Definec = e · 1/v. If C ∈A with Ĉ = c, thenc ∈ C(X) andVC = E. Thus,
AB = AEB = AVCB ∈A.
Definition. A resolutionof the identity inB(H ) is a family of projections
{Eλ}λ∈R in B(H ) satisfying:

(i)
∨
λ∈R Eλ = I,

(ii)
∧

λ∈R Eλ = 0, and
(iii)

∧
µ>λ Eµ = Eλ for all λ∈R.

We are now ready to prove the spectral theorem for unbounded self-adjoint
operators.

Theorem 4.3 (Spectral Theorem).LetA be an unbounded self-adjoint operator
onH. Then there exists a unique resolution of the identity{Eλ}λ∈R in B(H ) such
that:

(i) for any intervalJ = (α, β], if FJ = Eβ − Eα thenAFJ is a bounded self-

adjoint operator onH andAFJ =
∫ β
α
λ dEλ;

(ii) x ∈D(A) iff the net{AFJx}J∈J converges and in fact

Ax = lim AFJx = lim

(∫ β

α

λ dEλ

)
x =

(∫ ∞
−∞

λ dEλ

)
x.

Moreover,Eλ ∈ {A}′′, and {Eλ}λ∈R is called thespectral familyofA.

Proof. (i) Let A = {A}′′ andX = XA. If ϕ = ˙̂
A andeλ = XGλ, whereGλ =

int{ x : ϕ(x) ≤ λ }, then {eλ}λ∈R is a resolution of the identity inC(X). For
J = (α, β], let fJ = eβ − eα. From Theorem 3.2,ϕ · fJ ∈ C(X) andϕ · fJ =∫ β
α
λ deλ. Now takeEλ ∈A such thatÊλ = eλ, and letF̂J = fJ . Then{Eλ}λ∈R is

a resolution of the identity inB(H ) andFJ = Eβ − Eα.
Note that supp(fJ ) = Gβ ∼ Gα ⊆ Uϕ. Hence, by Lemma 4.2,AFJ ∈ A.

Moreover,(AFJ )̂ = ϕ · fJ is real-valued, henceAFJ is self-adjoint. At the same
time, since the Gelfand map is an isometry,AFJ =

∫ β
α
λ dEλ.

(ii) Note thatFJ ∈ A ⊆ A′ = {A}′ and soFJA ⊂ AFJ for all J. Let J
be the directed set of half-open intervalsJ = (α, β] in R ordered by inclusion.
Since

⋃
J∈J { x : fJ(x) 6= 0 } is dense inX, it follows that

∨
J∈J fJ = 1. Hence,∨

J∈J FJ = I. Therefore,FJ ↑ I in the strong operator topology.
Now, if x ∈D(A), thenAFJx = FJAx → Ax. Conversely, supposeAFJx →

y. Then, sinceA is closed andFJx → x, we havex ∈D(A) andAx = y.
It remains to prove the uniqueness of the spectral family. Suppose{E ′λ}λ∈R

is another resolution of the identity satisfying (i) and (ii). LetB be the abelian
von Neumann algebra generated by{E ′λ}λ∈R.

Let F ′J = E ′β − E ′α ∈B. By (i), AF ′J is the limit in the uniform operator topol-
ogy (hence, s.o.t.) of a net of operators inB, soAF ′J ∈B. If B ∈B ′ andx ∈D(A),
then by (ii) we haveA(BF ′Jx) = BAF ′Jx → BAx. At the same timeBF ′Jx →
Bx. SinceA is closed, we conclude thatB ∈ {A}′. Thus,A ⊆ B.
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Now, if Y is the Gelfand space ofB ande ′λ = (E ′λ)̂ , thenϕ ·f ′J =
∫ β
α
λ de ′λ and

ϕ · fJ =
∫ β
α
λ deλ in Y. Because such a representation is unique, it follows that

e ′λ = eλ for all λ. Therefore,E ′λ = Eλ for all λ∈R.

Remark 4.4. For anyx ∈H, let µx be the unique Borel measure onR satisfy-
ingµx(J ) = (FJ x, x) = ‖FJx‖2 = (Eβ x, x)− (Eαx, x). Part (ii) of the spectral
theorem can be rewritten equivalently as follows:

x ∈D(A) iff
∫ ∞
−∞

λ2 dµx(λ) <∞.

For this, first note thatFJFK = FJ∩K for J,K ∈ J (sinceEλEµ = Emin(λ,µ)).

Furthermore, we have

‖AFJx‖2 = lim
n→∞

∥∥∥∥ n∑
j=1

ξj(Eλj − Eλj−1)x

∥∥∥∥2

= lim
n→∞

∥∥∥∥ n∑
j=1

ξjFJj x

∥∥∥∥2

= lim
n→∞

n∑
j=1

ξ2
j ‖FJj x‖2 = lim

n→∞

n∑
j=1

ξ2
j µx(Jj )

=
∫
J

λ2 dµx(λ)→
∫ ∞
−∞

λ2 dµx(λ).

Now, if x ∈D(A) thenAFJx → Ax. So‖AFJx‖2→ ‖Ax‖2. Therefore,∫ ∞
−∞

λ2 dµx(λ) = ‖Ax‖2 <∞.

Conversely, suppose that
∫ ∞
−∞ λ

2 dµx(λ) <∞. Let ε > 0 andγ < α < β < δ

be any real numbers. IfJ = (α, β], K = (γ, δ], L = (γ, α], andM = (β, δ],
then by choosingJ large enough we have

‖AFKx − AFJx‖2 = ‖AFLx‖2 + ‖AFMx‖2 ≤
∫
R−J

λ2 dµx(λ) < ε.

Hence, the net{AFJx}J∈J is Cauchy and so converges inH.
Note also that, forx ∈ D(A), the representation(Ax, x) = ∫ ∞

−∞ λ dµx(λ) is
valid. By the polarization identity,(Ax, y) = ∫ ∞−∞ λ dµx,y(λ) for x ∈D(A) and
y ∈ H, whereµx,y(J ) = (FJ x, y). This is the classical form of the spectral
decomposition of a self-adjoint operator (see e.g. [6, Thm. 13.30]).

For the proof of the following lemma, see [5, Lemma 5.6.1] (and replace the se-
quence by a net).

Lemma 4.5. If {Fd} is an increasing net of projections on the Hilbert space
H such that

∨
d Fd = I, and if A0 is a linear operator with dense domain⋃

d Fd(H ) = (D0) such thatA0Fd is a bounded self-adjoint operator onH,
thenA0 is closable and its closure is the unique self-adjoint operator satisfying
AFd = A0Fd for all d.
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Proposition 4.6. If {Eλ}λ∈R is a resolution of the identity inB(H ) andA is
an abelian von Neumann algebra containing{Eλ}λ∈R, then there is a self-adjoint
operatorA in S(A) whose spectral family is{Eλ}λ∈R.

Moreover, ifX = XA then the mappinġ0 : S(A)→ S(X) is a bijection.

Proof. Let eλ = Êλ for all λ ∈ R. Then{eλ}λ∈R is a resolution of the identity in
C(X). Let ϕ ∈ S(X) be the (unique) self-adjoint function associated to{eλ}λ∈R

(Proposition 3.1). Thenϕ · fJ ∈ C(X) andϕ · fJ =
∫ β
α
λ deλ, with J = (α, β]

andfJ = eβ − eα.
If, for eachJ ∈J, FJ andAJ are the operators inA whose Gelfand transforms

(in C(X)) arefJ andϕ · fJ , respectively, then{FJ }J∈J is an increasing net of
projections such that

∨
J∈J FJ = I, andAJ is a bounded self-adjoint operator.

Define an operatorA0 with domainD0 =
⋃
J∈J FJ(H ) byA0x = AJx if x ∈

FJ(H ). We claim thatA0 is well-defined; for this, note first that since(ϕ ·fJ )fK =
ϕ · fJ∩K, it follows thatAJFK = AJ∩K. Now, if x is also inFK(H ), thenx =
FJx, x = FKx, andAJx = AJFKx = AJ∩Kx = AKFJx = AKx.

From Lemma 4.5,A0 is closable and its closureA (= Ā0) is self-adjoint. Since
A0 ⊂ A andA0FJ = AJ is everywhere defined, we haveAFJ = A0FJ = AJ .
Therefore,AFJ =

∫ β
α
λ dEλ.

Next, we show thatFJA ⊂ AFJ for all J. Supposex ∈D(A). Then there is a
sequence{xn} inD0 such thatxn→ x andA0xn→ Ax (sinceA = Ā0). Hence,
FJA0xn → FJAx. Note that, for eachn, there exists aK such thatxn = FKxn.
Hence,

FJA0xn = FJA0FKxn = FJAKxn = AKFJxn = A0FJxn.

Now, FJxn → FJx andAFJxn = A0FJxn = FJA0xn → FJAx. SinceA is
closed,FJx ∈ D(A) andAFJx = FJAx. The same argument as in the proof of
Theorem 4.3 gives thatx ∈D(A) iff the net{AFJx}J∈J converges (andAFJx →
Ax).

To see thatA is affiliated withA, suppose thatT is inA′ and thatx ∈ D(A).
ThenTFJ x → Tx (sinceFJx → x) andATFJx = AFJTx = TAFJx → TAx.

SinceA is closed,Tx ∈D(A) andATx = TAx. Thus,A′ ⊂ {A}′.
It is now clear that{Eλ}λ∈R is the spectral family ofA (by uniqueness, as in

Theorem 4.3). Moreover, sinceA is in S(A), 0̇(A) makes sense and(AFJ )̂ =
0̇(A) · fJ . Therefore,0̇(A) · fJ = ϕ · fJ for all J (since(AFJ )̂ = ϕ · fJ ). Thus,
0̇(A) = ϕ. (Invoking Theorem 3.2, this also proves that0̇ : S(A) → S(X) is a
bijection.)

Corollary 4.7. If A is a self-adjoint operator and{Eλ}λ∈R is its spectral family,
thenW ∗(A) = {A}′′ = {Eλ : λ∈R }′′.
Proof. TakeA = {Eλ : λ ∈ R }′′ in Proposition 4.6. ThenA is affiliated with
A. Therefore,{A}′′ ⊆ A. On the other hand, sinceEλ ∈ {A}′′, we have{Eλ :
λ∈R }′′ ⊆ {A}′′.
Proposition 4.8. Let A be a self-adjoint operator, and letA be any abelian

von Neumann algebra such thatAηA. Letϕ = ˙̂
A. Thenσ(A) = ϕ(Uϕ).
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Proof. If λ /∈ σ(A), thenB = (λI − A)−1 ∈ A andI = (λI − A)B. Taking
Gelfand transforms, this gives 1= (λ− ϕ) · b with b = B̂. Thus,λ /∈ ϕ(Uϕ).

Conversely, ifλ /∈ ϕ(Uϕ) thenb ≡ (1/(λ− ϕ)) ∈C(X). TakeB ∈A such that
B̂ = b. Since supp(b) ⊆ Uϕ, AB ∈A. Now b · (λ− ϕ) = (λ− ϕ) · b = 1 and so
B(λI − A) ⊂ I = (λI − A)B. Thus,λ /∈ σ(A).
The spectral family{Eλ}λ∈R of a self-adjoint operator completely determines the
spectrum of the operator.

Theorem 4.9. LetA∈Op(H ) be a self-adjoint operator,{Eλ}λ∈R its resolution
of the identity, andα, β ∈R with α < β. Thenσ(A)∩ (α, β) = ∅ iff Eβ− −Eα =
0, whereEβ− =

∨
µ<β Eµ.

Proof. Let A = {A}′′, X = XA, ϕ = ˙̂
A, andeλ = Êλ. Recall thatσ(A) =

ϕ(Uϕ). Suppose thatϕ(Uϕ) ∩ (α, β) = ∅. Then{ x : ϕ(x) < β } = { x : ϕ(x) =
α }. This implies that{ x : ϕ(x) < β } = int{ x : ϕ(x) = α } = Gα and so
clos{ x : ϕ(x) < β } = Gα.

Let g = Xclos{ x : ϕ(x)<β }. Then we haveg ≥ eµ for all µ < β and thus

g ≥
∨
µ<β

eµ = eβ− .

If ψ ∈ S(X) is such thateµ ≤ ψ for all µ < β, thenGµ ⊆ { x : ψ(x) ≥ 1}.
Hence

{ x : ϕ(x) < β } =
⋃
µ<β

{ x : ϕ(x) < β } ⊆
⋃
µ<β

Gµ ⊆ { x : ψ(x) ≥ 1}.

Therefore, clos{ x : ϕ(x) < β } ⊆ { x : ψ(x) ≥ 1}; in other words,g ≤ ψ. Thus,
eβ− = g = Xclos{ x : ϕ(x)<β } = XGα = eα; that is,Eβ− − Eα = 0.

Conversely, letEβ− −Eα = 0 or (equivalently)eβ− − eα = 0. Suppose there is
anx ∈X such thatα < ϕ(x) < β. Then there exist real numbersλ,µ with α <
λ < µ < β such thateλ(x) = 0 andeµ(x) = 1. It follows that eα(x) = 0 and
eβ−(x) =

(∨
µ<β eµ

)
(x) = 1. Therefore,eβ−(x)− eα(x) = 1, which is a contra-

diction.

Theorem 4.10. LetA ∈Op(H ) be a self-adjoint operator and{Eλ}λ∈R its res-
olution of the identity. ThenKer(λI − A) = Range(Eλ − Eλ−) for all λ ∈ R.
(Thus,λ is an eigenvalue ofA iff Eλ − Eλ− 6= 0.)

Proof. Let P be the projection onto Ker(λI − A); thenAP = λP. SincePA ⊂
(AP )∗ = λP ∗ = λP, it follows thatP ∈ {A}′. Thus,P commutes with the spectral
projectionsEλ of A.

Take nowA to be the abelian von Neumann algebra generated byA, P, and

{Eλ}λ∈R, that is,A = {A,P,Eλ}′′. LetX = XA, ϕ = ˙̂
A, eλ = Êλ, andp = P̂ .

Note thatP is the largest projection inA such that(λI − A)P = 0 and, as a re-
sult, { x : p(x) = 1} = int{ x : ϕ(x) = λ } = G0

λ . Hence, from Proposition 3.4,
p = eλ − eλ− . Thus,P = Eλ − Eλ− .
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In the remainder of this section we shall characterize the spectral family of a self-
adjoint operator. We begin with some preliminaries.

LetA be any operator. Abounding sequenceforA is a nondecreasing sequence
{Fn} of projections such that

∨∞
n=1Fn = I andFnA ⊂ AFn, with AFn ∈ B(H )

for all n. Note that, for a self-adjoint operatorA, we can construct a bounding se-
quence{Fn} forA from its spectral family{Eλ}λ∈R. In fact,Fn = FJn whereJn =
(−n, n], n = 1,2, . . . .

Lemma 4.11. If {Fn} is a bounding sequence for a closable operatorA, then
{Fn} is also a bounding sequence forĀ (the closure ofA) and ĀFn = AFn for
all n.

Proof. Letx ∈D(Ā). Fixm and choosexn ∈D(A) such thatxn→ x andAxn→
Āx. ThenFmxn → Fmx andĀFmxn = AFmxn = FmAxn → FmĀx. Therefore
FmĀ ⊂ ĀFm. SinceAFm ⊆ ĀFm andAFm ∈ B(H ), it follows that ĀFm =
AFm.

A corefor a closed linear operatorA is a dense linear subspaceD0 of the domain
ofA such thatA = A|D0. That is, given anyx ∈D(A), there exist{xn} ∈D0 such
thatxn → x andAxn → Ax. Note that ifA is a closed operator and{Fn} is a
bounding sequence forA, thenD0 =

⋃∞
n=1 Range(Fn) is a core forA.

A self-adjoint operatorA is said to bepositive(A ≥ 0) if (Ax, x) ≥ 0 for all
x ∈D(A) or, equivalently, ifσ(A) ⊆ [0,+∞) (see [6, Thm.13.31]). From Propo-
sition 4.8 we see that the mapping0̇ : S(A) → S(X) is order-preserving. Note
also that, forA,B ∈ S(A), AB = A∗B∗ ⊂ (BA)∗ and soAB is closable. We
shall denote the closure ofAB byA · B.
Theorem 4.12. LetA∈Op(H ) be a self-adjoint operator and{Eλ}λ∈R a resolu-
tion of the indentity inB(H ). Then{Eλ}λ∈R is the spectral family ofA iff AEλ ≤
λEλ andA(I − Eλ) ≥ λ(I − Eλ) for all λ∈R.

Proof. Let A = {A}′′, X = XA, ϕ = ˙̂
A, eλ = Êλ, FJ = Eβ − Eα, andF̂J =

fJ . Thenϕ · eλ ≤ λeλ andϕ · (1− eλ) ≥ λ(1− eλ). Since0̇ : S(A)→ S(X) is
order-preserving, all we need show is thatAEλ ∈ S(A), 0̇(AEλ) = ϕ · eλ, and
0̇(A(I − Eλ)) = ϕ · (1− eλ).

First note thatAEλ is closed. Also, sinceEλ ∈ A, we haveEλA ⊂ AEλ.

Therefore,(AEλ)∗ ⊂ AEλ. On the other hand,EλA = E∗λA∗ ⊂ (AEλ)∗. Hence,
Eλ · A ⊂ (AEλ)∗.

We show thatEλ · A = AEλ. For this, first note thatFn = FJn, whereJn =
(−n, n] for n = 1,2, . . . is a bounding sequence for bothAEλ andEλA. By
Lemma 4.11, this is also the case forEλ · A andEλ · AFn = EλAFn. Now

AEλFn = AFnEλFn = EλFnAFn = EλAFn = Eλ · AFn,
that is,AEλ andEλ · A agree on their common coreD0 =

⋃∞
n=1 Range(Fn).

Hence,Eλ · A = AEλ and so(AEλ)∗ = AEλ. If T ∈ A′ then, sinceA ∈ S(A),
TAEλ ⊂ ATEλ = AEλT . Thus,AEλ ∈ S(A).
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Now, sinceFJ andEλ commute andAFJEλ ∈ A, we have0(AFJEλ) =
0(AEλFJ ); that is,ϕ · fJ eλ = 0̇(AEλ) · fJ . Thus,0̇(AEλ) = ϕ · eλ. Similarly,
0̇(A(I −Eλ)) = ϕ · (1− eλ). Conversely, supposeAEλ ≤ λEλ andA(I −Eλ) ≥
λ(I − Eλ) for all λ ∈ R. FromAEλ ≤ λEλ we have thatAEλ is self-adjoint.
Hence,EλA ⊂ AEλ.

If {Pµ}µ∈R is the spectral family ofA, thenEλPµ = PµEλ for all λ,µ. Take
A = {Eλ, Pµ}′′, the abelian von Neumann algebra generated byEλ andPµ. Note
thatA is affiliated withA.

LetX = XA, ϕ = ˙̂
A, eλ = Êλ, P̂µ = pµ, andFJ = Pβ − Pα. As before, we

have0̇(AEλ) = ϕ · eλ and0̇(A(I − Eλ)) = ϕ · (1− eλ). The hypothesis implies
thatϕ · eλ ≤ λeλ andϕ · (1− eλ) ≥ λ(1− eλ).

Now, if Xλ = { x : eλ(x) = 1} thenXλ = int{ x : ϕ(x) ≤ λ } = { x : pλ(x) =
1}. Therefore,Eλ = Pλ for all λ∈R.

Theorem 4.13. LetA ∈Op(H ) be a self-adjoint operator and{Eλ}λ∈R a reso-
lution of the identity inB(H ). Then{Eλ}λ∈R is the spectral family ofA iff :

(i) FJA ⊂ AFJ for any intervalJ = (α, β] whereFJ = Eβ − Eα—that is,FJ
reducesA;

(ii) the relationx ∈Range(FJ ) impliesα‖x‖2 ≤ (Ax, x) ≤ β‖x‖2.
Proof. If {Eλ}λ∈R is the spectral family ofA then, as noted in the proof of the
spectral theorem,FJA ⊂ AFJ for all J. Furthermore, ifx ∈Range(FJ ) thenAx =
AFJx =

(∫ β
α
λ dEλ

)
x. Hence(Ax, x) = ∫ β

α
λ dµx(λ),which clearly implies (ii).

Conversely, suppose that conditions (i) and (ii) hold. First note thatαFJ ≤
AFJ ≤ βFJ means thatAFJ is a bounded self-adjoint operator. LetD0 =⋃
J Range(FJ ). ThenD0 is a core forA. SinceAFJEλ is self-adjoint, we have

EλAFJ ⊂ AFJEλ = AEλFJ . It follows thatEλA ⊂ AEλ.
Now let λ ∈ R. Chooseκ ∈ R such thatκ < λ and letFJ = Eλ − Eκ. If x ∈

Range(FJ ) then we have

(AEλx, x) = (AFJ x, x) = (Ax, x) ≤ λ‖x‖2 ≤ λ(Eλx, x).
Thus,AEλ ≤ λEλ.

Similarly, givenλ ∈R, chooseµ ∈R such thatµ > λ and letFJ = Eµ − Eλ.
If x ∈Range(FJ ) then we have

(A(I − Eλ)x, x) = (AFJ x, x) = (Ax, x) ≥ λ‖x‖2 = λ(‖Eµx‖2 − ‖Eλx‖2).
Lettingµ→+∞,we get(A(I−Eλ)x, x) ≥ λ((I−Eλ)x, x). Thus,A(I−Eλ) ≥
λ(I − Eλ).

SinceD0 is a core forA, both inequalities hold for anyx ∈D(A). By Theorem
4.12, the proof is complete.

Example 4.14. Let(S,S, µ) be aσ -finite measure space and letg : S → R
be a measureable function finite a.e. onS. The multiplication operatorMg with
D(Mg) = { f ∈ L2(S) : gf ∈ L2(S) } andMg(f ) = gf for f ∈ D(Mg) is a
self-adjoint operator. LetEλ = Mφλ, whereφλ = X{g≤λ} for λ∈R. One can see
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that {Eλ}λ∈R is a resolution of the identity inB(L2(S)). Now, sincegφλ ≤ λφλ
andg(1− φλ) ≥ λ(1− φλ) a.e., it follows thatMgEλ ≤ λEλ andMg(I − Eλ) ≥
λ(I − Eλ) for all λ ∈ R. Therefore, from Theorem 4.12,{Eλ}λ∈R is the spectral
family of Mg.
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