The Algebra of Unbounded Continuous Functions on a Stonean Space and Unbounded Operators

FOTIOS C. PALIOGIANNIS

1. Introduction

The investigation of commutative operator algebras by means of function space techniques is due to M. H. Stone [7]. The notion of a space such that the closure of every open set G, clos(G), is open (thus, clos(G) is *clopen*) was introduced by Stone in [8]. Such spaces are called *extremely disconnected*. Extremely disconnected spaces are also characterized as those topological spaces X for which (i) the interior of a closed subset F of X, int(F), is clopen, or (ii) disjoint open subsets of X have disjoint closures. A compact Hausdorff extremely disconnected space X is also known as a *Stonean space*. If A is an abelian von Neumann algebra then A is isomorphic with C(X), where X is a Stonean space (see [5, Thm. 5.2.1]).

In [4] (and [5]), Kadison studies a class of unbounded continuous complexvalued (real-valued) functions on an extremely disconnected space X (called *normal functions* and *self-adjoint functions* and denoted by N(X) and S(X), respectively), and he proves that N(X) is an algebra [4, Thm. 2.11]. Starting with an abelian von Neumann algebra A, Kadison introduces N(A), the algebra of (normal) operators affiliated with A and S(A), the algebra of self-adjoint operators affiliated with A [4, Thm. 3.3], extending the isomorphism of A with C(X) to a *-isomoprhism of N(A) onto N(X) [4, Thm. 4.1]. In this direction, one is enabled to obtain the spectral theorem for self-adjoint and normal operators (see also [2]).

In this article, we present a closely related approach to the study of N(X), S(X), and the spectral theorem for unbounded self-adjoint operators. We begin in Section 2 with a theorem (Theorem 2.1) on continuous extensions from open dense subsets of extremely disconnected spaces (see also [3, p. 96]). Theorem 2.1 leads to a substantial simplification of the proof that N(X) is an algebra, and it plays a key role in our development. We continue, in Section 3, with a discussion on the spectral analysis of a function in S(X), and we give an alternative proof of the fact that S(X) is a boundedly complete lattice. In Section 4 we prove the spectral theorem and characterizations of the spectrum and the spectral projections for unbounded self-adjoint operators.

Received September 23, 1997. Revision received January 5, 1998. Michigan Math. J. 46 (1999).

2. N(X) and S(X)

THEOREM 2.1. Let X be an extremely disconnected space, and let Y be a compact Hausdorff space. Suppose that U is an open dense subset of X. If $f: U \rightarrow Y$ is a continuous function, then f has a unique continuous extension \tilde{f} on X.

Proof. The uniqueness is clear, since if two continuous functions agree on a dense subset then they agree everywhere.

We prove the existence. For each $y \in Y$, let $A_y = \bigcap_{G \in N_y} \overline{f^{-1}(G)}$ (closure denotes the closure in *X*), where $N_y = \{G : G \text{ is open in } Y, y \in G\}$. Clearly, A_y is a closed (possibly empty) subset of *X* for all $y \in Y$.

Now, if $x \in X$ then there is a net $\{x_d\}$ in U such that $x_d \to x$. Since Y is compact, the net $\{f(x_d)\}$ has a cluster point, say y, in Y. We claim that $x \in A_y$.

If $x \notin A_y$, then there is an open set *G* in *Y* such that $y \in G$ and $x \notin \overline{f^{-1}(G)}$. Hence there exists a d_0 such that, for $d \ge d_0$, $x_d \notin \overline{f^{-1}(G)}$. In particular, for $d \ge d_0$ we have $f(x_d) \notin G$. Since *G* is a neighborhood of *y* and *y* is a cluster point for $\{f(x_d)\}$, this is a contradiction. Thus, $x \in A_y$.

We define $\tilde{f}(x) = y$ for $x \in A_y$. This is well-defined; for if $y_1 \neq y_2$ then $A_{y_1} \cap A_{y_2} = \emptyset$. To see this, suppose $y_1 \neq y_2$. Then there exist open disjoint sets G_1, G_2 in Y with $y_1 \in G_1$ and $y_2 \in G_2$. Hence, $f^{-1}(G_1)$ and $f^{-1}(G_2)$ are disjoint and open in U. Therefore, they are disjoint and open in X. Since X is extremely disconnected, their closures are disjoint as well. Thus, $A_{y_1} \cap A_{y_2} = \emptyset$.

To see that $\tilde{f}(x) = f(x)$ for all $x \in U$, let *D* be any directed set and take $x_d = x$ for all $d \in D$. Then $f(x_d) = f(x)$ and $f(x_d) \to f(x)$, so $x \in A_{f(x)}$. Hence, $\tilde{f}(x) = f(x)$.

It remains to show the continuity of \tilde{f} . Let F be any closed subset of Y and $N_F = \{G : G \text{ is open in } Y \text{ and } F \subseteq G \}$. We claim that $\tilde{f}^{-1}(F) = \bigcap_{G \in N_F} \overline{f^{-1}(G)}$ (which immediately gives the continuity of \tilde{f}). In fact, if $x \in \tilde{f}^{-1}(F)$ then $\tilde{f}(x) = y \in F$. Hence $x \in A_y \subseteq \bigcap_{G \in N_F} \overline{f^{-1}(G)}$.

Conversely, if $x \notin \tilde{f}^{-1}(F)$ then $\tilde{f}(x) = y \notin F$. Choose G_1, G_2 disjoint open sets in Y such that $y \in G_1$ and $F \subseteq G_2$. The same argument as before gives that $\overline{f^{-1}(G_1)}$ and $\overline{f^{-1}(G_2)}$ are disjoint. Therefore, $A_y \cap \bigcap_{G \in N_F} \overline{f^{-1}(G)} = \emptyset$. Since $x \in A_y$, we have $x \notin \bigcap_{G \in N_F} \overline{f^{-1}(G)}$.

Let $\dot{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ denote the one-point compactification of the complex plane \mathbf{C} and $\ddot{\mathbf{R}} = [-\infty, +\infty]$ the two-point compactification of the real line \mathbf{R} .

DEFINITION. Let X be a Stonean space. A continuous function $f: X \to \mathbf{C}$, such that $U_f = \{x : f(x) \neq \infty\}$ is (open) dense in X, is called a *normal function* on X. We denote by N(X) the set of normal functions on X.

A continuous function $f: X \to \mathbf{R}$, such that $U_f = \{x : -\infty < f(x) < +\infty\}$ is (open) dense in X, is called a *self-adjoint function* on X. We denote by S(X) the set of self-adjoint functions on X.

Let $f \in N(X)$. We define f^* to be the unique element of N(X) that extends \overline{f} defined on U_f .

PROPOSITION 2.2. N(X) is a *-algebra containing C(X), and S(X) is the subalgebra of self-adjoint elements of N(X).

Proof. By definition of f^* , $f^* \in N(X)$ whenever $f \in N(X)$.

To see that N(X) is an algebra, suppose that f and g are in N(X). Write $U_f =$ $\{x : f(x) \neq \infty\}$ and $U_g = \{x : g(x) \neq \infty\}$. Then $U_f \cap U_g$ is open and dense in X, and both f + g and fg are defined and continuous on $U_f \cap U_g$. By Theorem 2.1, f + g and fg both have unique continuous extensions on X, f + g and $f \cdot g$, respectively. Now it is easy to see that, with these operations $(+ \text{ and } \cdot)$, N(X) becomes an algebra with the constant function 1 as unit and C(X) as a subalgebra.

It is also easy to see that, for $f \in N(X)$, $f = f^*$ iff there is a unique $g \in S(X)$ such that $f = \theta \circ g$, where $\theta : \mathbf{\hat{R}} \to \mathbf{\hat{C}}$ is defined by

$$\theta(\lambda) = \begin{cases} \lambda & \text{if } \lambda \in \mathbf{R}, \\ \infty & \text{if } \lambda = \pm \infty \end{cases}$$

Thus S(X) is the subalgebra of self-adjoint elements $(f^* = f)$ of N(X). \square

Note that f is invertible in N(X) precisely when 1/f makes sense on a dense open set of X, iff int $\{x : f(x) = 0\} = \emptyset$. Note also that, if $f \in N(X)$ and e is a projection in C(X)—that is, $e = \mathcal{X}_G$ (the characteristic function of G) with G a clopen set in *X*—then

$$f \cdot e(x) = \begin{cases} f(x) & \text{if } x \in G, \\ 0 & \text{if } x \notin G. \end{cases}$$

3. The Spectral Analysis of a Self-Adjoint Function

For real-valued functions f, g in C(X), we will write $f \leq g$ if $f(x) \leq g(x)$ for all $x \in X$. Let $\{f_{\alpha}\}_{\alpha \in \Omega}$ be a collection of real-valued functions in C(X). We denote by $\bigvee_{\alpha \in \Omega} f_{\alpha}$ the l.u.b.{ $f_{\alpha} : \alpha \in \Omega$ }, that is, $\bigvee_{\alpha \in \Omega} f_{\alpha} = f$ is such that $f_{\alpha} \leq f_{\alpha}$ f for all $\alpha \in \Omega$, and if $f_{\alpha} \leq g$ for all $\alpha \in \Omega$ then $f \leq g$. Similarly, $\bigwedge_{\alpha \in \Omega} f_{\alpha}$ denotes the g.l.b.{ $f_{\alpha} : \alpha \in \Omega$ }.

DEFINITION. Let $\{e_{\lambda}\}_{\lambda \in \mathbb{R}}$ be a collection of projections in C(X) and $G_{\lambda} =$ $\{x \in X : e_{\lambda}(x) = 1\}$. The family $\{e_{\lambda}\}_{\lambda \in \mathbb{R}}$ is called a *resolution* of the identity in C(X) if

(i) $\bigvee_{\lambda \in \mathbf{R}} e_{\lambda} = 1 \iff \operatorname{clos}(\bigcup_{\lambda \in \mathbf{R}} G_{\lambda}) = X$,

(ii) $\bigwedge_{\lambda \in \mathbf{R}} e_{\lambda} = 0 \iff \operatorname{int} \left(\bigcap_{\lambda \in \mathbf{R}} G_{\lambda} \right) = \emptyset,$ (iii) $\bigwedge_{\mu > \lambda} e_{\mu} = e_{\lambda} \iff \operatorname{int} \left(\bigcap_{\mu > \lambda} G_{\mu} \right) = G_{\lambda} \text{ for all } \lambda \in \mathbf{R}.$

Clearly, condition (iii) implies that $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ is monotonic in λ .

PROPOSITION 3.1. There is a bijective correspondence between S(X) and the collection of all resolutions of the identity in C(X).

Proof. Given any $\varphi \in S(X)$, if $G_{\lambda} = \inf\{x : \varphi(x) \le \lambda\}$ for $\lambda \in \mathbf{R}$, then $e_{\lambda} = \mathcal{X}_{G_{\lambda}}$ defines a resolution of the identity in C(X).

Moreover, $G_{\lambda} = \inf\{x : \varphi(x) \le \lambda\}$ is equivalent to $\{x : \varphi(x) < \lambda\} \subseteq G_{\lambda} \subseteq \{x : \varphi(x) \le \lambda\}$, which in turn is equivalent to $\varphi \cdot (1 - e_{\lambda}) \ge \lambda(1 - e_{\lambda})$ and $\varphi \cdot e_{\lambda} \le \lambda e_{\lambda}$ for all $\lambda \in \mathbf{R}$.

Conversely, let $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ be any resolution of the identity in C(X), and let $G_{\lambda} = \{x : e_{\lambda}(x) = 1\}$. Define the function $\varphi \colon X \to \mathbf{\ddot{R}}$ by

$$\varphi(x) = \begin{cases} +\infty & \text{on } \left(\bigcup_{\lambda} G_{\lambda}\right)^{c}, \\ -\infty & \text{on } \bigcap_{\lambda} G_{\lambda}, \\ \sup\{\lambda : x \notin G_{\lambda}\} = \inf\{\lambda : x \in G_{\lambda}\} & \text{on } \bigcup_{\lambda} G_{\lambda} \sim \bigcap_{\lambda} G_{\lambda}. \end{cases}$$

It is easy to see that φ as defined satisfies the condition $\{x : \varphi(x) < \lambda\} \subseteq G_{\lambda} \subseteq \{x : \varphi(x) \leq \lambda\}$ for all $\lambda \in \mathbf{R}$, and this condition determines φ uniquely.

We now show that φ is continous. Suppose $\varphi(x_0) = +\infty$. Let *R* be any positive real number. Choose any $\lambda > R$. Then $x_0 \in (G_{\lambda})^c$ and for all $x \in (G_{\lambda})^c$ we have $\varphi(x) \ge \lambda > R$. Thus, $U = (G_{\lambda})^c$ is an open neighborhood of x_0 , and $\varphi(U) \subseteq (R, +\infty]$. Similarly, suppose $\varphi(x_0) = -\infty$. Given any R > 0, choose $\lambda < -R$. Then $U = G_{\lambda}$ is an open neighborhood of x_0 and $\varphi(U) \subseteq [-\infty, R)$.

Now suppose that $\varphi(x_0)$ is finite. Let $\alpha, \beta \in \mathbf{R}$ such that $\alpha < \varphi(x_0) < \beta$. Choose $\lambda, \mu \in \mathbf{R}$ such that $\alpha < \lambda < \varphi(x_0) < \mu < \beta$. Then $U = G_{\mu} \cap (G_{\lambda})^c$ is an open neighborhood of x_0 , and $\varphi(U) \subseteq [\lambda, \mu] \subseteq (\alpha, \beta)$.

To see that $\varphi \in S(X)$, note that $\left(\bigcup_{\lambda} G_{\lambda}\right)^{c}$ and $\bigcap_{\lambda} G_{\lambda}$ both have empty interior. Hence, $U_{\varphi} = \bigcup_{\lambda} G_{\lambda} \sim \bigcap_{\lambda} G_{\lambda}$ is dense in *X*.

THEOREM 3.2. Let $\varphi \in S(X)$ and with $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ be the resolution of the identity in C(X) defined by φ . For $J = (\alpha, \beta]$ with $-\infty < \alpha < \beta < +\infty$, let $f_J = e_{\beta} - e_{\alpha}$. If $\Pi = \{\lambda_0, \lambda_1, \dots, \lambda_n\}$ with $\alpha = \lambda_0 < \lambda_1 < \dots < \lambda_n = \beta$ is any partition of $[\alpha, \beta]$, if $\xi_j \in [\lambda_{j-1}, \lambda_j]$ for $j = 1, 2, \dots, n$, and if $\|\Pi\| = \max_{j=1,2,\dots,n} (\lambda_j - \lambda_{j-1})$, then

$$\left\|\varphi\cdot f_J-\sum_{j=1}^n\xi_J(e_{\lambda_j}-e_{\lambda_{j-1}})\right\|_{C(X)}\leq \|\Pi\|;$$

that is, $\varphi \cdot f_J = \int_{\alpha}^{\beta} \lambda \, de_{\lambda}$ (in the Riemann–Stieltjes sense).

Proof. Set $\varphi_{\Pi,\xi} = \sum_{j=1}^{n} \xi_j (e_{\lambda_j} - e_{\lambda_{j-1}})$. For $x \in G_\beta \sim G_\alpha$ we have $e_{\lambda_0}(x) = e_\alpha(x) = 0$ and $e_{\lambda_n}(x) = e_\beta(x) = 1$. Hence there exists a unique j = 1, 2, ..., n such that $e_{\lambda_{j-1}}(x) = 0$ and $e_{\lambda_j}(x) = 1$. Then $\varphi_{\Pi,\xi}(x) = \xi_j$ and $\varphi \cdot f_J(x) = \varphi(x) \in [\lambda_{j-1}, \lambda_j]$, so

$$|\varphi \cdot f_J(x) - \varphi_{\Pi,\xi}(x)| = |\varphi(x) - \xi_j| < (\lambda_j - \lambda_{j-1}) \le \|\Pi\|.$$

For $x \in G_{\alpha}$ we have $\varphi \cdot f_J(x) = 0$ and $e_{\lambda_0}(x) = e_{\alpha}(x) = 1$. Hence, $\varphi_{\Pi,\xi}(x) = 0$ and the estimate trivially holds. For $x \notin G_{\beta}$ we have $\varphi \cdot f_J(x) = 0$ and $e_{\lambda_n}(x) = e_{\beta}(x) = 0$, and again the estimate trivially holds.

REMARK 3.3. Note that φ , the element of S(X) associated with $\{e_{\lambda}\}_{\lambda \in \mathbb{R}}$ is the unique element of S(X) satisfying $\varphi \cdot f_J = \int_{\alpha}^{\beta} \lambda \, de_{\lambda}$. In fact, if $\psi \in S(X)$ with

 $\psi \cdot f_J = \varphi \cdot f_J$ for all $J = (\alpha, \beta]$, then $\psi = \varphi$ on $\bigcup_J \{x : f_J(x) \neq 0\} = \bigcup_{\lambda} G_{\lambda} \sim \bigcap_{\lambda} G_{\lambda}$, which is dense in X. Therefore, $\psi = \varphi$ everywhere.

DEFINITION. Let $\{e_{\lambda}\}_{\lambda \in \mathbb{R}}$ be a resolution of the identity in C(X). We define $e_{\lambda^{-}} = \bigvee_{\mu < \lambda} e_{\mu}$ and $G_{\lambda^{-}} = \{x \in X : e_{\lambda^{-}}(x) = 1\}.$

Note that $e_{\lambda^{-}}$ is a projection and that $e_{\lambda^{-}} \leq e_{\lambda}$. Moreover, $G_{\lambda^{-}} = \operatorname{clos}(\bigcup_{\mu < \lambda} G_{\mu})$. For each $f \in N(X)$, the *spectrum* of f is defined to be the set

 $\sigma(f) = \{\lambda \in \mathbb{C} : f - \lambda 1 \text{ is not invertible in } N(X) \}.$

PROPOSITION 3.4. Let φ be a self-adjoint function and let $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ be its resolution of the identity. Then $\lambda \in \sigma(\varphi)$ iff $e_{\lambda} - e_{\lambda^{-}} \neq 0$.

Proof. Given $\varphi \in S(X)$, define $G_{\lambda}^{0} = \inf\{x : \varphi(x) = \lambda\}$ for all $\lambda \in \mathbf{R}$. We prove that $e_{\lambda} - e_{\lambda^{-}} = \mathcal{X}_{G_{\lambda}^{0}}$.

First observe that G_{λ}^{0} and $\bigcup_{\mu < \lambda} G_{\mu}$ are disjoint open sets. Since *X* is extremely disconnected, their closures are disjoint as well; that is, $G_{\lambda}^{0} \cap G_{\lambda^{-}} = \emptyset$. Moreover, $G_{\lambda^{-}} \subseteq G_{\lambda}$ and $G_{\lambda}^{0} \subseteq G_{\lambda}$, so $G_{\lambda^{-}} \cup G_{\lambda}^{0} \subseteq G_{\lambda}$.

To get equality, suppose $x \in G_{\lambda} \sim G_{\lambda}^{-0}$. Then, since G_{λ} is open, there exists a net $x_d \to x$ such that $x_d \in G_{\lambda}$ and $x_d \notin \{x : \varphi(x) = \lambda\}$, so $\varphi(x_d) < \lambda$ for all d; but then $x_d \in \bigcup_{\mu < \lambda} G_{\mu}$. Hence $x_d \in \operatorname{clos}(\bigcup_{\mu < \lambda} G_{\mu})$. Thus, for all $\lambda \in \mathbf{R}$, $G_{\lambda} = G_{\lambda^-} \cup G_{\lambda}^0$ and $e_{\lambda} - e_{\lambda^-} = \mathcal{X}_{G_{\lambda}^0}$.

There is a natural partial ordering in S(X) that may be defined as follows: $\varphi \ge \psi$ when $\varphi \doteq \psi \ge 0$, that is, $\varphi(x) \ge \psi(x)$ for all $x \in U_{\varphi} \cap U_{\psi}$. This partial ordering induces a lattice structure on S(X), for if φ , $\psi \in S(X)$ then the functions $\varphi \lor \psi = \frac{1}{2}(\varphi \dotplus \psi) \dotplus \frac{1}{2}|\varphi \doteq \psi|$ and $\varphi \land \psi = \frac{1}{2}(\varphi \dotplus \psi) \doteq \frac{1}{2}|\varphi \doteq \psi|$ are, respectively, the least upper and greatest lower bounds of φ and ψ in S(X).

LEMMA 3.5. Let $\varphi, \psi \in S(X)$, and let $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$, $\{f_{\lambda}\}_{\lambda \in \mathbf{R}}$ be their respective resolutions of the identity. Then $\varphi \leq \psi$ iff $f_{\lambda} \leq e_{\lambda}$ iff $H_{\lambda} \subseteq G_{\lambda}$ for all $\lambda \in \mathbf{R}$, where $H_{\lambda} = \inf\{x : \psi(x) \leq \lambda\}$ and $G_{\lambda} = \inf\{x : \varphi(x) \leq \lambda\}$.

The proof is obvious.

In the following theorem we prove that S(X) has the least upper bound property—or, in Kadison's terminology, that S(X) is a boundedly complete lattice.

THEOREM 3.6. If X is Stonean, then S(X) has the least upper bound property.

Proof. Suppose $\mathcal{F} = \{\varphi_{\alpha}\}_{\alpha \in \Omega}$ is a nonempty subset of S(X) with an upper bound (say, ψ_0) in S(X). We prove that there is φ_0 in S(X) such that φ_0 is the least upper bound of $\mathcal{F} = \{\varphi_{\alpha}\}_{\alpha \in \Omega}$.

Define $G_{\lambda} = \inf(\bigcap_{\alpha \in \Omega} \{x : \varphi_{\alpha}(x) \le \lambda\})$ and let $e_{\lambda} = \mathcal{X}_{G_{\lambda}}$ for all $\lambda \in \mathbf{R}$. We claim that the family $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ is a resolution of the identity in C(X).

Let $\lambda = \psi_0(x) < +\infty$. Then $\varphi_\alpha(x) \le \lambda$ for all $\alpha \in \Omega$ and hence

$$\{x:\psi_0(x)<+\infty\}\subseteq G_{\lambda}.$$

Since $\{x : \psi_0(x) < +\infty\}$ is dense in X, we have $\operatorname{clos}(\bigcup_{\lambda \in \mathbf{R}} G_\lambda) = X$.

Next note that $\bigcap_{\lambda \in \mathbf{R}} G_{\lambda} \subseteq \bigcap_{\alpha \in \Omega} \{ x : \varphi_{\alpha}(x) = -\infty \}$. Thus, $\operatorname{int} \left(\bigcap_{\lambda \in \mathbf{R}} G_{\lambda} \right) \subseteq \operatorname{int} \left(\bigcap_{\alpha \in \Omega} \{ x : \varphi_{\alpha}(x) = -\infty \} \right) = \emptyset$.

To complete the proof of our claim, let λ and μ be real numbers with $\mu > \lambda$. Clearly, $G_{\lambda} \subseteq G_{\mu}$ and so $G_{\lambda} \subseteq \operatorname{int}(\bigcap_{\mu > \lambda} G_{\mu})$. On the other hand, if $x \in \bigcap_{\mu > \lambda} G_{\mu}$ then, for all $\alpha \in \Omega$ and all $\mu > \lambda$, we have $\varphi_{\alpha}(x) \leq \mu$. Hence $\varphi_{\alpha}(x) \leq \lambda$ for all $\alpha \in \Omega$. Therefore, $\bigcap_{\mu > \lambda} G_{\mu} \subseteq \bigcap_{\alpha \in \Omega} \{x : \varphi_{\alpha}(x) \leq \lambda\}$ and so $G_{\lambda} = \operatorname{int}(\bigcap_{\mu > \lambda} G_{\mu})$.

Now let φ_0 be the (unique) function in S(X) that corresponds to the resolution of the identity $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$. Note now that $G_{\lambda} = \inf\{x : \varphi_0(x) \le \lambda\}$. From Lemma 3.5, we have $\varphi_{\alpha} \le \varphi_0$ for all $\alpha \in \Omega$.

Moreover, if $\psi \in S(X)$ is such that $\varphi_{\alpha} \leq \psi$ for all $\alpha \in \Omega$ and if $H_{\lambda} = \inf\{x : \psi(x) \leq \lambda\}$, then $H_{\lambda} \subseteq \inf\{x : \varphi_{\alpha}(x) \leq \lambda\}$ for all $\alpha \in \Omega$. It follows that $H_{\lambda} \subseteq G_{\lambda}$ and, from Lemma 3.5 again, we get $\varphi_0 \leq \psi$. This completes the proof. \Box

4. The Spectral Theorem

Let B(H) be the algebra of bounded linear operators on a Hilbert space H, and let Op(H) be the set of unbounded densely defined linear operators on H. We recall that, for $A, B \in Op(H)$, B is called an *extension* of A, denoted by $A \subset B$, if $D(A) \subseteq D(B)$ and Ax = Bx for all $x \in D(A)$.

Let $A \in Op(H)$ be a closed operator, and let $T \in B(H)$. We say that *T* commutes with *A* if $TA \subset AT$; that is, if $x \in D(A)$ then $Tx \in D(A)$ and TAx = ATx. We denote by $\{A\}'$ the set of all operators in B(H) that commute with the operator *A* in the foregoing sense:

$$\{A\}' = \{T \in B(H) : TA \subset AT\}.$$

It is easy to see that $\{A\}'$ is a subalgebra of B(H) that is closed in the strong operator topology (s.o.t.). Note also that $T \in \{A\}'$ iff $T^* \in \{A^*\}'$. Thus, $\{A\}' \cap \{A^*\}'$ is a von Neumann algebra. We write $\{A\}'' = \{\{A\}'\}'$ for the commutant of $\{A\}'$.

DEFINITION. Let \mathcal{A} be a von Neumann algebra of operators on H, and let $A \in Op(H)$ be a closed operator. We say that A is *affiliated* with \mathcal{A} , denoted $A\eta \mathcal{A}$, when $\mathcal{A}' \subset \{A\}'$. We denote by $S(\mathcal{A})$ the family of self-adjoint operators affiliated with the algebra \mathcal{A} .

Note that $A\eta \mathcal{A}$ iff $\mathcal{A}' \subset \{A\}' \cap \{A^*\}'$ iff $\{\{A\}' \cap \{A^*\}'\}' \subset \mathcal{A}$. Note also that $W^*(A) = \{\{A\}' \cap \{A^*\}'\}'$ is the smallest von Neumann algebra with which A is affiliated, and is referred to as the von Neumann algebra *generated by A*. Clearly, if A is self-adjoint ($A = A^*$), then

$$A\eta \mathcal{A}$$
 iff $W^*(A) = \{A\}'' \subset \mathcal{A}$.

At this point, we recall some facts from the basic theory of self-adjoint operators. Let $\sigma(A)$ denote the spectrum of a self-adjoint operator A. Then $\sigma(A) \subseteq$ **R** and $V = (iI - A)^{-1}$ is a bounded operator with adjoint $V^* = (-iI - A)^{-1}$ (see [1, p. 318]). It is easy to see that V is a normal operator in B(H). In fact, $V^*V = VV^* = (V^* - V)/2i$. Moreover, $\{A\}' = \{V\}'$. Thus, $W^*(A) = \{A\}'' = \{V\}''$, where $\{V\}''$ is the abelian von Neumann algebra generated by V (i.e., the s.o.t.-closure of the set of polynomials in V).

Let \mathcal{A} be an abelian von Neumann algebra, and let $X = X_{\mathcal{A}}$ be the Gelfand space (or maximal ideal space) of \mathcal{A} . From the Gelfand–Naimark representation theorem for abelian C^* -algebras, the Gelfand map $\Gamma : \mathcal{A} \to C(X)$ (where $\Gamma(A) = \hat{A}$ is the Gelfand transform of A for $A \in \mathcal{A}$) is an isometric *-isomorphism from \mathcal{A} onto C(X). As we noted in the introduction, $N(\mathcal{A})$ is a (commutative) *-algebra and the isomorphism Γ extends to a *-isomorphism of $N(\mathcal{A})$ with N(X). Although the algebraic properties of $N(\mathcal{A})$ and the extension of Γ will not be used in the sequel, we shall also extend Γ to a bijection of $S(\mathcal{A})$ with S(X).

THEOREM 4.1. Let A be a self-adjoint operator, and let \mathcal{A} be any abelian von Neumann algebra such that $A\eta \mathcal{A}$. Let $X = X_{\mathcal{A}}$. Then there exists a unique $\varphi \in S(X)$ such that $(AB)^{\hat{}} = \varphi \cdot \hat{B}$, whenever $B \in \mathcal{A}$ and $AB \in \mathcal{A}$. We write $\dot{\Gamma}(A) = \dot{\hat{A}} = \varphi$.

Proof. Let $V = (iI - A)^{-1}$. Since $A\eta A$ and $\{V\}'' = \{A\}''$, we have that $V \in A$. Let $v = \hat{V} \in C(X)$ be the Gelfand transform of V.

Note that $AV = -(iI - A)V + iV = -I + iV \in A$. Hence $(AV)^{\hat{}} = -1 + iv$. If *F* is the projection onto Ker(*V*), then *F* is the largest projection in *A* such that VF = 0. Therefore, $\hat{F} = \mathcal{X}_G$, where *G* is the largest clopen set contained in $\{x : v(x) = 0\}$, that is, $G = int\{x : v(x) = 0\}$. Since *V* is one-to-one, F = 0 and so $G = \emptyset$. Thus, 1/v exists in N(X).

Define $\varphi = -1/v + i$. Note that $\varphi^* - \varphi = -2i + (\bar{v} - v)/\bar{v}v$. Furthermore, since $V^*V = VV^* = (V^* - V)/2i$, it follows that $\varphi^* = \varphi$. Hence, $\varphi \in S(X)$.

Note also that, on $\{x : v(x) \neq 0\}$, an open dense subset of X, $\varphi v = -1 + iv = (AV)^{2}$. Thus, by Theorem 2.1, φv has a unique continuous extension, $\varphi \cdot v = (AV)^{2}$, on X.

Now, if C = AB with $B, C \in A$, then

$$VC = VAB = -V(iI - A)B + iVB \subset -B + iVB.$$

Since $VC \in B(H)$, it follows that VC = -B + iVB.

Let $b, c \in C(X)$ be such that $b = \hat{B}$ and $c = \hat{C}$. Then vc = (-1 + iv)b. This implies c = (-1/v + i)b on $\{x : v(x) \neq 0\}$. Therefore, $c = \varphi \cdot b$; that is, $(AB)^{\hat{}} = \varphi \cdot \hat{B}$.

To see that the restriction of $\dot{\Gamma}$ in \mathcal{A} is Γ , let A be a bounded self-adjoint operator in \mathcal{A} whose Gelfand transform $\hat{A} = a$. Then v = 1/(i - a) and $\dot{\Gamma}(A) = \varphi = \alpha = \Gamma(A)$.

LEMMA 4.2. Let A be a self-adjoint operator, and let A be any abelian von Neumann algebra such that $A\eta A$. Let $\varphi = \dot{A}$. Suppose $B \in A$ and $\operatorname{supp}(\hat{B}) \subseteq U_{\varphi} = \{x : -\infty < \varphi(x) < +\infty\}$. Then $AB \in A$.

Proof. Let $V = (iI - A)^{-1}$, $v = \hat{V}$, and $b = \hat{B}$. Set $G = \text{supp}(b) = \text{clos}\{x : b(x) \neq 0\}$ (the support of *b*). Then *G* is a clopen set and $G \subseteq \{x : v(x) \neq 0\}$. Now, if $e = \mathcal{X}_G$ and $E \in \mathcal{A}$ with $\hat{E} = e$, then EB = B. Define $c = e \cdot 1/v$. If $C \in A$ with $\hat{C} = c$, then $c \in C(X)$ and VC = E. Thus, $AB = AEB = AVCB \in A$.

DEFINITION. A *resolution* of the identity in B(H) is a family of projections $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ in B(H) satisfying:

(i) $\bigvee_{\lambda \in \mathbf{R}} E_{\lambda} = I$, (ii) $\bigwedge_{\lambda \in \mathbf{R}} E_{\lambda} = 0$, and (iii) $\bigwedge_{\mu > \lambda} E_{\mu} = E_{\lambda}$ for all $\lambda \in \mathbf{R}$.

We are now ready to prove the spectral theorem for unbounded self-adjoint operators.

THEOREM 4.3 (Spectral Theorem). Let A be an unbounded self-adjoint operator on H. Then there exists a unique resolution of the identity $\{E_{\lambda}\}_{\lambda \in \mathbf{R}}$ in B(H) such that:

- (i) for any interval $J = (\alpha, \beta]$, if $F_J = E_\beta E_\alpha$ then AF_J is a bounded selfadjoint operator on H and $AF_J = \int_{\alpha}^{\beta} \lambda \, dE_\lambda$;
- (ii) $x \in D(A)$ iff the net $\{AF_Jx\}_{J \in \mathcal{J}}$ converges and in fact

$$Ax = \lim AF_J x = \lim \left(\int_{\alpha}^{\beta} \lambda \, dE_{\lambda} \right) x = \left(\int_{-\infty}^{\infty} \lambda \, dE_{\lambda} \right) x.$$

Moreover, $E_{\lambda} \in \{A\}''$ *, and* $\{E_{\lambda}\}_{\lambda \in \mathbf{R}}$ *is called the* spectral family *of* A*.*

Proof. (i) Let $\mathcal{A} = \{A\}''$ and $X = X_{\mathcal{A}}$. If $\varphi = \hat{A}$ and $e_{\lambda} = \mathcal{X}_{G_{\lambda}}$, where $G_{\lambda} = \inf\{x : \varphi(x) \leq \lambda\}$, then $\{e_{\lambda}\}_{\lambda \in \mathbb{R}}$ is a resolution of the identity in C(X). For $J = (\alpha, \beta]$, let $f_J = e_{\beta} - e_{\alpha}$. From Theorem 3.2, $\varphi \cdot f_J \in C(X)$ and $\varphi \cdot f_J = \int_{\alpha}^{\beta} \lambda de_{\lambda}$. Now take $E_{\lambda} \in \mathcal{A}$ such that $\hat{E}_{\lambda} = e_{\lambda}$, and let $\hat{F}_J = f_J$. Then $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is a resolution of the identity in B(H) and $F_J = E_{\beta} - E_{\alpha}$.

Note that $\operatorname{supp}(f_J) = G_\beta \sim G_\alpha \subseteq U_\varphi$. Hence, by Lemma 4.2, $AF_J \in \mathcal{A}$. Moreover, $(AF_J)^{\widehat{}} = \varphi \cdot f_J$ is real-valued, hence AF_J is self-adjoint. At the same time, since the Gelfand map is an isometry, $AF_J = \int_\alpha^\beta \lambda \, dE_\lambda$.

(ii) Note that $F_J \in \mathcal{A} \subseteq \mathcal{A}' = \{A\}'$ and so $F_J \mathcal{A} \subset AF_J$ for all J. Let \mathcal{J} be the directed set of half-open intervals $J = (\alpha, \beta]$ in **R** ordered by inclusion. Since $\bigcup_{J \in \mathcal{J}} \{x : f_J(x) \neq 0\}$ is dense in X, it follows that $\bigvee_{J \in \mathcal{J}} f_J = 1$. Hence, $\bigvee_{J \in \mathcal{J}} F_J = I$. Therefore, $F_J \uparrow I$ in the strong operator topology.

Now, if $x \in D(A)$, then $AF_J x = F_J A x \rightarrow A x$. Conversely, suppose $AF_J x \rightarrow y$. y. Then, since A is closed and $F_J x \rightarrow x$, we have $x \in D(A)$ and A x = y.

It remains to prove the uniqueness of the spectral family. Suppose $\{E'_{\lambda}\}_{\lambda \in \mathbb{R}}$ is another resolution of the identity satisfying (i) and (ii). Let \mathcal{B} be the abelian von Neumann algebra generated by $\{E'_{\lambda}\}_{\lambda \in \mathbb{R}}$.

Let $F'_{\beta} = E'_{\beta} - E'_{\alpha} \in \mathcal{B}$. By (i), AF'_{β} is the limit in the uniform operator topology (hence, s.o.t.) of a net of operators in \mathcal{B} , so $AF'_{\beta} \in \mathcal{B}$. If $B \in \mathcal{B}'$ and $x \in D(A)$, then by (ii) we have $A(BF'_{\beta}x) = BAF'_{\beta}x \rightarrow BAx$. At the same time $BF'_{\beta}x \rightarrow Bx$. Since A is closed, we conclude that $B \in \{A\}'$. Thus, $\mathcal{A} \subseteq \mathcal{B}$.

Now, if *Y* is the Gelfand space of \mathcal{B} and $e'_{\lambda} = (E'_{\lambda})^{\hat{}}$, then $\varphi \cdot f'_{J} = \int_{\alpha}^{\beta} \lambda \, de'_{\lambda}$ and $\varphi \cdot f_{J} = \int_{\alpha}^{\beta} \lambda \, de_{\lambda}$ in *Y*. Because such a representation is unique, it follows that $e'_{\lambda} = e_{\lambda}$ for all λ . Therefore, $E'_{\lambda} = E_{\lambda}$ for all $\lambda \in \mathbf{R}$.

REMARK 4.4. For any $x \in H$, let μ_x be the unique Borel measure on **R** satisfying $\mu_x(J) = (F_J x, x) = ||F_J x||^2 = (E_\beta x, x) - (E_\alpha x, x)$. Part (ii) of the spectral theorem can be rewritten equivalently as follows:

$$x \in D(A)$$
 iff $\int_{-\infty}^{\infty} \lambda^2 d\mu_x(\lambda) < \infty$.

For this, first note that $F_J F_K = F_{J \cap K}$ for $J, K \in \mathcal{J}$ (since $E_{\lambda} E_{\mu} = E_{\min(\lambda, \mu)}$). Furthermore, we have

$$\|AF_J x\|^2 = \lim_{n \to \infty} \left\| \sum_{j=1}^n \xi_j (E_{\lambda_j} - E_{\lambda_{j-1}}) x \right\|^2 = \lim_{n \to \infty} \left\| \sum_{j=1}^n \xi_j F_{J_j} x \right\|^2$$
$$= \lim_{n \to \infty} \sum_{j=1}^n \xi_j^2 \|F_{J_j} x\|^2 = \lim_{n \to \infty} \sum_{j=1}^n \xi_j^2 \mu_x (J_j)$$
$$= \int_J \lambda^2 d\mu_x(\lambda) \to \int_{-\infty}^\infty \lambda^2 d\mu_x(\lambda).$$

Now, if $x \in D(A)$ then $AF_J x \to Ax$. So $||AF_J x||^2 \to ||Ax||^2$. Therefore,

$$\int_{-\infty}^{\infty} \lambda^2 \, d\mu_x(\lambda) = \|Ax\|^2 < \infty.$$

Conversely, suppose that $\int_{-\infty}^{\infty} \lambda^2 d\mu_x(\lambda) < \infty$. Let $\varepsilon > 0$ and $\gamma < \alpha < \beta < \delta$ be any real numbers. If $J = (\alpha, \beta]$, $K = (\gamma, \delta]$, $L = (\gamma, \alpha]$, and $M = (\beta, \delta]$, then by choosing *J* large enough we have

$$||AF_{K}x - AF_{J}x||^{2} = ||AF_{L}x||^{2} + ||AF_{M}x||^{2} \le \int_{R-J} \lambda^{2} d\mu_{x}(\lambda) < \varepsilon.$$

Hence, the net $\{AF_Jx\}_{J \in \mathcal{J}}$ is Cauchy and so converges in *H*.

Note also that, for $x \in D(A)$, the representation $(Ax, x) = \int_{-\infty}^{\infty} \lambda d\mu_x(\lambda)$ is valid. By the polarization identity, $(Ax, y) = \int_{-\infty}^{\infty} \lambda d\mu_{x,y}(\lambda)$ for $x \in D(A)$ and $y \in H$, where $\mu_{x,y}(J) = (F_J x, y)$. This is the classical form of the spectral decomposition of a self-adjoint operator (see e.g. [6, Thm. 13.30]).

For the proof of the following lemma, see [5, Lemma 5.6.1] (and replace the sequence by a net).

LEMMA 4.5. If $\{F_d\}$ is an increasing net of projections on the Hilbert space H such that $\bigvee_d F_d = I$, and if A_0 is a linear operator with dense domain $\bigcup_d F_d(H) = (D_0)$ such that A_0F_d is a bounded self-adjoint operator on H, then A_0 is closable and its closure is the unique self-adjoint operator satisfying $AF_d = A_0F_d$ for all d.

PROPOSITION 4.6. If $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is a resolution of the identity in B(H) and A is an abelian von Neumann algebra containing $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$, then there is a self-adjoint operator A in S(A) whose spectral family is $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$.

Moreover, if $X = X_A$ then the mapping $\dot{\Gamma} \colon S(A) \to S(X)$ is a bijection.

Proof. Let $e_{\lambda} = \hat{E}_{\lambda}$ for all $\lambda \in \mathbf{R}$. Then $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ is a resolution of the identity in C(X). Let $\varphi \in S(X)$ be the (unique) self-adjoint function associated to $\{e_{\lambda}\}_{\lambda \in \mathbf{R}}$ (Proposition 3.1). Then $\varphi \cdot f_J \in C(X)$ and $\varphi \cdot f_J = \int_{\alpha}^{\beta} \lambda \, de_{\lambda}$, with $J = (\alpha, \beta]$ and $f_J = e_{\beta} - e_{\alpha}$.

If, for each $J \in \mathcal{J}$, F_J and A_J are the operators in \mathcal{A} whose Gelfand transforms (in C(X)) are f_J and $\varphi \cdot f_J$, respectively, then $\{F_J\}_{J \in \mathcal{J}}$ is an increasing net of projections such that $\bigvee_{J \in \mathcal{J}} F_J = I$, and A_J is a bounded self-adjoint operator.

Define an operator A_0 with domain $D_0 = \bigcup_{J \in \mathcal{J}} F_J(H)$ by $A_0 x = A_J x$ if $x \in F_J(H)$. We claim that A_0 is well-defined; for this, note first that since $(\varphi \cdot f_J) f_K = \varphi \cdot f_{J\cap K}$, it follows that $A_J F_K = A_{J\cap K}$. Now, if x is also in $F_K(H)$, then $x = F_J x$, $x = F_K x$, and $A_J x = A_J F_K x = A_{J\cap K} x = A_K F_J x = A_K x$.

From Lemma 4.5, A_0 is closable and its closure $A (= \bar{A}_0)$ is self-adjoint. Since $A_0 \subset A$ and $A_0F_J = A_J$ is everywhere defined, we have $AF_J = A_0F_J = A_J$. Therefore, $AF_J = \int_{\alpha}^{\beta} \lambda \, dE_{\lambda}$.

Next, we show that $F_JA \subset AF_J$ for all J. Suppose $x \in D(A)$. Then there is a sequence $\{x_n\}$ in D_0 such that $x_n \to x$ and $A_0x_n \to Ax$ (since $A = \overline{A}_0$). Hence, $F_JA_0x_n \to F_JAx$. Note that, for each *n*, there exists a *K* such that $x_n = F_Kx_n$. Hence,

$$F_J A_0 x_n = F_J A_0 F_K x_n = F_J A_K x_n = A_K F_J x_n = A_0 F_J x_n.$$

Now, $F_J x_n \to F_J x$ and $AF_J x_n = A_0 F_J x_n = F_J A_0 x_n \to F_J A x$. Since *A* is closed, $F_J x \in D(A)$ and $AF_J x = F_J A x$. The same argument as in the proof of Theorem 4.3 gives that $x \in D(A)$ iff the net $\{AF_J x\}_{J \in \mathcal{J}}$ converges (and $AF_J x \to Ax$).

To see that A is affiliated with A, suppose that T is in A' and that $x \in D(A)$. Then $TF_J x \to Tx$ (since $F_J x \to x$) and $ATF_J x = AF_J Tx = TAF_J x \to TAx$. Since A is closed, $Tx \in D(A)$ and ATx = TAx. Thus, $A' \subset \{A\}'$.

It is now clear that $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is the spectral family of A (by uniqueness, as in Theorem 4.3). Moreover, since A is in $S(\mathcal{A})$, $\dot{\Gamma}(A)$ makes sense and $(AF_J)^{\hat{}} = \dot{\Gamma}(A) \cdot f_J$. Therefore, $\dot{\Gamma}(A) \cdot f_J = \varphi \cdot f_J$ for all J (since $(AF_J)^{\hat{}} = \varphi \cdot f_J$). Thus, $\dot{\Gamma}(A) = \varphi$. (Invoking Theorem 3.2, this also proves that $\dot{\Gamma} : S(\mathcal{A}) \to S(X)$ is a bijection.)

COROLLARY 4.7. If A is a self-adjoint operator and $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is its spectral family, then $W^*(A) = \{A\}'' = \{E_{\lambda} : \lambda \in \mathbb{R}\}''$.

Proof. Take $\mathcal{A} = \{ E_{\lambda} : \lambda \in \mathbf{R} \}''$ in Proposition 4.6. Then A is affiliated with \mathcal{A} . Therefore, $\{A\}'' \subseteq \mathcal{A}$. On the other hand, since $E_{\lambda} \in \{A\}''$, we have $\{ E_{\lambda} : \lambda \in \mathbf{R} \}'' \subseteq \{A\}''$.

PROPOSITION 4.8. Let A be a self-adjoint operator, and let A be any abelian von Neumann algebra such that $A\eta A$. Let $\varphi = \dot{A}$. Then $\sigma(A) = \varphi(U_{\varphi})$.

Proof. If $\lambda \notin \sigma(A)$, then $B = (\lambda I - A)^{-1} \in \mathcal{A}$ and $I = (\lambda I - A)B$. Taking Gelfand transforms, this gives $1 = (\lambda - \varphi) \cdot b$ with $b = \hat{B}$. Thus, $\lambda \notin \varphi(U_{\varphi})$.

Conversely, if $\lambda \notin \varphi(U_{\varphi})$ then $b \equiv (1/(\lambda - \varphi)) \in C(X)$. Take $B \in \mathcal{A}$ such that $\hat{B} = b$. Since $\operatorname{supp}(b) \subseteq U_{\varphi}$, $AB \in \mathcal{A}$. Now $b \cdot (\lambda - \varphi) = (\lambda - \varphi) \cdot b = 1$ and so $B(\lambda I - A) \subset I = (\lambda I - A)B$. Thus, $\lambda \notin \sigma(A)$.

The spectral family $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ of a self-adjoint operator completely determines the spectrum of the operator.

THEOREM 4.9. Let $A \in Op(H)$ be a self-adjoint operator, $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ its resolution of the identity, and $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$. Then $\sigma(A) \cap (\alpha, \beta) = \emptyset$ iff $E_{\beta^-} - E_{\alpha} = 0$, where $E_{\beta^-} = \bigvee_{\mu < \beta} E_{\mu}$.

Proof. Let $\mathcal{A} = \{A\}'', X = X_{\mathcal{A}}, \varphi = \hat{A}$, and $e_{\lambda} = \hat{E}_{\lambda}$. Recall that $\sigma(A) = \varphi(U_{\varphi})$. Suppose that $\varphi(U_{\varphi}) \cap (\alpha, \beta) = \emptyset$. Then $\{x : \varphi(x) < \beta\} = \{x : \varphi(x) = \alpha\}$. This implies that $\{x : \varphi(x) < \beta\} = \inf\{x : \varphi(x) = \alpha\} = G_{\alpha}$ and so $\operatorname{clos}\{x : \varphi(x) < \beta\} = G_{\alpha}$.

Let $g = \mathcal{X}_{\operatorname{clos} \{x : \varphi(x) < \beta\}}$. Then we have $g \ge e_{\mu}$ for all $\mu < \beta$ and thus

$$g \geq \bigvee_{\mu < \beta} e_{\mu} = e_{\beta^-}.$$

If $\psi \in S(X)$ is such that $e_{\mu} \leq \psi$ for all $\mu < \beta$, then $G_{\mu} \subseteq \{x : \psi(x) \geq 1\}$. Hence

$$\{x:\varphi(x)<\beta\}=\bigcup_{\mu<\beta}\{x:\varphi(x)<\beta\}\subseteq\bigcup_{\mu<\beta}G_{\mu}\subseteq\{x:\psi(x)\geq1\}.$$

Therefore, $\operatorname{clos} \{ x : \varphi(x) < \beta \} \subseteq \{ x : \psi(x) \ge 1 \}$; in other words, $g \le \psi$. Thus, $e_{\beta^-} = g = \mathcal{X}_{\operatorname{clos} \{ x : \varphi(x) < \beta \}} = \mathcal{X}_{G_{\alpha}} = e_{\alpha}$; that is, $E_{\beta^-} - E_{\alpha} = 0$.

Conversely, let $E_{\beta^-} - E_{\alpha} = 0$ or (equivalently) $e_{\beta^-} - e_{\alpha} = 0$. Suppose there is an $x \in X$ such that $\alpha < \varphi(x) < \beta$. Then there exist real numbers λ , μ with $\alpha < \lambda < \mu < \beta$ such that $e_{\lambda}(x) = 0$ and $e_{\mu}(x) = 1$. It follows that $e_{\alpha}(x) = 0$ and $e_{\beta^-}(x) = (\bigvee_{\mu < \beta} e_{\mu})(x) = 1$. Therefore, $e_{\beta^-}(x) - e_{\alpha}(x) = 1$, which is a contradiction.

THEOREM 4.10. Let $A \in Op(H)$ be a self-adjoint operator and $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ its resolution of the identity. Then $Ker(\lambda I - A) = Range(E_{\lambda} - E_{\lambda^{-}})$ for all $\lambda \in \mathbb{R}$. (Thus, λ is an eigenvalue of A iff $E_{\lambda} - E_{\lambda^{-}} \neq 0$.)

Proof. Let *P* be the projection onto Ker $(\lambda I - A)$; then $AP = \lambda P$. Since $PA \subset (AP)^* = \lambda P^* = \lambda P$, it follows that $P \in \{A\}'$. Thus, *P* commutes with the spectral projections E_{λ} of *A*.

Take now \mathcal{A} to be the abelian von Neumann algebra generated by A, P, and $\{E_{\lambda}\}_{\lambda \in \mathbf{R}}$, that is, $\mathcal{A} = \{A, P, E_{\lambda}\}''$. Let $X = X_{\mathcal{A}}$, $\varphi = \hat{A}$, $e_{\lambda} = \hat{E}_{\lambda}$, and $p = \hat{P}$. Note that P is the largest projection in \mathcal{A} such that $(\lambda I - A)P = 0$ and, as a result, $\{x : p(x) = 1\} = \inf\{x : \varphi(x) = \lambda\} = G_{\lambda}^{0}$. Hence, from Proposition 3.4, $p = e_{\lambda} - e_{\lambda^{-}}$. In the remainder of this section we shall characterize the spectral family of a selfadjoint operator. We begin with some preliminaries.

Let *A* be any operator. A *bounding sequence* for *A* is a nondecreasing sequence $\{F_n\}$ of projections such that $\bigvee_{n=1}^{\infty} F_n = I$ and $F_nA \subset AF_n$, with $AF_n \in B(H)$ for all *n*. Note that, for a self-adjoint operator *A*, we can construct a bounding sequence $\{F_n\}$ for *A* from its spectral family $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$. In fact, $F_n = F_{J_n}$ where $J_n = (-n, n], n = 1, 2, ...$

LEMMA 4.11. If $\{F_n\}$ is a bounding sequence for a closable operator A, then $\{F_n\}$ is also a bounding sequence for \overline{A} (the closure of A) and $\overline{A}F_n = AF_n$ for all n.

Proof. Let $x \in D(\overline{A})$. Fix *m* and choose $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to \overline{A}x$. Then $F_m x_n \to F_m x$ and $\overline{A}F_m x_n = AF_m x_n = F_m Ax_n \to F_m \overline{A}x$. Therefore $F_m \overline{A} \subset \overline{A}F_m$. Since $AF_m \subseteq \overline{A}F_m$ and $AF_m \in B(H)$, it follows that $\overline{A}F_m = AF_m$.

A *core* for a closed linear operator A is a dense linear subspace D_0 of the domain of A such that $A = \overline{A|_{D_0}}$. That is, given any $x \in D(A)$, there exist $\{x_n\} \in D_0$ such that $x_n \to x$ and $Ax_n \to Ax$. Note that if A is a closed operator and $\{F_n\}$ is a bounding sequence for A, then $D_0 = \bigcup_{n=1}^{\infty} \text{Range}(F_n)$ is a core for A.

A self-adjoint operator *A* is said to be *positive* $(A \ge 0)$ if $(Ax, x) \ge 0$ for all $x \in D(A)$ or, equivalently, if $\sigma(A) \subseteq [0, +\infty)$ (see [6, Thm. 13.31]). From Proposition 4.8 we see that the mapping $\dot{\Gamma} : S(A) \to S(X)$ is order-preserving. Note also that, for $A, B \in S(A), AB = A^*B^* \subset (BA)^*$ and so *AB* is closable. We shall denote the closure of *AB* by $A \cdot B$.

THEOREM 4.12. Let $A \in Op(H)$ be a self-adjoint operator and $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ a resolution of the indentity in B(H). Then $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is the spectral family of A iff $AE_{\lambda} \leq \lambda E_{\lambda}$ and $A(I - E_{\lambda}) \geq \lambda(I - E_{\lambda})$ for all $\lambda \in \mathbb{R}$.

Proof. Let $\mathcal{A} = \{A\}'', X = X_{\mathcal{A}}, \varphi = \hat{A}, e_{\lambda} = \hat{E}_{\lambda}, F_J = E_{\beta} - E_{\alpha}$, and $\hat{F}_J = f_J$. Then $\varphi \cdot e_{\lambda} \leq \lambda e_{\lambda}$ and $\varphi \cdot (1 - e_{\lambda}) \geq \lambda(1 - e_{\lambda})$. Since $\dot{\Gamma} : S(\mathcal{A}) \to S(X)$ is order-preserving, all we need show is that $AE_{\lambda} \in S(\mathcal{A}), \dot{\Gamma}(AE_{\lambda}) = \varphi \cdot e_{\lambda}$, and $\dot{\Gamma}(A(I - E_{\lambda})) = \varphi \cdot (1 - e_{\lambda})$.

First note that AE_{λ} is closed. Also, since $E_{\lambda} \in \mathcal{A}$, we have $E_{\lambda}A \subset AE_{\lambda}$. Therefore, $(AE_{\lambda})^* \subset AE_{\lambda}$. On the other hand, $E_{\lambda}A = E_{\lambda}^*A^* \subset (AE_{\lambda})^*$. Hence, $E_{\lambda} \cdot A \subset (AE_{\lambda})^*$.

We show that $E_{\lambda} \cdot A = AE_{\lambda}$. For this, first note that $F_n = F_{J_n}$, where $J_n = (-n, n]$ for n = 1, 2, ... is a bounding sequence for both AE_{λ} and $E_{\lambda}A$. By Lemma 4.11, this is also the case for $E_{\lambda} \cdot A$ and $E_{\lambda} \cdot AF_n = E_{\lambda}AF_n$. Now

$$AE_{\lambda}F_n = AF_nE_{\lambda}F_n = E_{\lambda}F_nAF_n = E_{\lambda}AF_n = E_{\lambda} \cdot AF_n$$

that is, AE_{λ} and $E_{\lambda} \cdot A$ agree on their common core $D_0 = \bigcup_{n=1}^{\infty} \operatorname{Range}(F_n)$. Hence, $E_{\lambda} \cdot A = AE_{\lambda}$ and so $(AE_{\lambda})^* = AE_{\lambda}$. If $T \in \mathcal{A}'$ then, since $A \in S(\mathcal{A})$, $TAE_{\lambda} \subset ATE_{\lambda} = AE_{\lambda}T$. Thus, $AE_{\lambda} \in S(\mathcal{A})$. Now, since F_J and E_{λ} commute and $AF_JE_{\lambda} \in A$, we have $\Gamma(AF_JE_{\lambda}) = \Gamma(AE_{\lambda}F_J)$; that is, $\varphi \cdot f_Je_{\lambda} = \dot{\Gamma}(AE_{\lambda}) \cdot f_J$. Thus, $\dot{\Gamma}(AE_{\lambda}) = \varphi \cdot e_{\lambda}$. Similarly, $\dot{\Gamma}(A(I - E_{\lambda})) = \varphi \cdot (1 - e_{\lambda})$. Conversely, suppose $AE_{\lambda} \leq \lambda E_{\lambda}$ and $A(I - E_{\lambda}) \geq \lambda(I - E_{\lambda})$ for all $\lambda \in \mathbf{R}$. From $AE_{\lambda} \leq \lambda E_{\lambda}$ we have that AE_{λ} is self-adjoint. Hence, $E_{\lambda}A \subset AE_{\lambda}$.

If $\{P_{\mu}\}_{\mu \in \mathbf{R}}$ is the spectral family of *A*, then $E_{\lambda}P_{\mu} = P_{\mu}E_{\lambda}$ for all λ, μ . Take $\mathcal{A} = \{E_{\lambda}, P_{\mu}\}''$, the abelian von Neumann algebra generated by E_{λ} and P_{μ} . Note that *A* is affiliated with \mathcal{A} .

Let $X = X_A$, $\varphi = \hat{A}$, $e_{\lambda} = \hat{E}_{\lambda}$, $\hat{P}_{\mu} = p_{\mu}$, and $F_J = P_{\beta} - P_{\alpha}$. As before, we have $\dot{\Gamma}(AE_{\lambda}) = \varphi \cdot e_{\lambda}$ and $\dot{\Gamma}(A(I - E_{\lambda})) = \varphi \cdot (1 - e_{\lambda})$. The hypothesis implies that $\varphi \cdot e_{\lambda} \leq \lambda e_{\lambda}$ and $\varphi \cdot (1 - e_{\lambda}) \geq \lambda (1 - e_{\lambda})$.

Now, if $X_{\lambda} = \{x : e_{\lambda}(x) = 1\}$ then $X_{\lambda} = \inf\{x : \varphi(x) \le \lambda\} = \{x : p_{\lambda}(x) = 1\}$. Therefore, $E_{\lambda} = P_{\lambda}$ for all $\lambda \in \mathbf{R}$.

THEOREM 4.13. Let $A \in Op(H)$ be a self-adjoint operator and $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ a resolution of the identity in B(H). Then $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is the spectral family of A iff:

- (i) $F_JA \subset AF_J$ for any interval $J = (\alpha, \beta]$ where $F_J = E_\beta E_\alpha$ —that is, F_J reduces A;
- (ii) the relation $x \in \text{Range}(F_J)$ implies $\alpha ||x||^2 \le (Ax, x) \le \beta ||x||^2$.

Proof. If $\{E_{\lambda}\}_{\lambda \in \mathbf{R}}$ is the spectral family of A then, as noted in the proof of the spectral theorem, $F_JA \subset AF_J$ for all J. Furthermore, if $x \in \text{Range}(F_J)$ then $Ax = AF_Jx = (\int_{\alpha}^{\beta} \lambda dE_{\lambda})x$. Hence $(Ax, x) = \int_{\alpha}^{\beta} \lambda d\mu_x(\lambda)$, which clearly implies (ii).

Conversely, suppose that conditions (i) and (ii) hold. First note that $\alpha F_J \leq AF_J \leq \beta F_J$ means that AF_J is a bounded self-adjoint operator. Let $D_0 = \bigcup_J \operatorname{Range}(F_J)$. Then D_0 is a core for A. Since AF_JE_{λ} is self-adjoint, we have $E_{\lambda}AF_J \subset AF_JE_{\lambda} = AE_{\lambda}F_J$. It follows that $E_{\lambda}A \subset AE_{\lambda}$.

Now let $\lambda \in \mathbf{R}$. Choose $\kappa \in \mathbf{R}$ such that $\kappa < \lambda$ and let $F_J = E_{\lambda} - E_{\kappa}$. If $x \in \text{Range}(F_J)$ then we have

$$(AE_{\lambda}x, x) = (AF_Jx, x) = (Ax, x) \le \lambda ||x||^2 \le \lambda (E_{\lambda}x, x).$$

Thus, $AE_{\lambda} \leq \lambda E_{\lambda}$.

Similarly, given $\lambda \in \mathbf{R}$, choose $\mu \in \mathbf{R}$ such that $\mu > \lambda$ and let $F_J = E_{\mu} - E_{\lambda}$. If $x \in \text{Range}(F_J)$ then we have

$$(A(I - E_{\lambda})x, x) = (AF_J x, x) = (Ax, x) \ge \lambda ||x||^2 = \lambda (||E_{\mu}x||^2 - ||E_{\lambda}x||^2).$$

Letting $\mu \to +\infty$, we get $(A(I - E_{\lambda})x, x) \ge \lambda((I - E_{\lambda})x, x)$. Thus, $A(I - E_{\lambda}) \ge \lambda(I - E_{\lambda})$.

Since D_0 is a core for A, both inequalities hold for any $x \in D(A)$. By Theorem 4.12, the proof is complete.

EXAMPLE 4.14. Let (S, S, μ) be a σ -finite measure space and let $g: S \to \mathbf{R}$ be a measureable function finite a.e. on *S*. The multiplication operator M_g with $D(M_g) = \{ f \in L^2(S) : gf \in L^2(S) \}$ and $M_g(f) = gf$ for $f \in D(M_g)$ is a self-adjoint operator. Let $E_{\lambda} = M_{\phi_{\lambda}}$, where $\phi_{\lambda} = \mathcal{X}_{\{g \leq \lambda\}}$ for $\lambda \in \mathbf{R}$. One can see that $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is a resolution of the identity in $B(L^2(S))$. Now, since $g\phi_{\lambda} \leq \lambda\phi_{\lambda}$ and $g(1 - \phi_{\lambda}) \geq \lambda(1 - \phi_{\lambda})$ a.e., it follows that $M_g E_{\lambda} \leq \lambda E_{\lambda}$ and $M_g(I - E_{\lambda}) \geq \lambda(I - E_{\lambda})$ for all $\lambda \in \mathbb{R}$. Therefore, from Theorem 4.12, $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ is the spectral family of M_g .

ACKNOWLEDGMENT. I take this opportunity to thank Professor Stanley Kaplan for his valuable suggestions and for useful discussions.

References

- [1] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
- [2] J. M. G. Fell and J. L. Kelley, An algebra of unbounded operators, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 592–598.
- [3] L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Toronto, 1960.
- [4] R. V. Kadison, Algebras of unbounded functions and operators, Exposition. Math. 4 (1986), 3–33.
- [5] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. I, Academic Press, New York, 1983.
- [6] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
- [7] M. H. Stone, A general theory of spectra. I, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 280–283.
- [8] —, Boundedness properties in function-lattices, Canad. J. Math. 1 (1949), 176–186.

Graduate School and University Center City University of New York New York, NY 10036