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(A Question by E. Chirka)

Jean Pier re Rosay

We will denote byU (resp.Ū ) the open (resp. closed) unit disk inC. Chirka [1]
(see also [2]) recently proved the following remarkable result.

Theorem (Chirka). Letf be a continuous function on̄U with values inU, and
letS be its graph(S = {(ζ, f(ζ))∈C2, ζ ∈ Ū}). Then every holomorphic function
defined on a connected neighborhood of the set(∂U × U) ∪ S in C× U extends
holomorphically to the polydiskU2.

It is shown by a simple example in [1] that the condition|f | < 1 onU (not only
on ∂U) is essential.

If f is holomorphic, the result is of course classical. Here, answering a question
by Chirka, we show that surprisingly (?) the theorem just stated does not extend
to higher dimensions.

Our result is as follows.

Proposition. There exist continuous functionsϕ1, ϕ2 defined onŪ and satisfy-
ing |ϕ1|, |ϕ2| < 1, and there exists a domainω in C3 such that:
(i) ω contains∂U × U2 and ω contains the graph of(ϕ1, ϕ2) (i.e., (ζ, ϕ1(ζ),

ϕ2(ζ))∈ω for everyζ ∈ Ū ); but
(ii) there exists a holomorphic functionh onω that does not extend holomorphi-

cally toU3.

Remark. It may be worthwhile pointing out that, in the construction detailed
next, the following is achieved: One can find an arbitrarily small neighborhoodZ

of ∂U ×U2 and functionsϕ1 andϕ2, as in the Proposition, such that the union of
Z and of the graph of(ϕ1, ϕ2) has a basis of pseudoconvex neighborhoods.

An explicit example would still be desirable. The first and main step in the construc-
tion of the example is as follows. Find a strictly pseudoconvex domain� ⊂ C3, as
well as the graph0 of a smooth function on the unit disk,0 = {(ζ, ϕ1(ζ), ϕ2(ζ))∈
C3, ζ ∈ Ū}, such that the following statements hold.
(a) � contains∂U × U2.

(b) |ϕ1| and|ϕ2| < 1, and|∂ϕ1/∂ζ̄ | + |∂ϕ2/∂ζ̄ | 6= 0.
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(c) There exists anε ∈ (0,1) such that for|ζ | > 1− ε, (ζ, ϕ1(ζ), ϕ2(ζ))∈�, and
for |ζ | < 1− ε, (ζ, ϕ1(ζ), ϕ2(ζ)) /∈ �̄; 0 and� intersect transversally (along
|ζ | = 1− ε), andϕ1 andϕ2 are real analytic in a neighborhood of|ζ | = 1− ε.

(d) The intersection curveγ of ∂�and0 (given byγ (ζ)= (ζ, ϕ1(ζ), ϕ2(ζ)), |ζ | =
1− ε) is a complex tangential curve in∂�; that is, ˙γ (ζ)∈ T(∂�) ∩ iT (∂�).

The construction of� and0 is carried out in Section 1. It provides us with a
strictly pseudoconvex domain� and a totally real disk(0∩{|ζ | ≤ 1−ε}) attached
to its boundary along a complex tangential curve.

Proof of Proposition.It is a well-known result of Eliashberg [3] (see especially
Sec. 2), that the foregoing conditions, (d) being essential, ensure that�̄ ∪ 0 has
a basis of pseudoconvex neighborhoods. However, since the precise statement is
somewhat hard to find in [3], we do provide a justification of this in Section 2.

Take a connected pseudoconvex neighborhoodω of �̄ ∪ 0, not containing the
unit polydiskU3. Then any not holomorphically extendable functionh defined on
ω provides the desired example.

1. Construction of��� and000

In C2 we will use coordinates(ζ, z1) and inC3 we will use(ζ, z1, z2).

1.1. Construction of DomainVr ⊂ C2, with a Disk Attached

For r > 0 (to be taken small) we consider the strictly pseudoconvex domain

Ur = {(ζ, z1)∈C2, (|ζ |2 −1)2 + r 2|z1|2 < r 2}.
We claim that we can chooseε andκ > 0 such that the curve

γ 0 = {((1− ε)eiθ , κeiθ ), θ ∈ [0,2π]}
is a complex tangential curve in the strictly pseudoconvex hypersurface that bounds
Ur. Indeed we get two conditions to satisfy:

[(1− ε)2 −1]2 + r 2κ 2 = r 2, (1)

2[(1− ε)2 −1](1− ε)2 + r 2κ 2 = 0. (2)

Equation (1) expresses thatγ 0 is in ∂Ur, and (2) expresses complex tangentiality
(details are left to the reader; just write(∂[(|ζ |2 − 1)2 + r 2|z1|2], dγ 0/dθ) = 0).
By subtraction, (1) and (2) give us

[(1− ε)2 −1]2 + 2[1− (1− ε)2](1− ε2) = r 2,

which allows us to getε' r 2/4. Thenκ =
√

2(1− (1− ε)2)(1− ε)2/r; of course,
κ < 1. (It is easy to immediately visualize what has been done: Take the intersec-
tion withR2, draw a line through 0 tangent to the boundary ofUr, and then take
theC span.)
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Now chooseδ > 0 such thatκ < 1− δ, and set

Vr = {(ζ, z1)∈C2, (ζ, (1− δ)z1)∈Ur}.
This is just a rescaling in thez1 variable. Set

ϕ1(ζ) = κ

1− δ
ζ

|ζ |χ(ζ),

whereχ is a smoothC∞ function(0 ≤ χ ≤ 1), χ ≡ 1 out of a small neighborhood
of 0, andχ ≡ 0 on a smaller neighborhood of 0.

Summary of Properties. Here we summarize the useful properties ofVr and
ϕ1 just constructed.

(A) Vr is a strictly pseudoconvex domain defined by

Vr = {(ζ, z1), (|ζ |2 −1)2 + r 2
1 |z1|2 < r 2} with r1= r(1− δ) < r.

SoVr contains∂U × Ū.
(B) For |ζ | < 1− ε, (ζ, ϕ1(ζ)) /∈ V̄r .
(C) For|ζ | > 1− ε, (ζ, ϕ1(ζ))∈Vr (ζ ∈ Ū ).
(D) Along |ζ | = 1−ε, ϕ1 is real analytic, and∂Vr and the disk(ζ, ϕ1(ζ)) intersect

transversally along a curve that is a complex tangential curve in∂Vr .

(E) Off a small neighborhood of 0 (support of 1− χ), ∂ϕ1/∂ζ̄ 6= 0.
(F) |ϕ1| < 1.

1.2. Construction of� and0

Adding one dimension will allow us to strengthen (E) in order to obtain (b).
ForN large enough andα small enough (to be chosen as stated hereafter), set

� =
{
(ζ, z1, z2)∈C3;

[(|ζ |2 −1)2 + r 2
1 |z1|2]N +

∣∣∣∣z2

N

∣∣∣∣2N
+ α[(|ζ |2 −1)2 + r 2

1 |z1|2 + |z2|2] ≤ r 2N + αr 2

}
.

One first choosesN large enough so thatr 2N
1 + 1/N 2N < r 2N, and thenα > 0

small enough so that∂U × Ū2 ⊂ �. The only reason for not takingα = 0 is in
order to have strict pseudoconvexity. The idea here is of course based on the ap-
proximation of the polydisk by|z1|N + |z2|N < 1. Observe that� ∩ {z2 = 0} =
Vr and thatVr is the(ζ, z1) projection of�.

Takeϕ1 as before, and letϕ2 be any smooth function (i) that is 0 on a neigh-
borhood of|ζ | ≥ 1− ε, (ii) that satisfies∂ϕ2/∂ζ̄ 6= 0 when∂ϕ1/∂ζ̄ = 0, and
(iii) such that|ϕ2| < 1 (notice how much flexibility there is). Then (a)–(d) are
satisfied.
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2

Our aim here isnot to present original results. For this, the reader is referred to
Eliashberg. Our goal is simply to present a rigorous and easily accessible (to an
“ordinary complex analyst”) proof of the fact that�̄ ∪ 0, in Section 1, has a basis
of pseudoconvex neighborhoods.

In Section 2.2, we use the hypotheses of real analyticity made previously. Al-
though it is not clear that this is needed, at the very least it makes the proof easier.

In Cn, coordinates will now be denoted by(z1, . . . , zn).

2.1. Holomorphically Convex Sets

Definition. A compact setK ⊂ Cn will be said to beholomorphically convex
if and only if there existsλ, a continuous plurisubharmonic function defined on a
neighborhood ofK, such thatλ ≤ 0 onK andλ > 0 off K.

By classical theorems, holomorphic convexity is equivalent to the following: There
exists an open neighborhoodW ofK such that, for everyp ∈W −K, there exists
h holomorphic onW such that|h(p)| > 1 but supK|h| < 1. We then say thatK is
holomorphically convex inW.

Of course,λ provides us with a basis of pseudoconvex neighborhoods ofK.

Lemma 1. LetK1 andK2 be holomorphically convex sets, and letW be a neigh-
borhood ofK1∩ K2. Assume that, inW, (K1∪ K2) ∩W can be defined byµ ≤
0, whereµ is a continuous strictly plurisubharmonic function defined onW. Then
K1∪K2 is holomorphically convex.

Proof. Let λ1 and λ2 be plurisubharmonic functions defined, respectively, on
neighborhoods ofK1 andK2 (λj ≤ 0 onKj, λj > 0 off Kj). We can choose a
convex increasing functionχ—satisfyingχ(t) = 0 for t ≤ 0 andχ(t) > 0 for
t > 0—which is so flat at zero that, in the neighborhood ofK1 ∩ K2, we have
0 ≤ χ B λj ≤ max(µ,0). LetH be a compact subset ofW such thatK1∩ K2 is
included in the interior ofH.

Finally, consider the functionλ defined in the following way:

λ = χ B λ1 nearK1−W,
λ = χ B λ2 nearK2 −W,
λ = max(µ,0) nearH ∩ (K1∪K2),

λ = max(χ B λ1, µ− α) nearK1∩ (W −H ),
whereα is a small nonnegative(C2) function,α > 0 nearbW, andα = 0 on a
neighborhood ofH. Similarly,

λ = max(χ B λ2, µ− β) nearK2 ∩ (W −H ).
The preceding definitions all agree on the overlapping regions.
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2.2. Gluing of a Totally Real Surface to a Strictly Pseudoconvex
Boundary along a Complex Tangential Curve

See [3] for more details.
We consider the following situation. We are given a real analytic simple closed

curveγ (to take a closed curve simplifies exposition). We consider a strictly pseu-
doconvex boundary6 defined nearγ, containingγ, and we assume thatγ is
complex tangential(γ̇ ∈ T6 ∩ iT6). We considerS to be a real analytic (2-
dimensional) surface with boundaryγ, on the pseudoconcave side of6, and we
assume thatS and6 meet transversally alongγ. Furthermore we assume thatS
is totally real (alongγ ).

Lemma 2. There exists a neighborhoodX of γ and a continuous plurisubhar-
monic functionλ defined onX such that

(i) λ = 0 on (S ∪6)∩X (thereforeλ ≤ 0 on the pseudoconvex side of6), and
(ii) λ > 0 on the pseudoconcave side of6, off S.

Proof. This is a local problem (on a small neighborhood ofγ ), so by using real
analyticity and the fact thatS is totally real we can make alocal holomorphic
change of variable (alongγ ) and assume thatS is the unit disk inR2 × {0} ⊂
C2 × Cn−2. After this change of variable we have the following situation.

LetD ′ = {(x1, x2,0, . . . ,0)∈Cn, xj ∈R, x2
1+x2

2 ≤ 1} andγ ′ = ∂D ′, the unit
circle inR2× {0}. We have6′ a strictly pseudoconvex boundary defined nearγ ′,
D ′ ∩6′ = γ ′. The curveγ ′ is a complex tangential curve in6′, D ′ − γ ′ lies on
the pseudoconcave side of6′, andD ′ and6′ meet transversally.

We look for a continuous plurisubharmonic functionλ′ defined nearγ ′ such that
λ′ = 0 on6′ ∪D ′ (nearγ ′) andλ′ > 0 on the pseudoconcave side of6′, off D ′.

We are now going to use strict pseudoconvexity and complex tangentiality. The
complexification of the real curveγ ′ (i.e., the complex curve defined byz2

1+z2
2 =

1, z3 = · · · = zn = 0) intersects6′ only alongγ ′, and off γ ′ it stays on the
pseudoconcave side of6′ (nearγ ′). By using homotheties and transversality, the
complex curves{z2

1 + z2
2 = t, z3 = · · · = zn = 0} are, fort < 1, entirely on the

pseudoconcave side of6′ (in a fixed neighborhood ofγ ′). We then fix a “small”
strictly pseudoconvex bounded domain�′ in Cn whose boundary coincides with
6′ nearγ ′ and such that:

(∗) for any t ≤ 1, the curve(z2
1 + z2

2 = t, z3 = · · · = 0) does not intersect
�̄′ − γ ′.

LetX ′ be an open neighborhood of�̄′ such that�̄′ is holomorphically convex
in X ′. LetL′ = D ′ ∩ {x2

1 + x2
2 ≥ 1− η}, whereη > 0 is chosen small enough so

thatL′ ⊂ X ′. It is enough to prove that̄�′ ∪ L′ is holomorphically convex inX ′.

(i) Reduction to the casen = 2. If A ⊂ X ′ then the hull ofA is the set ofp ∈
X ′ such that, for every holomorphic functionh inX ′, |h(p)| ≤ supA|h|. We have
to prove that�̄′ ∪ L′ is its own hull.
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If a point p ∈ X ′ belongs to the hull of̄�′ ∪ L′, then it belongs either to the
hull of �̄′ (i.e. �̄′) or to C2 × {0}. A possible argument for this is by using
Jensen measures. So the nontrivial part of the hull of�̄′ ∪ L′, if it exists, lies
entirely inC2 × {0}. By the local maximum principle and the extension of func-
tions, this reduces the problem to the sliceC2 × {0} ∩ X ′ and the domain�′′ =
�′ ∩ (C2 × {0}).

(ii) Casen = 2. The functionk(z1, z2) = z2
1 + z2

2 mapsL′ into [0,1] and, by
(∗), k(�̄′′ − γ ′) does not intersect(−∞,+1]; also,k < 1 onL′ − γ ′.

So, in some sense,k separates̄�′′ andL′. By using polynomials ink it is then
straightforward (see e.g. [4, Lemma 29.21]) to show that the hull of�̄′′ ∪L′ is the
union of the hulls of�̄′′ andL′—that is,�̄′′ ∪ L′.

2.3. Application to Section 1

With the notation of Section 1, we must find a continuous plurisubharmonic func-
tion λ defined on a neighborhood of̄� ∪ 0 such that�̄ ∪ 0 = {λ ≤ 0}. We
decomposē� ∪ 0 in the following way.

ForW1⊂⊂ W2 conveniently chosen neighborhoods ofγ (the curve along which
0 is attached tō�),withW2 strictly pseudoconvex, we consider�1 to be a strictly
pseudoconvex domain such that� −W2 ⊂ �1 ⊂ � −W1. Although this is not
essential,�1 is introduced in order to apply Lemma 1 as stated. We setK1 =
�̄1∪ (0−W1) andK2 = (�̄∪0)∩W̄2. The setK2 is holomorphically convex be-
cause it can be defined by max(λ, τ ) ≤ 0, whereλ is provided by Lemma 2 andτ
is a plurisubharmonic function definingW2. The setK1 is obviously holomorphi-
cally convex (locallyK1 is either a totally real surface or strictly pseudoconvex).
OnK1∩K2 the hypotheses of Section 2.1 are satisfied (same reason forK1∪K2

nearK1∩K2). Hence 2.1 shows us the existence ofλ.

Remark. The following simple example illustrates the usefulness of the hypoth-
esis of complex tangency in Lemma 2.

In C2, take the totally real surface

6 =
{(

eiθ√
2
,
t√
2

)
,1≤ t ≤ 2

}
attached to the unit sphere along the circle(eiθ/

√
2,1/
√

2). Every function that
is holomorphic in a neighborhood of the union of the unit ball and6 extends to a
holomorphic function on a neighborhood of{(ζ, t), |ζ | ≤ 1/

√
2 ≤ t ≤ 2}. More

local examples can be constructed as well.
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