A Counterexample Related
to Hartogs’ Phenomenon
(A Question by E. Chirka)

JEAN PIERRE ROSAY

We will denote byU (resp.U) the open (resp. closed) unit disk@ Chirka [1]
(see also [2]) recently proved the following remarkable result.

THEOREM (Chirka). Let f be a continuous function ati with values inU, and
let S be its graph(S = {(¢, f(¢)) € C?, ¢ € U}). Then every holomorphic function
defined on a connected neighborhood of the(8&t x U) U S in C x U extends
holomorphically to the polydisk?.

It is shown by a simple example in [1] that the conditigh < 1 onU (not only
ondl) is essential.

If fisholomorphic, the resultis of course classical. Here, answering a question
by Chirka, we show that surprisingly (?) the theorem just stated does not extend
to higher dimensions.

Our result is as follows.

PrOPOSITION.  There exist continuous functions, ¢, defined ori/ and satisfy-

ing |¢1], l¢2| < 1, and there exists a domainin C* such that

(i) o containsdU x U? and w contains the graph ofp1, ) (i.e., (¢, ¢1(2),
92(0)) € w for everyc e U); but

(i) there exists a holomorphic functidgnon w that does not extend holomorphi-
cally to U3

REMARK. It may be worthwhile pointing out that, in the construction detailed
next, the following is achieved: One can find an arbitrarily small neighbortzood

of U x U? and functionsp; andys, as in the Proposition, such that the union of
Z and of the graph ofg1, ¢») has a basis of pseudoconvex neighborhoods.

An explicitexample would still be desirable. The firstand main step in the construc-
tion of the example is as follows. Find a strictly pseudoconvex doRainC?, as

well as the grapl of a smooth function on the unit disk, = {(¢, ¢1(¢), 92(¢)) €

C8, ¢ € U}, such that the following statements hold.

(a) € containsdu x U?Z.

(b) lpal andlpz| < 1, and|d¢1/d¢| + [0p2/9¢| # O.
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(c) There existsane (0,1) suchthatfolz| > 1—¢, (¢, p1(2), 92(¢)) € 2, and
for || <1—c¢, (¢, 91(2), 92(2)) ¢ ; T andQ intersect transversally (along
|Z] = 1—¢), andg; andg, are real analytic in a neighborhood|gff = 1—«.

(d) Theintersection curveof Q2 andr (givenbyy (¢) = (¢, 1(2), ¢2(0)), [Z| =
1-— ¢) is a complex tangential curve #12; that is,y (¢) e T(02) NiT(32).

The construction of2 andT is carried out in Section 1. It provides us with a
strictly pseudoconvex domafkand a totally real diskI' N {|¢| < 1—¢&}) attached
to its boundary along a complex tangential curve.

Proof of Proposition.lIt is a well-known result of Eliashberg [3] (see especially
Sec. 2), that the foregoing conditions, (d) being essential, ensur@thdt has
a basis of pseudoconvex neighborhoods. However, since the precise statement is
somewhat hard to find in [3], we do provide a justification of this in Section 2.

Take a connected pseudoconvex neighborhoad © U T, not containing the
unit polydiskU 2. Then any not holomorphically extendable functiodefined on
o provides the desired example. O

1. Construction of Q and I

In C? we will use coordinateg, z1) and inC2 we will use(¢, z1, z2).

1.1. Construction of DomairV, c C2, with a Disk Attached
Forr > O (to be taken small) we consider the strictly pseudoconvex domain
Up = {6 z0) €C% (162 = D2+ r¥zaf? < r?).

We claim that we can choogseandx > 0 such that the curve

vo={(1—¢e)e’? ke'?), 6 €0, 2n]}
is acomplex tangential curve in the strictly pseudoconvex hypersurface that bounds
U,. Indeed we get two conditions to satisfy:

[A—e)? =124 rZ?=r?, @
2[A—¢e)?—1]A-e)?+r%2=0. 2)

Equation (1) expresses thgg is in 0U,., and (2) expresses complex tangentiality
(details are left to the reader; just writg[(|¢ |2 — 1)2 + r2|z1]4], dyo/d6) = 0).
By subtraction, (1) and (2) give us

[A-e)? =12+ 2[1- 1— &)L —e?) =12

which allows us to get ~ r2/4. Thenk = /2(1— (1— ¢)2)(1 — ¢)2/r; of course,

k < L (Itis easy to immediately visualize what has been done: Take the intersec-
tion with R?, draw a line through 0 tangent to the boundarypf and then take
theC span.)



A Counterexample Related to Hartogs’ Phenomenon 531

Now choose&l > 0 such thak < 1— §, and set
V, ={(¢. 20 €C% (¢, A-8)z1) € U}

This is just a rescaling in thg variable. Set

S
&) = ———x(©),
¢18) =75 R ¢
wherey is a smoothC > function(0 < y < 1), x = 1 out of a small neighborhood
of 0, andy = 0 on a smaller neighborhood of 0

SuMMARY OF PROPERTIES. Here we summarize the useful propertied/pfand
@1 just constructed.

(A) V, is a strictly pseudoconvex domain defined by
Vo = (6,20, (P =D? +rflzaf® < %) with ri=r(1—6) <r.

SoV, containsdU x U.

(B) For|¢] <1—e, (£ 91(0) ¢ Vi )

(C) Forlgl >1—¢, (5, 01(0) €V, (L €V).

(D) Along|¢| = 1—e¢, ¢, isreal analytic, andV, and the disk¢, ¢1(¢)) intersect
transversally along a curve that is a complex tangential curé&,in

(E) Off a small neighborhood of 0 (support of-ly), d¢1/3¢ # 0.

(F) lpal < 1.

1.2. Construction of2 and T

Adding one dimension will allow us to strengthen (E) in order to obtain (b).
For N large enough and small enough (to be chosen as stated hereafter), set

Q= {(C, 71,22) € C3;

2N
22

[(¢12 = D2 + rZza] + v

+ 0‘[(|§|2 -1+ r12|zl|2 + |22|2] <r2N 4 arz}.

One first choosed large enough so that" + 1/N2V < r2V and therx > 0
small enough so that/ x U? c Q. The only reason for not taking = 0 is in
order to have strict pseudoconvexity. The idea here is of course based on the ap-
proximation of the polydisk byzi|Y + |z2|Y < 1. Observe thaf2 N {z, = 0} =
V, and thatV, is the(¢, z1) projection of2.

Take gy, as before, and let, be any smooth function (i) that is 0 on a neigh-
borhood of|¢| > 1 — ¢, (ii) that satisfiesdg, /3¢ # 0 whendep1/d¢ = 0, and
(i) such that|p,| < 1 (notice how much flexibility there is). Then (a)—(d) are
satisfied.
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2

Our aim here is1ot to present original results. For this, the reader is referred to
Eliashberg. Our goal is simply to present a rigorous and easily accessible (to an
“ordinary complex analyst”) proof of the fact th@tU I, in Section 1, has a basis
of pseudoconvex neighborhoods.
In Section 2.2, we use the hypotheses of real analyticity made previously. Al-
though it is not clear that this is needed, at the very least it makes the proof easier.
In C", coordinates will now be denoted lgy, . . ., z,).

2.1. Holomorphically Convex Sets

DEerFINITION. A compact seK ¢ C” will be said to benolomorphically convex
if and only if there exists., a continuous plurisubharmonic function defined on a
neighborhood ok, such that. < 0 onK andx > 0 off K.

By classical theorems, holomorphic convexity is equivalent to the following: There
exists an open neighborhodd of K such that, for everp € W — K, there exists
h holomorphic oW such thatz(p)| > 1 but sug|2| < 1. We then say thak is
holomorphically convex irw.

Of course A provides us with a basis of pseudoconvex neighborhoods of

LemMma 1. LetK; and K, be holomorphically convex sets, and ¥étbe a neigh-
borhood ofK; N K,. Assume that, i, (K1 U K») N W can be defined by <
0, whereu is a continuous strictly plurisubharmonic function definedinThen
K1 U K, is holomorphically convex.

Proof. Let A, and A, be plurisubharmonic functions defined, respectively, on
neighborhoods oK; andK> (A; < 0 onKj, A; > 0 off K;). We can choose a
convex increasing functiom—satisfying x(r) = 0 fort < 0 andx(¢) > 0 for
t > 0—which is so flat at zero that, in the neighborhoodkafn K», we have
0 < x oX; <max(u,0). Let H be a compact subset #@f such thatky N K is
included in the interior ofH.

Finally, consider the functioh defined in the following way:

A=xoMl near K, — W,
A= xXO0A2 near Ko, — W,
A =max(u, 0) near H N (K1 U K5),

A=max(y oi, u —a) hearKiN (W — H),

whereq is a small nonnegativ&C?) function,« > 0 nearbW, ande = 0 on a
neighborhood ofd. Similarly,

A=max(x oAz, u—pB) nearKoN (W — H).

The preceding definitions all agree on the overlapping regions. O
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2.2. Gluing of a Totally Real Surface to a Strictly Pseudoconvex
Boundary along a Complex Tangential Curve

See [3] for more details.

We consider the following situation. We are given a real analytic simple closed
curvey (to take a closed curve simplifies exposition). We consider a strictly pseu-
doconvex boundarg defined nears, containingy, and we assume that is
complex tangentialy € TX N iTX). We considerS to be a real analytic (2-
dimensional) surface with boundapy on the pseudoconcave side df and we
assume thaf andX meet transversally along. Furthermore we assume th&t
is totally real (alongy).

LemMma 2. There exists a neighborhoad of y and a continuous plurisubhar-
monic functiom defined onX such that

(i) A =00n(SUX)NX (thereforer < 0on the pseudoconvex side Bf), and
(i) A > 0on the pseudoconcave side Bf off S.

Proof. This is a local problem (on a small neighborhood/9f so by using real
analyticity and the fact thaf is totally real we can make lacal holomorphic
change of variable (along) and assume that is the unit disk inR? x {0} C
C? x C"—2. After this change of variable we have the following situation.
LetD’ = {(x1,x2,0,...,0)eC", x; € R, x3+x3 < 1} andy’ = dD’, the unit
circle inR? x {0}. We haveX’ a strictly pseudoconvex boundary defined near
D’'NXY =y’. The curvey’ is a complex tangential curve ii’, D’ — y' lies on
the pseudoconcave side Bf, and D’ and X’ meet transversally.
We look for a continuous plurisubharmonic functidrdefined neap’ such that
A =0o0onX' UD’ (neary’) andX’ > 0 on the pseudoconcave sideXf, off D’.
We are now going to use strict pseudoconvexity and complex tangentiality. The
complexification of the real curvg (i.e., the complex curve defined by+z2 =
1 z3 =--- =z, = 0) intersectsx’ only alongy’, and off y’ it stays on the
pseudoconcave side &f (neary’). By using homotheties and transversality, the
complex curvegz? + z2 = t, z3 = --- = z, = O} are, fort < 1, entirely on the
pseudoconcave side af (in a fixed neighborhood gf’). We then fix a “small”
strictly pseudoconvex bounded dom&inin C" whose boundary coincides with
¥’ neary’ and such that:

(x) foranys < 1, the curve(z? + z5 = t, z3 = --- = 0) does not intersect
Q —v.
Let X’ be an open neighborhood ©f such that2’ is holomorphically convex
in X'. Let L’ = D' N {x2 4 x3 > 1— n}, wheren > 0 is chosen small enough so
thatL’ c X’. Itis enough to prove tha&e’ U L’ is holomorphically convex ik’.

(i) Reduction to the case= 2. If A ¢ X’ then the hull ofA is the set ofp €
X’ such that,_for every holomorphic functi@nin X', |h(p)| < sup|k|. We have
to prove that2’ U L’ is its own hull.



534 JEAN PIERRE ROSAY

If a point p € X’ belongs to the hull of2’ U L’, then it belongs either to the
hull of Q' (i.e. ') or to C? x {0}. A possible argument for this is by using
Jensen measures. So the nontrivial part of the hufeof) L', if it exists, lies
entirely inC? x {0}. By the local maximum principle and the extension of func-
tions, this reduces the problem to the sli¢& x {0} N X’ and the domaiR” =
Q' N (C? x {0)).

(i) Casen = 2. The functionk(z1, z2) = z2 + z5 mapsL’ into [0, 1] and, by
(%), k(" — y’) does not interseqt-oco, +1]; also,k < 1onL —y'.

So, in some sensg,separate” andL’. By using polynomials irk it is then
straightforward (see e.g. [4, Lemma 29.21]) to show that the h§d'af L' is the
union of the hulls of2” andL'—that is,Q” U L'. O

2.3. Application to Section 1

With the notation of Section 1, we must find a continuous plurisubharmonic func-
tion A defined on a neighborhood 6f U T" such thatQ UT = {» < 0}. We
decompos& U T in the following way.

ForWi cc W, conveniently chosen neighborhoods-dthe curve along which
I is attached t&2), with W, strictly pseudoconvex, we conside to be a strictly
pseudoconvex domain such that— W, c Q3 ¢ 2 — Wj. Although this is not
essential 21 is introduced in order to apply Lemma 1 as stated. Wekget=
Q1U(I' — Wy) andK, = (QUT) N Ws. The setk; is holomorphically convex be-
cause it can be defined by maxz) < 0, wherex is provided by Lemma 2 and
is a plurisubharmonic function definifig,. The setK; is obviously holomorphi-
cally convex (locallyK is either a totally real surface or strictly pseudoconvex).
On K1 N K> the hypotheses of Section 2.1 are satisfied (same reasdf Ok,
neark; N K»). Hence 2.1 shows us the existence.of

ReMARK. The following simple example illustrates the usefulness of the hypoth-
esis of complex tangency in Lemma 2.
In C2, take the totally real surface

(5 e

attached to the unit sphere along the cir@#/+/2, 1/+/2). Every function that
is holomorphic in a neighborhood of the union of the unit ball ahextends to a
holomorphic function on a neighborhood £, 1), || < 1/+/2 < ¢t < 2}. More
local examples can be constructed as well.
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