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Preserve ldempotents

MATEJ BRESAR & PETER SEMRL

Introduction and Statement of Main Results

Let A andB be unital Banach algebras. A linear map.4A — B is calledunital

if (1) = 1and is callednvertibility preservingf ¢ (a) is invertible inB3 for every
invertible element: € A. Similarly, ¢ preserves idempotentsdf( p) is an idem-
potent whenevep € A is an idempotent; it is called Jordan homomorphisiif

¢ (a?) = (¢(a))?foreverya e A.

In [14, Sec. 9] Kaplansky asked: When must unital surjective linear invert-
ibility preserving maps be Jordan homomorphisms? This problem was moti-
vated by the famous Gleason—Kahardelazko theorem [9; 13; 17], which states
that every unital invertibility preserving linear map from a Banach algebra to a
semisimple commutative Banach algebra is multiplicative, as well as by results
of Dieudonné [8] and Marcus and Purves [15] stating that every unital invert-
ibility or singularity preserving linear map on a matrix algebra is either multi-
plicative or antimultiplicative. The case of a nonunital invertibility preserving
mapping can be reduced to the unital case by considéridefined by (a) =
P ¢ (a).

The answer to Kaplansky's question is not always affirmative. Some historical
remarks on this problem can be found in [1, pp. 27-31], where the first noncommu-
tative extensions of the Gleason—Kahafielazko theorem were mentioned. Hav-
ing in mind all known results and counterexamples, it is tempting to conjecture
that the answer to Kaplansky’s question is affirmativd iand B are semisimple
Banach algebras [3; 10; 16].

Let X be a Banach space, and &tX) be the algebra of all bounded linear op-
erators onX. By F(X) we denote the ideal of all finite rank operators. For every
x € X and every bounded linear functionglon X, we denote by ® f a rank-1
operator defined byx ® f)y = f(y)x. Following Chernoff [7], we call a sub-
algebraA c B(X) aunital standard operator algebran X if it is closed and
contains/ andF(X). We will prove that the problem of characterizing linear in-
vertibility preserving mappings can be reduced to the problem of characterizing
linear maps preserving idempotents if the codomain is a unital standard operator
algebra.
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TueoreM 1. Let. A be a unital Banach algebra and I&be a unital standard op-
erator algebra on a Banach spage Assumethap: A — Bisaunital surjective
linear mapping preserving invertibility. Thefhpreserves idempotents.

One must be careful when considering the invertibility preserving assumption in
Theorem 1. Namely, it is possible thAte B ¢ B(X) is an invertible bounded
linear operator orX but is not invertible in the algebra.

In [16], Sourour proved that i is a separable Hilbert space alida Ba-
nach space then every unital surjective invertibility preserving linear mapping
¢: B(H) — B(Y) is a Jordan homomorphism. Using Theorem 1, we will not
only extend this result but also provide a considerably shorter proof.

CoroLLarY 1. Let.A be a von Neumann algebra attla unital standard oper-
ator algebra on a Banach space Assume thap: A — B is a unital surjective
linear mapping preserving invertibility. Thetis a Jordan homomorphism.

Using Theorem 1, we can also obtain a new proof of the following result of Sourour,
which is the main object of [16] (see also [12]).

CoRrOLLARY 2 [16]. LetX andY be Banach spaces and lgt B(X) — B(Y)
be a unital bijective linear mapping preserving invertibility. Thgis either an
isomorphism or an anti-isomorphism.

Proofs

For the proof of Theorem 1 we will need several lemmas. The first one is an
immediate consequence of [4, Lemma 7].

LEmma 1. Let.A be a unital Banach algebra angd € .4 a nonzero idempotent.
Then there exists a norih- ||, on A such that(A4, | - ||,) is a Banach algebra
with || pll, = L.

In the next three lemmas we will assume thlaand B are unital Banach algebras
and thatp: A — B is a surjective unital linear mapping preserving invertibility.
Thereforeg (¢ (a)) C o(a) for everya € A, whereo (a) denotes the spectrum of
a. In each of these three lemmas we will also assumedhaid is an idempo-
tent and thatp (¢) = E + Q with E, Q € B satisfyingE? = E, EQ = QE, and
o(Q) = {0}.

LEMMA 2. Suppose that € B satisfiesA? = A(E + Q)A = 0. Then
0(Q*+2EQ — Q+ A(E + Q) + (E + Q)A — A) = {0}.

Proof. Because of the surjectivity @f we can finda € A such thaip (a) = A.
For an arbitraryx € C we have

o(a(ea +ae —a) + azaz)

=o((e+ aa)2 — (e +aa))
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={A?—r:rec(e4+aa)} D{A°>—1:re0(E+ Q+ad)}
=0((E+ Q0 +aA)® — (E + QO + «A))
=0(Q?+2EQ — Q + a[A(E + Q) + (E + Q)A — A)).

It follows thatr (B + aB>) < r(aay+ aas), wherer denotes the spectral radius
andB; = Q?+2EQ—Q, By = A(E+ Q)+ (E+ Q)A— A, a1 = ea+ae —a,
anda, = a?.

For every complex number satisfying|A1| < 1 we have
r(AB1+ Bz) < || Bl + [IB2l|.
If |A| > 1thenr(AB1+ B2) = |Alr(Bi+ (1/2)B2) < IAIr((L/A)ar+(1/4)2az) =
r(ar+ (/1) az) < ||la1]| + |laz||. Hence the function — r(AB1+ B>) is bounded.
Because. — r(AB1+ B>) is a subharmonic function [2, p. 52], it follows by the
Liouville theorem for subharmonic functions that it is constant. This yields to-

gether withB3 = 0 thatr (A By + B2) = r(B2) = O for every complex.. In par-
ticular,r(B1 + B2) = 0, which is the desired conclusion. O

Let us mention that a similar subharmonicity argument has also proved to be useful
in the study of linear mappings preserving the spectral radius [6].

LemMma 3. Let B be a unital standard operator algebra on a Banach space
Assume further that € X satisfiesEx = x. ThenQ3x = 0.

Proof. Assume on the contrary that there existe X such thatEx = x and
03x # 0. SinceQ is a quasinilpotent, the vectars Qx, Q%x, Q3x are linearly
independent. Indeed, if this were not true then the linear span@k, Q°x, 03«
would be invariant folQ. Then the restriction of) to this subspace would be nilpo-
tent, which would yieldQ3x = 0—a contradiction. Thus, we can find a bounded
linear functionalf on X such thatf(Qx) = 1andf(x) = f(x — Qx — Q%x) =
f(x —20%x — 03x) = 0. Obviously,A = (x — Qx — 0%x) @ fe F(X) C B
satisfiesA? = 0. Applying Ex = x and EQ = QF one gets thaEQ/x = Q/x
forj=12,....Itfollows easily thatA(E + Q)A = 0. Hence, by Lemma 2 we
have

0(Q*+2EQ — O+ A(E + Q) + (E+ Q)A — A) = {0}.
Note that herer denotes the spectrum of an operator with respet ¢ahich in
general is not the same as the spectrum with respect to the whole algjébra
On the other hand, a straightforward computation gives

(Q*+2EQ — Q+ A(E + Q) + (E + Q)A — A)x = x,
which obviously yields
1€0(Q?+2EQ — Q+A(E + Q) + (E+ Q)A — A).
This contradiction completes the proof. O

LemMma 4. Let5 be unital standard operator algebra on a Banach spac&up-
pose that|le| = 1and thatx € X satisfiesEx = x and Qx # 0. Then{ Q"x :
n=0,12,...}isalinearly independent set.
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Proof. Assume on the contrary tha"x : n =0, 1, 2,... } is alinearly depen-
dent set. Sinc@ is a quasinilpotent, there is an integes 1 such thaD”"x = 0

and the sefx, Ox, ..., Q" x} is linearly independent. Becaugecontains all
finite rank operators i8(X), we can findA € B such thatAQx = x andAx =
AQ%x =-.. = AQ"'x = 0. Choose: € A such thatp(a) = A. For everyre C
we have

o(A +A2(E + Q) C o(a + \%)
C DO, [lafl + |A[%).

Here,D(0, ¢) denotes the closed disk in the complex plane of radientered at
the origin.
On the other hand,

(A+22(E + Q) (x +4Qx + - -+ A"10" 1)
= (2 4+ W) (x +20x + - - + A" Lo,

which yields thak? 4+ 1 € o (A + A?(E + Q)) for every complex number. Hence,
for everyx e C we havelA? 4+ A| < |la|l + |A|2. This contradiction completes the
proof. O

Note that Lemma 4 is true not only for unital standard algebras but for all dense
algebras of linear operators.
We are now in a position to prove our main result.

Proof of Theorem 1Since¢ is a unital linear mapping preserving invertibility,
we haveo (¢(a)) C o(a) for everya € A. Let e be any nonzero idempotent in
A. Because of Lemma 1, there is no loss of generality in assuming|¢fjiat

1. We know thats (¢ (e)) C {0,1}. Hence, by [5, p. 36] we hawg(e) = E + Q
with E2 = E, EQ = QE, anda(Q) = {0}. We have to prove thap = 0. As-
sume on the contrary th&@ # 0. Then we can assume with no loss of generality
that EQ # 0, since otherwise we would consider-le instead ofe. Hence, there
existsy € X such thatEQy # 0. Setx = Ey. ThenEx = x andQx = QEx =
QEy = EQy # 0. Itis now easy to obtain a contradiction by applying Lemmas 3
and 4. O

Proof of Corollary 1. Let P;, P, € A be orthogonal Hermitian idempotents. Since
P1+ P5is a projection, we havep (P1) + ¢ (P2))? = ¢ (P1) + ¢ (P»). This yields

¢ (PP (P2) + ¢p(P2)¢(P1) = O. It follows that if H € A is of the formH =

> i-1tP;, wheret; € R and P; are Hermitian idempotents such that’; = 0

if i # j, theng(H?) = ¢(H)?. By [2, Thm. 5.5.2],¢ is continuous. The set

of all Hermitian elements that can be represented as finite real-linear combina-
tions of mutually orthogonal projections is dense in the set of all Hermitian ele-
ments inA. Therefore, we have (H?) = (¢ (H))? for every Hermitian element

H in A. Now, replacingH by H + K whereH andK are both Hermitian, we
get¢p(HK + KH) = ¢(H)¢d(K) + ¢(K)¢(H). Since an arbitranA € A can be
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written in the formA = H + iK with H, K Hermitian, the last two relations im-
ply thate (A?) = (¢(A))2. O

Proof of Corollary 2. We will prove thatp maps every operator of rank 1 into an
operator of rank 1. Every operator of rank 1 is either a scalar multiple of an idem-
potent or a square-zero operator. Assume first that 3(X) is an idempotent

of rank 1 and that its image has rank greater than 1. By Theore@nF) is an
idempotent. Therefore, it has the following matrix representation:

1 00
d(P) = |:0 1 0} ,
0 0 Q
whereQ is an idempotent. DefinB € B(Y) by

1 00
B=|:0 0 O:|,
0 0 O

and findA € B(X) such thatp(A) = B. We can also find a complex number
such that. + A is invertible. The operator + A + «P is invertible if and only if

I +a(A+A)7IPisinvertible. As(x+ A)~1P has rank 1, this operator is invertible
for all but at most one complex numberBut¢ (A + A +aP) = A+ B +a¢(P)

is singular fore = —A anda = —A — 1. This contradiction shows that(P) must
be of rank 1.

Almost the same argument as in the proof of Corollary 1 shows that the re-
striction of ¢ to F(X) is a Jordan homomorphism. Sing&X) is a locally ma-
trix algebra, a result of Jacobson and Rickart [11, Thm. 8] tells usgthat, =
¢ + 0, whereg: F(X) — B(Y) is a homomorphism and: F(X) — B(Y)
is an antihomomorphism. Pick an idempotént B(X) of rank 1. Themp(P)
is the sum of idempotentg(P) andé(P); therefore, ag (P) also has rank 1, it
follows that eitherp(P) = 0 or8(P) = 0. Thus, at least one af andé has a
nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms
are ideals, and since the only nonzero ideaFoX ) is 7 (X) itself, we havep =
0 or6 = 0. Thus, the restriction op to F(X) is either a homomorphism or an
antihomomorphism.

Take now an arbitrary square-zero operatoof rank 1. Then one can find an
idempotentP of rank 1 such thalv = PN. If the restriction of¢ to F(X) is a
homomorphism thea (N) = ¢(P)¢(N) and hence rands(N) = 1. Similarly
we prove thatp(N) has rank 1 in the case that the restrictiopdb F(X) is an
antihomomorphism.

Sourour’s proof of Corollary 2 has two steps. The first and more difficult one
shows thatp maps operators of rank 1 into operators of rank 1. In the second step
this fact is used to conclude thatis a Jordan isomorphism. Hence, we have ob-
tained a new proof of the first step of Sourour’s proof. To complete the proof of
Corollary 2 we can now follow the second step of his proof, which can even be
slightly shortened using our observation that the restrictiontof 7 (X) is either
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a homomorphism or an antihomomorphism. We will omit the details since the
main idea remains unchanged.
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