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Introduction and Statement of Main Results

LetA andB be unital Banach algebras. A linear mapφ : A→ B is calledunital
if φ(1) = 1 and is calledinvertibility preservingif φ(a) is invertible inB for every
invertible elementa ∈A. Similarly, φ preserves idempotents ifφ(p) is an idem-
potent wheneverp ∈ A is an idempotent; it is called aJordan homomorphismif
φ(a2) = (φ(a))2 for everya ∈A.

In [14, Sec. 9] Kaplansky asked: When must unital surjective linear invert-
ibility preserving maps be Jordan homomorphisms? This problem was moti-
vated by the famous Gleason–Kahane–Żelazko theorem [9; 13; 17], which states
that every unital invertibility preserving linear map from a Banach algebra to a
semisimple commutative Banach algebra is multiplicative, as well as by results
of Dieudonné [8] and Marcus and Purves [15] stating that every unital invert-
ibility or singularity preserving linear map on a matrix algebra is either multi-
plicative or antimultiplicative. The case of a nonunital invertibility preserving
mapping can be reduced to the unital case by consideringθ defined byθ(a) =
φ(1)−1φ(a).

The answer to Kaplansky’s question is not always affirmative. Some historical
remarks on this problem can be found in [1, pp. 27–31], where the first noncommu-
tative extensions of the Gleason–Kahane–Żelazko theorem were mentioned. Hav-
ing in mind all known results and counterexamples, it is tempting to conjecture
that the answer to Kaplansky’s question is affirmative ifA andB are semisimple
Banach algebras [3; 10; 16].

LetX be a Banach space, and letB(X) be the algebra of all bounded linear op-
erators onX. By F(X) we denote the ideal of all finite rank operators. For every
x ∈X and every bounded linear functionalf onX, we denote byx ⊗ f a rank-1
operator defined by(x ⊗ f )y = f(y)x. Following Chernoff [7], we call a sub-
algebraA ⊂ B(X) a unital standard operator algebraonX if it is closed and
containsI andF(X). We will prove that the problem of characterizing linear in-
vertibility preserving mappings can be reduced to the problem of characterizing
linear maps preserving idempotents if the codomain is a unital standard operator
algebra.
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Theorem 1. LetA be a unital Banach algebra and letB be a unital standard op-
erator algebra on a Banach spaceX. Assume thatφ : A→ B is a unital surjective
linear mapping preserving invertibility. Thenφ preserves idempotents.

One must be careful when considering the invertibility preserving assumption in
Theorem 1. Namely, it is possible thatB ∈ B ⊂ B(X) is an invertible bounded
linear operator onX but is not invertible in the algebraB.

In [16], Sourour proved that ifH is a separable Hilbert space andY a Ba-
nach space then every unital surjective invertibility preserving linear mapping
φ : B(H ) → B(Y ) is a Jordan homomorphism. Using Theorem 1, we will not
only extend this result but also provide a considerably shorter proof.

Corollary 1. LetA be a von Neumann algebra andB a unital standard oper-
ator algebra on a Banach spaceX. Assume thatφ : A→ B is a unital surjective
linear mapping preserving invertibility. Thenφ is a Jordan homomorphism.

Using Theorem1, we can also obtain a new proof of the following result of Sourour,
which is the main object of [16] (see also [12]).

Corollary 2 [16]. LetX andY be Banach spaces and letφ : B(X) → B(Y )
be a unital bijective linear mapping preserving invertibility. Thenφ is either an
isomorphism or an anti-isomorphism.

Proofs

For the proof of Theorem 1 we will need several lemmas. The first one is an
immediate consequence of [4, Lemma 7].

Lemma 1. LetA be a unital Banach algebra andp ∈A a nonzero idempotent.
Then there exists a norm‖ · ‖p onA such that(A, ‖ · ‖p) is a Banach algebra
with ‖p‖p = 1.

In the next three lemmas we will assume thatA andB are unital Banach algebras
and thatφ : A→ B is a surjective unital linear mapping preserving invertibility.
Therefore,σ(φ(a)) ⊂ σ(a) for everya ∈A, whereσ(a) denotes the spectrum of
a. In each of these three lemmas we will also assume thate ∈ A is an idempo-
tent and thatφ(e) = E +Q with E,Q ∈ B satisfyingE2 = E, EQ = QE, and
σ(Q) = {0}.
Lemma 2. Suppose thatA∈B satisfiesA2 = A(E +Q)A = 0. Then

σ(Q2 + 2EQ−Q+ A(E +Q)+ (E +Q)A− A) = {0}.
Proof. Because of the surjectivity ofφ we can finda ∈ A such thatφ(a) = A.
For an arbitraryα ∈C we have

σ(α(ea + ae − a)+ α2a2)

= σ((e + αa)2 − (e + αa))
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= { λ2 − λ : λ∈ σ(e + αa) } ⊃ { λ2 − λ : λ∈ σ(E +Q+ αA) }
= σ((E +Q+ αA)2 − (E +Q+ αA))
= σ(Q2 + 2EQ−Q+ α[A(E +Q)+ (E +Q)A− A]).

It follows thatr(B1+αB2) ≤ r(αa1+α2a2), wherer denotes the spectral radius
andB1= Q2+2EQ−Q, B2 = A(E+Q)+ (E+Q)A−A, a1= ea+ ae− a,
anda2 = a2.

For every complex numberλ satisfying|λ| ≤ 1 we have

r(λB1+ B2) ≤ ‖B1‖ + ‖B2‖.
If |λ| > 1 thenr(λB1+B2) = |λ|r(B1+(1/λ)B2) ≤ |λ|r((1/λ)a1+(1/λ)2a2) =
r(a1+(1/λ)a2) ≤ ‖a1‖+‖a2‖.Hence the functionλ 7→ r(λB1+B2) is bounded.
Becauseλ 7→ r(λB1+ B2) is a subharmonic function [2, p. 52], it follows by the
Liouville theorem for subharmonic functions that it is constant. This yields to-
gether withB3

2 = 0 thatr(λB1+ B2) = r(B2) = 0 for every complexλ. In par-
ticular,r(B1+ B2) = 0, which is the desired conclusion.

Let us mention that a similar subharmonicity argument has also proved to be useful
in the study of linear mappings preserving the spectral radius [6].

Lemma 3. Let B be a unital standard operator algebra on a Banach spaceX.

Assume further thatx ∈X satisfiesEx = x. ThenQ3x = 0.

Proof. Assume on the contrary that there existsx ∈ X such thatEx = x and
Q3x 6= 0. SinceQ is a quasinilpotent, the vectorsx,Qx,Q2x,Q3x are linearly
independent. Indeed, if this were not true then the linear span ofx,Qx,Q2x,Q3x

would be invariant forQ.Then the restriction ofQ to this subspace would be nilpo-
tent, which would yieldQ3x = 0—a contradiction. Thus, we can find a bounded
linear functionalf onX such thatf(Qx) = 1 andf(x) = f(x −Qx −Q2x) =
f(x − 2Q2x −Q3x) = 0. Obviously,A = (x −Qx −Q2x)⊗ f ∈F(X) ⊂ B
satisfiesA2 = 0. Applying Ex = x andEQ = QE one gets thatEQjx = Qjx

for j = 1,2, . . . . It follows easily thatA(E +Q)A = 0. Hence, by Lemma 2 we
have

σ(Q2 + 2EQ−Q+ A(E +Q)+ (E +Q)A− A) = {0}.
Note that hereσ denotes the spectrum of an operator with respect toB (which in
general is not the same as the spectrum with respect to the whole algebraB(X)).
On the other hand, a straightforward computation gives

(Q2 + 2EQ−Q+ A(E +Q)+ (E +Q)A− A)x = x,
which obviously yields

1∈ σ(Q2 + 2EQ−Q+ A(E +Q)+ (E +Q)A− A).
This contradiction completes the proof.

Lemma 4. LetB be unital standard operator algebra on a Banach spaceX.Sup-
pose that‖e‖ = 1 and thatx ∈ X satisfiesEx = x andQx 6= 0. Then{Qnx :
n = 0,1,2, . . . } is a linearly independent set.
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Proof. Assume on the contrary that{Qnx : n = 0,1,2, . . . } is a linearly depen-
dent set. SinceQ is a quasinilpotent, there is an integern > 1 such thatQnx = 0
and the set{x,Qx, . . . ,Qn−1x} is linearly independent. BecauseB contains all
finite rank operators inB(X), we can findA ∈ B such thatAQx = x andAx =
AQ2x = · · · = AQn−1x = 0. Choosea ∈A such thatφ(a) = A. For everyλ∈C
we have

σ(A+ λ2(E +Q)) ⊂ σ(a + λ2e)

⊂ D(0, ‖a‖ + |λ|2).
Here,D(0, t) denotes the closed disk in the complex plane of radiust centered at
the origin.

On the other hand,

(A+ λ2(E +Q))(x + λQx + · · · + λn−1Qn−1x)

= (λ2 + λ)(x + λQx + · · · + λn−1Qn−1x),

which yields thatλ2+λ∈ σ(A+λ2(E+Q)) for every complex numberλ.Hence,
for everyλ∈C we have|λ2 + λ| ≤ ‖a‖ + |λ|2. This contradiction completes the
proof.

Note that Lemma 4 is true not only for unital standard algebras but for all dense
algebras of linear operators.

We are now in a position to prove our main result.

Proof of Theorem 1.Sinceφ is a unital linear mapping preserving invertibility,
we haveσ(φ(a)) ⊂ σ(a) for everya ∈ A. Let e be any nonzero idempotent in
A. Because of Lemma 1, there is no loss of generality in assuming that‖e‖ =
1. We know thatσ(φ(e)) ⊂ {0,1}. Hence, by [5, p. 36] we haveφ(e) = E +Q
with E2 = E, EQ = QE, andσ(Q) = {0}. We have to prove thatQ = 0. As-
sume on the contrary thatQ 6= 0. Then we can assume with no loss of generality
thatEQ 6= 0, since otherwise we would consider 1− e instead ofe. Hence, there
existsy ∈X such thatEQy 6= 0. Setx = Ey. ThenEx = x andQx = QEx =
QEy = EQy 6= 0. It is now easy to obtain a contradiction by applying Lemmas 3
and 4.

Proof of Corollary 1. LetP1, P2 ∈A be orthogonal Hermitian idempotents. Since
P1+P2 is a projection, we have(φ(P1)+φ(P2))

2 = φ(P1)+φ(P2). This yields
φ(P1)φ(P2) + φ(P2)φ(P1) = 0. It follows that if H ∈ A is of the formH =∑n

j=1 tjPj, wheretj ∈ R andPj are Hermitian idempotents such thatPiPj = 0
if i 6= j, thenφ(H 2) = φ(H )2. By [2, Thm. 5.5.2],φ is continuous. The set
of all Hermitian elements that can be represented as finite real-linear combina-
tions of mutually orthogonal projections is dense in the set of all Hermitian ele-
ments inA. Therefore, we haveφ(H 2) = (φ(H ))2 for every Hermitian element
H in A. Now, replacingH by H + K whereH andK are both Hermitian, we
getφ(HK +KH ) = φ(H )φ(K)+ φ(K)φ(H ). Since an arbitraryA∈A can be
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written in the formA = H + iK with H,K Hermitian, the last two relations im-
ply thatφ(A2) = (φ(A))2.

Proof of Corollary 2. We will prove thatφ maps every operator of rank 1 into an
operator of rank 1. Every operator of rank 1 is either a scalar multiple of an idem-
potent or a square-zero operator. Assume first thatP ∈ B(X) is an idempotent
of rank 1 and that its image has rank greater than 1. By Theorem 1,φ(P ) is an
idempotent. Therefore, it has the following matrix representation:

φ(P ) =
[ 1 0 0

0 1 0
0 0 Q

]
,

whereQ is an idempotent. DefineB ∈B(Y ) by

B =
[ 1 0 0

0 0 0
0 0 0

]
,

and findA ∈ B(X) such thatφ(A) = B. We can also find a complex numberλ
such thatλ+A is invertible. The operatorλ+A+ αP is invertible if and only if
I+α(λ+A)−1P is invertible. As(λ+A)−1P has rank 1, this operator is invertible
for all but at most one complex numberα. Butφ(λ+A+αP ) = λ+B +αφ(P )
is singular forα = −λ andα = −λ−1. This contradiction shows thatφ(P )must
be of rank 1.

Almost the same argument as in the proof of Corollary 1 shows that the re-
striction ofφ to F(X) is a Jordan homomorphism. SinceF(X) is a locally ma-
trix algebra, a result of Jacobson and Rickart [11, Thm. 8] tells us thatφ|F(X) =
ϕ + θ, whereϕ : F(X) → B(Y ) is a homomorphism andθ : F(X) → B(Y )
is an antihomomorphism. Pick an idempotentP ∈ B(X) of rank 1. Thenφ(P )
is the sum of idempotentsϕ(P ) andθ(P ); therefore, asφ(P ) also has rank 1, it
follows that eitherϕ(P ) = 0 or θ(P ) = 0. Thus, at least one ofϕ andθ has a
nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms
are ideals, and since the only nonzero ideal ofF(X) isF(X) itself, we haveϕ =
0 or θ = 0. Thus, the restriction ofφ to F(X) is either a homomorphism or an
antihomomorphism.

Take now an arbitrary square-zero operatorN of rank 1. Then one can find an
idempotentP of rank 1 such thatN = PN. If the restriction ofφ to F(X) is a
homomorphism thenφ(N ) = φ(P )φ(N ) and hence rankφ(N ) = 1. Similarly
we prove thatφ(N ) has rank 1 in the case that the restriction ofφ to F(X) is an
antihomomorphism.

Sourour’s proof of Corollary 2 has two steps. The first and more difficult one
shows thatφ maps operators of rank 1 into operators of rank 1. In the second step
this fact is used to conclude thatφ is a Jordan isomorphism. Hence, we have ob-
tained a new proof of the first step of Sourour’s proof. To complete the proof of
Corollary 2 we can now follow the second step of his proof, which can even be
slightly shortened using our observation that the restriction ofφ toF(X) is either
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a homomorphism or an antihomomorphism. We will omit the details since the
main idea remains unchanged.
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