Immiscible Fluid Clusters ifR? andR?3

FRANK MORGAN

1. Introduction

Immiscible fluidsFy, . . ., F,, in R" (with ambientFy) have an energy propor-
tional to surface area, where the constant of proportionaljty- 0 depends on
which fluids the surface separates. To prevent degeneracies, we assume strict tri-
angle inequalities;; < a;; + a;x. B.White [W1; W4, Sec. 11] has announced that
energy-minimizing clusters of prescribed volumes are smooth surfaces of constant
mean curvature that meet along a singular set of Hausdorff dimension at mst
In R? it would follow that an energy-minimizing cluster consists of arcs of cir-
cles meeting at isolated points. Our Regularity Theorem 4.3 gives a simple proof
special toR?.

The special case of planar soap-bubble clusigrs= 1) was treated in [M2].
That simple analysis generalizes immediately to the case ef 2 immiscible
fluids and to the case where each~ 1

1.1. THE PROOF OF REGULARITY THEOREM 4.3. Proposition 4.2 shows thatdf
is, inasmall balB(a, r), weakly close to a diameter separating (say) flgidrom
Fo = 0, thenC is a circular arc in a shrunken b&la, 0.9r). Its proof first uses
projection in the space of coefficients to replatasideB(a, r) with a clusterC’
whose coefficients are all real multiples Bf. It follows from the strict triangle
inequality that this reduces cost at leagsf — C’|. A circular arc is even cheaper.
Second, lost amounts of other fluids, on the ordeibf- C’|? by the isoperimet-
ric inequality, may be restored elsewhere at dogf — C’|2. At a small scale,
K|C — C'|? < ¢|C — C’| and the circular arc is better.

To deduce Regularity Theorem 4.3, note that in a small ball about any @bint,
is weakly close to a tangent cone, which must consist of finitely many rays. By
the previous Proposition 4.2, consists of nearly radial circular arcs that meet at
the point.

1.2. CLusters IN R3. Section 5 generalizes Taylor’s classification of soap-
bubble cluster singularities to clusters of immiscible fluids with interface ener-
gies near unity.
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2. Norms

In Section 3 we will use Proposition 2.1 to define a norm on possible interface
types and thus to define the energy of clusters. A similar proposition appears in
[W4, Sec. 7].

2.1. ProrosiTION. ConsiderR™ with basis{ F; : 1 <i <m}, and letFy = 0.
Fori # j, leta;; = aj; be positive constants satisfying the triangle inequalities

aix < ajj + aj. 1)
Define the norm oR™ as
gl =min > aylyyl: g =Y vi(Fi— F), 0<i.j <m, y; €R}.
(We may assumg; > 0.) Then
I Fi — Fjll = ajj. 2)
If strict inequality holds in(1) for fixedi andk for all j, then there exist a linear

functional L on R™ with L(F; — F};) = ||F; — Fi|| and ane > 0 such that, in
terms of the associated projectiandefined by

wg =g — L(9(F; — F)/IF; — Fell,
we have
L(g) < llgll — ellmgl. (3

Proof. Of coursel| Fop — Fi|l < ao1. A decompositionfy — F1 = )_ B;;(F; — F))
may be interpreted as a flow on the complete graph with verficeksm Fy to Fy,
which may be decomposed as a sum of flows along paths, each of which has (by
the triangle inequality) cost at leas$;. Therefore|| F1 — Fp|| > ao1. In general,
| F; — Fjll = a;;. (Alternatively, one may use an algebraic proof by induction as
in [W4, Sec. 7].)

The norm is just the largest norm satisfyihg; — F;|l < a;;, with unit ball the
polyhedral convex hull of( F; — F;)/a;;}. Equation (2) states that ea@f — F;)/a;;
lies on the boundary. Hence, if strict inequality holds in (1) wke®} = {0, 1},
then Fy/ay0 lies outside the convex hull of the rest and there is a supporting hy-
perplaneL(g) = 1 away from which the unit ball falls at a positive rate. Inequal-
ity (3) follows. O

REMaRk. If strict inequality holds in (1), the norm may be made uniformly con-
vex as follows. Let > 0 so that

agj —c¢ if0=i<j,
a =

a,‘j—C\/E if 0<i<j,

still satisfy
ay < a;j + aj'-k. 4)
As in the proposition, define an associated ndigit. Finally, let
lell = llgl" + clgl-

Conditions (2) and (3) still hold.
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3. Immiscible Fluid Clusters

This section parallels White’s [W4] treatment of fluid clusters as chains with co-
efficients representing the various fluids.

3.1. DerFINITIONS. As aclusterC of m immiscible fluidsF; in R”, we wish to
consider the perimeter (exterior boundary and interfaces) dikjoint regionsk;
(1 < i < m) of finite perimeter and prescribed volumeQV; < oo, with com-
plementRy. The energyof an interface between distind; and R; is a given
positive constant;; = a;; times its area. We assume triangle inequalitigs<
a;j + aji; otherwise, an interface between fluilsand F;. could be replaced by
an infinitesimal layer of; with the same effect.

Technically we work in the spacg,_1(R", G) of real flat chains with coeffi-
cients in the free abelian group with generatorg F; : 1 < i < m} contained
in R ® G, with norm as in Proposition 2.1. (For convenience pyt= 0.) Then
C = 0R, where

R= Z F; ® R;.

An interface fromr; to R; has coefficient; — F;, and the energy of is given
by the mass norm derived from the norm@n

More generally we consider rectifiable chatsvith coefficients inG, in com-
petition with such of the fornC + oW with [, dV = 0 (the generalized volume
constraints). Away from their boundaries, such chains locally bound regions with
coefficientsy_ y; F; (y; € Z) rather than merely;.

The spaces; (R", G) andF;(R", R ® G) are variations on the classiaal=
Z cases of geometric measure theory [M3] generalized to any normed abelian
groupG by Fleming [FI], with further recent improvements by White [W2; W3;
WA4]. (In [W3] it is shown for which groups the flat chains of finite mass are rec-
tifiable, as is well known to hold for our case of boundaries of regions of finite
perimeter; see [M2, Lemma 2.1] or [Fe, 4.5.12, 2.10.6]).

3.2. MonoTtonIcITY. Alternatively, aC € F,_1(R", G) may be viewed as arec-
tifiable varifold with multiplicitiesa;;. If C is energy-minimizing, then away from

dC the varifold has mean curvature weakly bounded by spme 0O, by a lemma

of Almgren (see [M3, Lemma 13.5]; see also [M1, Sec. 3] and Proposition 4.2
herein). Hence, for any € sptC,

M(C L B(a, r))eM" 1)

is a monotonically nondecreasing functionrofA, 5.1(3), p. 446]. It follows

that any minimizer must have compact support (assuming compactness for the
given boundary, if any). It also follows by a compactness argument that a min-
imizer has at each interior point at least one oriented tangent Eoiiée trun-

cated cond” | B(0, 1) is minimizing (without area constraint) among chains with
coefficients inG; = G NV, whereV is the real vectorspace spanned by the coef-
ficients occurring inC. The proof, a standard limit argument, considérs- oW

and requires small adjustmentsn [, 4V, which by a lemma of Almgren (see
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[M3, Lemma 13.5]) may be accomplished at cost at nfo$v||, provided that
veV.

3.3. ExIsTENCE. Foranice compactdomalh C R”, the existence of an energy-
minimizing cluster with prescribed volumes and boundaryFin1(D, G) fol-
lows by compactness [Fl, Cor. 7.5] and the lower semicontinuity of energy [Fl,
Thm. 2.3, Sec. 3]. IiR? (our main concern), the reduction to the case of a com-
pact domainD C R? is an easy argument. Indeed, any cluster of perimeter
contained in disjoint balls of radius with > r; < p. Those outside® may be
translated inside a single ball of radips In R", the existence and compactness
of an energy-minimizing cluster iff,,_1(R", G) requires the arguments of [M1,
Sec. 4].

4. Regularity

The main Regularity Theorem 4.5 states that energy-minimizing clustefsion-

sist of circular arcs meeting at finitely many points. First Lemma 4.1 shows that
classical minimizers (such as small pieces of hypersurfaces with constant mean
curvature inR"™) remain minimizing in comparison with very general surfaces
(perhaps with bubbles of other fluids) enclosing the same volume.

4.1. LemMA. Suppose interface cosig = a;; > 0 (i # j) per unit area inR”
satisfy the triangle inequalities
ajx < a;j + aji,
with strict inequality wheni, k} = {0, 1}. By Proposition 2.1, there exist a linear
functionalL on G with L(F;) = | Fy|| and ane > 0 such that, if
n(g) =g — L(»)F1/IFill,

then

IL(&)| = ligll — ellgll. 1)

Suppose&; is the portion of a hyperspace having constant mean curvature in-
side a small balB(a, r) C R"; or, more generally, suppogg; minimizes area
among(n — 1)-dimensional real rectifiable currents; + W in a ball B(a, r) C
R™ with le dA = 0. ConsiderC = F; ® Cy andC’ = C + aW to be rectifiable
currents inB(a, r) with coefficients iR ® G, with

L</de> —o0. @)

M(C) < M(C") — eM(xC’).

Then

Proof. Ahypersurface of constantmean curvature is locally minimizing as claimed
among real currents by a calibration argument [M3, Rmk., p. 76]. In particular,
M (|| F1||C1) < M(L(C")). Therefore
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M(C) = M(||F1IC1) < M(L(C")) = M(C") —eM(xC")
by (). O

The following propositon contains the main regularity argument that a minimiz-
ing cluster weakly close (in a small ball) to a straight line is (in a smaller ball) a
circular arc.

4.2. PrOPOSITION.  Suppose interface energieg = a;; > 0 (i # j) per unit
length inR? satisfy the triangle inequalities

aix < ajj + aj, (1)
with strict inequality wher{i, k} = {0, 1}. Let C be an energy-minimizing pla-
nar cluster of prescribed areas; > 0 or a minimizer among rectifiable chains
with coefficients inG of the formC + oW with [, dA = 0. Suppose that, in a
small ballB(a, r) and away fromdC, C is weakly close to a diameter with coeffi-

cient F1. Then, in a shrunken baB(a, 0.9r), C is a circular arc(or straight line
segmentwith coefficientF;. At all such points, the arcs have the same curvature.

Proof. Real linear combinations of the coefficients that occuCimway from
dC constitute a vector subspatec R ® G. By a lemma of Almgren (see [M3,
Lemma 13.5]), there exi, 6, > 0 such that, outside any ball of radius less than
82, arbitrary small adjustmentsin [, dA contained inV can be made at cost at
most

Kilvll. @

By Proposition 2.1, there exist a linear functiodabn R ® G with L(Fy) =
|| F1]l ande > 0 such that, if

w(g) =g — L(g)F1/l Full,
then
L(g) < llgll — ellmgl. 3

Note that ketr = {multiples of F1}. We may assume thdt(F;)/| F1|| is rational
and hencerG is discrete. For any 2-dimensional flat ch&irwith coefficients in
G, by the isoperimetric inequalit{{FI, 7.6], which follows from the standard
isoperimetric inequality [M3, 5.3]),

M(X) < K2M(0X)2. 4)
For a nontrivial decompositiof; = > g; with g; € Gy,

1Pl = L(F) =) L(g) < Y _llgill —& Y _llmgl

by (3), so that
A+l Al <) llill. (5)

whered; = min{||zg|| > 0}/¢|| F1|. Let K3 > 0 such that, for alp € G,
gl < Csligll/6. (6)
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Let
s = min{0.0481, 62, 8/K1K2K3, 0.1}. (7)

Now for convenience we assume that 0 and that the diameter is theaxis.
InsideB(a, 0.95r), C projects onto the-axis with coefficientF; and—by mono-
tonicity (3.2), for example—lies inside the cylindgy| < ér}. Also, fors <
0.95 we have

2| Fills = M(SLB(a,5)) < (2l Fill + 6)s.

By slicing theory, for some.Or < s < 0.95r, the circleS(a, s) slicesC in finitely
many points with coefficients i and total mass at most

8
24+ — |IF 245D F.
( +0.05>” 1l < @2+ 81 Fll

By (5), the slice is just two points with coefficieftF;.
To construct a comparison cluster insider, y) € B(0, r) : |x| < s}, replace
C by C 4 9W4, the circular arc with coefficienfy, so thatL(le dA) = 0. (If

we used a straight line thefy, dA would be small becausg is weakly close to

a straight line. By using a slightly curved circular arc, we can niatkﬁyl dA) =
0.) By Lemma 4.1, this reduces cost by at least

eM(@C | B(O, 5)) = eM (mdW1),

becauser (C + 0W;) = 0 insideB(0, s).
SinceF; e V, it follows thatzV C V. Hence, by (2),/,, dA can be adjusted to
zero at cost at most
K| aWall < K1Ko||woWs|®

by the isoperimetric inequality (4). Since the original cluster is minimizing,
eM (dW1) < K1K>M (mdW1)2. (8)
On the other hand, sinag is weakly close to a straight line,
M(@Wy) < 3| Fall(2r) <&
because is small compared t8; hence, by (6),
M (70W1) < K38. (9)

By (7), (8), and (9M (woW;) = 0. InsideB(0, s), C has coefficient;. Hence,

by a decomposition argument (cf. [M3, p. 98]) and the standard isoperimetric the-
orem,C must be a circular arc (with coefficiefit). A variational argument im-
plies that at all such points the arcs have the same curvature. O

REMARK. White has shown me an elegant alternative argument for eliminating
the possibility of other fluids. Suppose other fluids occurred in a shrunken ball in
a sequence€; of minimizers converging in the unit ball to two fluids separated by
the diameter, with uniform bounds on the cost of area adjustments. By translation
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we may assume the origin lies on the boundary of unwanted fluids. Choose dila-
tionsu,,#C; by just enough to be a fixed small flat distarace O from the closest
diameterD in the open unit balU(0, 1):

inf{M(A) +M(B) : spi(11,4C; — D — A — 0B) NU(0,1) = 0} = ¢.

The amount of dilation goes to infinity, and we may assume convergence to a limit
C in all of R?, through the origin, at distance at leastrom every diameter in
the unit ball. Since the cost of area adjustments decreases under dilatians,
minimizing even without area constraints. The process is continusubatause
close dilations are flat close.

Inside a large balB(0, R), eachC; and hence&C has mass very neaug;R;
therefore, many large circles sli€gin two points. Since” is minimizing, it must
be aline (through the origin), in contradiction to being distance at (efasin any
diameter in the unit ball.

This approach allows a weakening of the hypotheses of Regularity Theorem 4.3
from strictness in the triangle inequalities to unigueness of norm decompositions

Qigiy = Qigiy T+ + Aiy_yiy
(see [W4, Sec. 11]).

The following regularity theorem is the main result of this paper.

4.3. REGULARITY THEOREM. Suppose interface energieg in R? satisfy strict
triangle inequalities a; < a;; + aj¢. LetC = 9R be an energy-minimizing clus-
ter of prescribed aread; > 0. ThenC consists of circular arcs meeting at finitely
many points.

Proof. Any oriented tangent cong to R ata must consist of regions with co-
efficients F; separated by finitely many rays emanating from the origin with co-
efficients of the formF; — F;. If 9T is a line, thenC is a circular arc at: by
Proposition 4.2. On the other handifis a singular point then, inside a small
ball B(a, 3r), C is weakly close to its tangent cone. By Proposition 4.2, inside
B(a, 2r) — B(a, r), C consists of several nearly radial circular arcs of bounded
curvature. It follows that, at, C consists of several circular arcs meeting at a
point. O

4.4. REMARKS. A variational argument shows that, at a vertex in an energy-
minimizing planar cluster, the sum of the unit tangent vectors must vanish when
weighted by the appropriate costs. In addition, adjacent vectots, . . ., v, with

coefficientsF;, — Fj,, . .., Fi,_, — F;, must satisfy

‘Z aij—lijui‘ = Qigiy -
Conversely these conditions imply that the tangent vectors are energy-minimizing

for given boundary even without area constraints, assuming no other fluid is added
[LM, Thm. 2.5].
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Likewise, a variational argument shows that any two arcs separating the same
two fluids have the same curvature, and that around any vertex, the weighted cur-
vatures sum to zero.

Conversely, in a small neighborhood of a vertex where circular arcs meet with
weighted unit tangents summing to zero and with weighted curvatures summing to
zero, the cluster is energy-minimizing in comparison to clusters of the same com-
binatorial type. This follows by a strict calibration argument as in [M4, 2.1] and
a limit argument to show that the vertex hardly moves. The restriction on combi-
natorial type is probably unnecessary if the tangent cone is “strictly minimizing”;
see [M4, Conj. 2.4].

4.5. REmaArRK. The Regularity Theorem 4.3 and its proof apply to more general
flat chainsC with coefficients inG minimizing mass among such of the form
C + oW with fW dA = 0 at interior and isolated boundary points near which the
coefficients lie i F; — F;}. Where the coefficients lie outsidé; — F;}, regularity
remains conjectural.

If the area constraints are dropped, then the regularity generalizes to mass-
minimizing 1-dimensional flat chains R" with coefficients in a locally compact,
finitely generated abelian group with strictly convex norm (so that, g2gl| <
2|lg]l) or in a finitely generated free abelian group with strictly condexlinear
norm (so that, e.gll2g|l = 2||gll). Without the area constraints, the proofs reduce
mainly to slicing arguments.

4.6. CoroLLARY. Divide the unit circle into finitely many intervals, assign a
(not necessarily distinytfluid to each interval, andoptionally) assign an area

A; to each fluid such tha}_ A; = = (possibly including fluids not associated
with boundary intervals Suppose&” is minimizing among rectifiable chains with
coefficients inG of the formC + 8W, with or without area constraintg,, dA =

0. ThenC consists of finitely many arcs of constant curvature meeting at isolated
points, including points separating fluids at the boundary.

This problem has also been studied in [E] and in [FMMP].

4.7. GENERAL Norms. The more general case, where each interface energy is
given by a norm®;;(T) of the tangent direction, is much more subtle. Triangle
inequalitiesb;, < ®;;+®;, nolongerimply even the existence of a solution [M5].

If the norms are all multiples of a single norm,; = a;;®, then triangle in-
equalities do imply existence. Proposition 4.2 still holds. With the help of a linear
transformation, one may assume that vertical projection does not increase cost. In
the argument that the minimizer lies close to the diameter, monotonicity may be
replaced by a simpler argument that there are no small components disconnected
from the rest of the cluster. Theorem 4.3 does not follow without monotonicity to
guarantee oriented tangent cones.

Fornorms that are all equab,;; = @ (the directanalog of soap-bubble clusters),
existence and regularity are proved in [MFG].
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4.8. PresCRIBED COMBINATORIAL TYPE. The results of [M2, Sec. 3] on planar
soap bubbles of prescribed combinatorial type (allowing infinitesimal layers) ex-
tend to planar immiscible fluid clusters with cosfs > 0, even without assuming
triangle inequalities. At vertices [M2, 3.2(1)], the sum of the unit tangent vectors,
weighted by the appropriatg;, sum to zero. (In the minimizer among clusters
with connected regions, at a vertex [M2, 3.3(1)] the arcs need not meet in threes.)
Figure lillustrates how, for the minimizer, combinatorial typ@ith agy = a2 =

1 andag, = 3 degenerates into one disc inside another.

Figure1l If apy = a;» = 1andag, = 3, then combinatorial typd degenerates
into one disc inside another, the minimizer.

5. Clusters in R®

In[T], Taylor proved that soap-bubble clustersif consist of surfaces with con-

stant mean curvature meeting in threes at angles of 120 degrees along curves, which
in turn meet in faces at angles of about 109 degrees. She remarked (p. 492) that
classification of stationary nets on the sphere with minimizing cones for the immis-
cible fluids problem would yield classification of singularities. Our Proposition
5.2 gives such a classification for interface energigsiear unity and therefore
yields the following theorem.

5.1. TaeoreMm. For m immiscible fluids with interface energies sufficiently close
to1, an energy-minimizing cluster consists of surfaces with constant mean curva-
ture meeting in threes at angles of abd@0degrees along curves, which in turn
meet in fours at angles of abol@9degrees. The angles are precisely determined
by the relevant interface costs.

5.2. ProposiTION.  For m immiscible fluids with interface weightg sufficiently
close tol, and for any assignment of distinct fluids to the regions of the two stan-
dard Y and tetrahedral cones, there is a unique nearby stationary net, which has
a minimizing cone. There are no other stationary nets.

Proof. By compactness, for weights sufficiently close to 1, any stationary net with
energy-minimizing cone must be close to the standaat tetrahedral net. Be-
cause they are stationary, weighted normals to the associated planes satisfy sim-
ple linear relations, which means that these normals are the edges of a triangle or
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tetrahedron, unique up to rotation, so that the net is unique and furthermore the
cone is minimizing by [LM, Thm. 2.5]. To prove existence of ther tetrahedral

net, take a triangle or tetrahedron with the given weights as edge lengths; planes
normal to the vertices determine the desired geodesics. O
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