
Immiscible Fluid Clusters inR2 andR3
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1. Introduction

Immiscible fluidsF1, . . . , Fm in Rn (with ambientF0) have an energy propor-
tional to surface area, where the constant of proportionalityaij > 0 depends on
which fluids the surface separates. To prevent degeneracies, we assume strict tri-
angle inequalitiesaik < aij + ajk. B.White [W1; W4, Sec. 11] has announced that
energy-minimizing clusters of prescribed volumes are smooth surfaces of constant
mean curvature that meet along a singular set of Hausdorff dimension at mostn−2.
In R2 it would follow that an energy-minimizing cluster consists of arcs of cir-
cles meeting at isolated points. Our Regularity Theorem 4.3 gives a simple proof
special toR2.

The special case of planar soap-bubble clusters(aij = 1) was treated in [M2].
That simple analysis generalizes immediately to the case ofm = 2 immiscible
fluids and to the case where eachaij ≈ 1.

1.1. The Proof of Regularity Theorem 4.3. Proposition 4.2 shows that ifC
is, in a small ballB(a, r),weakly close to a diameter separating (say) fluidF1 from
F0 = 0, thenC is a circular arc in a shrunken ballB(a,0.9r). Its proof first uses
projection in the space of coefficients to replaceC insideB(a, r) with a clusterC ′

whose coefficients are all real multiples ofF1. It follows from the strict triangle
inequality that this reduces cost at leastε|C −C ′|. A circular arc is even cheaper.
Second, lost amounts of other fluids, on the order of|C −C ′|2 by the isoperimet-
ric inequality, may be restored elsewhere at costK|C − C ′|2. At a small scale,
K|C − C ′|2 < ε|C − C ′| and the circular arc is better.

To deduce Regularity Theorem 4.3, note that in a small ball about any point,C

is weakly close to a tangent cone, which must consist of finitely many rays. By
the previous Proposition 4.2,C consists of nearly radial circular arcs that meet at
the point.

1.2. Clusters in R3. Section 5 generalizes Taylor’s classification of soap-
bubble cluster singularities to clusters of immiscible fluids with interface ener-
gies near unity.
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2. Norms

In Section 3 we will use Proposition 2.1 to define a norm on possible interface
types and thus to define the energy of clusters. A similar proposition appears in
[W4, Sec. 7].

2.1. Proposition. ConsiderRm with basis{Fi : 1≤ i ≤ m }, and letF0 = 0.
For i 6= j, let aij = aji be positive constants satisfying the triangle inequalities

aik ≤ aij + ajk. (1)

Define the norm onRm as

‖g‖ = min
{∑

aij |γij | : g =
∑

γij(Fi − Fj ), 0 ≤ i, j ≤ m, γij ∈R
}
.

(We may assumeγij ≥ 0.) Then

‖Fi − Fj‖ = aij . (2)

If strict inequality holds in(1) for fixedi andk for all j, then there exist a linear
functionalL on Rm with L(Fi − Fk) = ‖Fi − Fk‖ and anε > 0 such that, in
terms of the associated projectionπ defined by

πg = g − L(g)(Fi − Fk)/‖Fi − Fk‖,
we have

L(g) ≤ ‖g‖ − ε‖πg‖. (3)

Proof. Of course‖F0− F1‖ ≤ a01. A decompositionF0− F1=
∑
βij(Fi − Fj )

may be interpreted as a flow on the complete graph with verticesFi fromF0 toF1,

which may be decomposed as a sum of flows along paths, each of which has (by
the triangle inequality) cost at leasta01. Therefore‖F1− F0‖ ≥ a01. In general,
‖Fi − Fj‖ = aij . (Alternatively, one may use an algebraic proof by induction as
in [W4, Sec. 7].)

The norm is just the largest norm satisfying‖Fi − Fj‖ ≤ aij , with unit ball the
polyhedral convex hull of{(Fi−Fj )/aij }. Equation (2) states that each(Fi−Fj )/aij
lies on the boundary. Hence, if strict inequality holds in (1) when{i, k} = {0,1},
thenF1/a10 lies outside the convex hull of the rest and there is a supporting hy-
perplaneL(g) = 1 away from which the unit ball falls at a positive rate. Inequal-
ity (3) follows.

Remark. If strict inequality holds in (1), the norm may be made uniformly con-
vex as follows. Letc > 0 so that

a′ij =
{
a0j − c if 0 = i < j,

aij − c
√

2 if 0 < i < j,

still satisfy
a′ik < a′ij + a′jk. (4)

As in the proposition, define an associated norm‖g‖′. Finally, let

‖g‖ = ‖g‖′ + c|g|.
Conditions (2) and (3) still hold.
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3. Immiscible Fluid Clusters

This section parallels White’s [W4] treatment of fluid clusters as chains with co-
efficients representing the various fluids.

3.1. Definitions. As aclusterC of m immiscible fluidsFi in Rn, we wish to
consider the perimeter (exterior boundary and interfaces) ofm disjoint regionsRi
(1≤ i ≤ m) of finite perimeter and prescribed volume 0≤ Vi < ∞, with com-
plementR0. The energyof an interface between distinctRi andRj is a given
positive constantaij = aji times its area. We assume triangle inequalitiesaik ≤
aij + ajk; otherwise, an interface between fluidsFi andFk could be replaced by
an infinitesimal layer ofFj with the same effect.

Technically we work in the spaceFn−1(Rn,G) of real flat chains with coeffi-
cients in the free abelian groupG with generators{Fi : 1 ≤ i ≤ m } contained
in R ⊗G, with norm as in Proposition 2.1. (For convenience putF0 = 0.) Then
C = ∂R, where

R =
∑

Fi ⊗ Ri.
An interface fromRi to Rj has coefficientFi − Fj, and the energy ofC is given
by the mass norm derived from the norm onG.

More generally we consider rectifiable chainsC with coefficients inG, in com-
petition with such of the formC + ∂W with

∫
W
dV = 0 (the generalized volume

constraints). Away from their boundaries, such chains locally bound regions with
coefficients

∑
γiFi (γi ∈Z) rather than merelyFi.

The spacesFk(Rn,G) andFk(Rn,R⊗G) are variations on the classicalG =
Z cases of geometric measure theory [M3] generalized to any normed abelian
groupG by Fleming [Fl], with further recent improvements by White [W2; W3;
W4]. (In [W3] it is shown for which groups the flat chains of finite mass are rec-
tifiable, as is well known to hold for our case of boundaries of regions of finite
perimeter; see [M2, Lemma 2.1] or [Fe, 4.5.12, 2.10.6]).

3.2. Monotonicity. Alternatively, aC ∈Fn−1(Rn,G)may be viewed as a rec-
tifiable varifold with multiplicitiesaij . If C is energy-minimizing, then away from
∂C the varifold has mean curvature weakly bounded by someM > 0, by a lemma
of Almgren (see [M3, Lemma 13.5]; see also [M1, Sec. 3] and Proposition 4.2
herein). Hence, for anya ∈ sptC,

M (C b B(a, r))eMr (1)

is a monotonically nondecreasing function ofr [A, 5.1(3), p. 446]. It follows
that any minimizer must have compact support (assuming compactness for the
given boundary, if any). It also follows by a compactness argument that a min-
imizer has at each interior point at least one oriented tangent coneT . The trun-
cated coneT b B(0,1) is minimizing (without area constraint) among chains with
coefficients inG1= G ∩ V, whereV is the real vectorspace spanned by the coef-
ficients occurring inC. The proof, a standard limit argument, considersC + ∂W
and requires small adjustmentsv in

∫
W
dV, which by a lemma of Almgren (see
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[M3, Lemma 13.5]) may be accomplished at cost at mostK‖v‖, provided that
v ∈V.
3.3. Existence. For a nice compact domainD ⊂ Rn, the existence of an energy-
minimizing cluster with prescribed volumes and boundary inFn−1(D,G) fol-
lows by compactness [Fl, Cor. 7.5] and the lower semicontinuity of energy [Fl,
Thm. 2.3, Sec. 3]. InR2 (our main concern), the reduction to the case of a com-
pact domainD ⊂ R2 is an easy argument. Indeed, any cluster of perimeterp is
contained in disjoint balls of radiusri with

∑
ri ≤ p. Those outsideD may be

translated inside a single ball of radiusp. In Rn, the existence and compactness
of an energy-minimizing cluster inFn−1(Rn,G) requires the arguments of [M1,
Sec. 4].

4. Regularity

The main Regularity Theorem 4.5 states that energy-minimizing clusters inR2 con-
sist of circular arcs meeting at finitely many points. First Lemma 4.1 shows that
classical minimizers (such as small pieces of hypersurfaces with constant mean
curvature inRn) remain minimizing in comparison with very general surfaces
(perhaps with bubbles of other fluids) enclosing the same volume.

4.1. Lemma. Suppose interface costsaij = aji > 0 (i 6= j) per unit area inRn

satisfy the triangle inequalities

aik ≤ aij + ajk,
with strict inequality when{i, k} = {0,1}. By Proposition 2.1, there exist a linear
functionalL onG withL(F1) = ‖F1‖ and anε > 0 such that, if

π(g) = g − L(g)F1/‖F1‖,
then

|L(g)| ≤ ‖g‖ − ε‖πg‖. (1)

SupposeC1 is the portion of a hyperspace having constant mean curvature in-
side a small ballB(a, r) ⊂ Rn; or, more generally, supposeC1 minimizes area
among(n−1)-dimensional real rectifiable currentsC1+ ∂W1 in a ball B(a, r) ⊂
Rn with

∫
W1
dA = 0. ConsiderC = F1⊗ C1 andC ′ = C + ∂W to be rectifiable

currents inB(a, r) with coefficients inR ⊗G, with

L

(∫
W

dV

)
= 0. (2)

Then
M (C) ≤ M (C ′)− εM (πC ′).

Proof. A hypersurface of constant mean curvature is locally minimizing as claimed
among real currents by a calibration argument [M3, Rmk., p. 76]. In particular,
M (‖F1‖C1) ≤ M (L(C ′)). Therefore
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M (C) = M (‖F1‖C1) ≤ M (L(C ′)) ≤ M (C ′)− εM (πC ′)

by (1).

The following propositon contains the main regularity argument that a minimiz-
ing cluster weakly close (in a small ball) to a straight line is (in a smaller ball) a
circular arc.

4.2. Proposition. Suppose interface energiesaij = aji > 0 (i 6= j) per unit
length inR2 satisfy the triangle inequalities

aik ≤ aij + ajk, (1)

with strict inequality when{i, k} = {0,1}. Let C be an energy-minimizing pla-
nar cluster of prescribed areasAi ≥ 0 or a minimizer among rectifiable chains
with coefficients inG of the formC + ∂W with

∫
W
dA = 0. Suppose that, in a

small ballB(a, r) and away from∂C, C is weakly close to a diameter with coeffi-
cientF1. Then, in a shrunken ballB(a,0.9r), C is a circular arc(or straight line
segment) with coefficientF1. At all such points, the arcs have the same curvature.

Proof. Real linear combinations of the coefficients that occur inC away from
∂C constitute a vector subspaceV ⊂ R ⊗G. By a lemma of Almgren (see [M3,
Lemma 13.5]), there existK1, δ2 > 0 such that, outside any ball of radius less than
δ2, arbitrary small adjustmentsv in

∫
W
dA contained inV can be made at cost at

most
K1‖v‖. (2)

By Proposition 2.1, there exist a linear functionalL onR ⊗ G with L(F1) =
‖F1‖ andε > 0 such that, if

π(g) = g − L(g)F1/‖F1‖,
then

L(g) ≤ ‖g‖ − ε‖πg‖. (3)

Note that kerπ = {multiples ofF1}. We may assume thatL(Fi)/‖F1‖ is rational
and henceπG is discrete. For any 2-dimensional flat chainX with coefficients in
πG, by the isoperimetric inequality([Fl, 7.6], which follows from the standard
isoperimetric inequality [M3, 5.3]),

M (X) ≤ K2M (∂X)2. (4)

For a nontrivial decompositionF1=
∑
gi with gi ∈G1,

‖F1‖ = L(F1) =
∑

L(gi) ≤
∑
‖gi‖ − ε

∑
‖πgi‖

by (3), so that
(1+ δ1)‖F1‖ ≤

∑
‖gi‖, (5)

whereδ1= min{‖πg‖ > 0}/ε‖F1‖. LetK3 > 0 such that, for allg ∈G,
‖πg‖ ≤ C3‖g‖/6. (6)
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Let
δ = min{0.04δ1, δ2, ε/K1K2K3,0.1}. (7)

Now for convenience we assume thata = 0 and that the diameter is thex-axis.
InsideB(a,0.95r), C projects onto thex-axis with coefficientF1 and—by mono-
tonicity (3.2), for example—lies inside the cylinder{|y| ≤ δr}. Also, for s ≤
0.95r we have

2‖F1‖s ≤ M (S b B(a, s)) ≤ (2‖F1‖ + δ)s.
By slicing theory, for some 0.9r < s < 0.95r, the circleS(a, s) slicesC in finitely
many points with coefficients inG and total mass at most(

2+ δ

0.05

)
‖F1‖ < (2+ δ1)‖F1‖.

By (5), the slice is just two points with coefficient±F1.

To construct a comparison cluster inside{ (x, y) ∈ B(0, r) : |x| ≤ s }, replace
C by C + ∂W1, the circular arc with coefficientF1, so thatL

(∫
W1
dA
) = 0. (If

we used a straight line then
∫
W1
dA would be small becauseC is weakly close to

a straight line. By using a slightly curved circular arc, we can makeL
(∫
W1
dA
) =

0.) By Lemma 4.1, this reduces cost by at least

εM (πC b B(0, s)) = εM (π∂W1),

becauseπ(C + ∂W1) = 0 insideB(0, s).
SinceF1 ∈ V, it follows thatπV ⊂ V. Hence, by (2),

∫
W
dA can be adjusted to

zero at cost at most
K1‖πW2‖ ≤ K1K2‖π∂W1‖2

by the isoperimetric inequality (4). Since the original cluster is minimizing,

εM (π∂W1) ≤ K1K2M (π∂W1)
2. (8)

On the other hand, sinceC is weakly close to a straight line,

M (∂W1) < 3‖F1‖(2r) < δ

becauser is small compared toδ; hence, by (6),

M (π∂W1) ≤ K3δ. (9)

By (7), (8), and (9),M (π∂W1) = 0. InsideB(0, s), C has coefficientF1. Hence,
by a decomposition argument (cf. [M3, p. 98]) and the standard isoperimetric the-
orem,C must be a circular arc (with coefficientF1). A variational argument im-
plies that at all such points the arcs have the same curvature.

Remark. White has shown me an elegant alternative argument for eliminating
the possibility of other fluids. Suppose other fluids occurred in a shrunken ball in
a sequenceCi of minimizers converging in the unit ball to two fluids separated by
the diameter, with uniform bounds on the cost of area adjustments. By translation
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we may assume the origin lies on the boundary of unwanted fluids. Choose dila-
tionsµri#Ci by just enough to be a fixed small flat distanceε > 0 from the closest
diameterD in the open unit ballU(0,1):

inf {M (A)+M (∂B) : spt(µri#Ci −D − A− ∂B) ∩ U(0,1) = ∅ } = ε.
The amount of dilation goes to infinity, and we may assume convergence to a limit
C in all of R2, through the origin, at distance at leastε from every diameter in
the unit ball. Since the cost of area adjustments decreases under dilations,C is
minimizing even without area constraints. The process is continuous inri because
close dilations are flat close.

Inside a large ballB(0, R), eachCi and henceC has mass very near 2a01R;
therefore, many large circles sliceC in two points. SinceC is minimizing, it must
be a line (through the origin), in contradiction to being distance at leastε from any
diameter in the unit ball.

This approach allows a weakening of the hypotheses of Regularity Theorem 4.3
from strictness in the triangle inequalities to uniqueness of norm decompositions

ai0ik = ai0i1 + · · · + aik−1ik

(see [W4, Sec. 11]).

The following regularity theorem is the main result of this paper.

4.3. Regularity Theorem. Suppose interface energiesaij in R2 satisfy strict
triangle inequalities: aik < aij + ajk. LetC = ∂R be an energy-minimizing clus-
ter of prescribed areasAi ≥ 0. ThenC consists of circular arcs meeting at finitely
many points.

Proof. Any oriented tangent coneT to R at a must consist of regions with co-
efficientsFi separated by finitely many rays emanating from the origin with co-
efficients of the formFj − Fi. If ∂T is a line, thenC is a circular arc ata by
Proposition 4.2. On the other hand, ifa is a singular point then, inside a small
ball B(a,3r), C is weakly close to its tangent cone. By Proposition 4.2, inside
B(a,2r) − B(a, r), C consists of several nearly radial circular arcs of bounded
curvature. It follows that, ata, C consists of several circular arcs meeting at a
point.

4.4. Remarks. A variational argument shows that, at a vertex in an energy-
minimizing planar cluster, the sum of the unit tangent vectors must vanish when
weighted by the appropriate costsaij . In addition, adjacent vectorsv1, . . . , vk with
coefficientsFi0 − Fi1, . . . , Fik−1 − Fik must satisfy∣∣∣∑ aij−1ijvj

∣∣∣ ≤ ai0ik .
Conversely these conditions imply that the tangent vectors are energy-minimizing
for given boundary even without area constraints, assuming no other fluid is added
[LM, Thm. 2.5].
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Likewise, a variational argument shows that any two arcs separating the same
two fluids have the same curvature, and that around any vertex, the weighted cur-
vatures sum to zero.

Conversely, in a small neighborhood of a vertex where circular arcs meet with
weighted unit tangents summing to zero and with weighted curvatures summing to
zero, the cluster is energy-minimizing in comparison to clusters of the same com-
binatorial type. This follows by a strict calibration argument as in [M4, 2.1] and
a limit argument to show that the vertex hardly moves. The restriction on combi-
natorial type is probably unnecessary if the tangent cone is “strictly minimizing”;
see [M4, Conj. 2.4].

4.5. Remark. The Regularity Theorem 4.3 and its proof apply to more general
flat chainsC with coefficients inG minimizing mass among such of the form
C + ∂W with

∫
W
dA = 0 at interior and isolated boundary points near which the

coefficients lie in{Fi−Fj }. Where the coefficients lie outside{Fi−Fj }, regularity
remains conjectural.

If the area constraints are dropped, then the regularity generalizes to mass-
minimizing 1-dimensional flat chains inRn with coefficients in a locally compact,
finitely generated abelian group with strictly convex norm (so that, e.g.,‖2g‖ <
2‖g‖) or in a finitely generated free abelian group with strictly convexZ+-linear
norm (so that, e.g.,‖2g‖ = 2‖g‖). Without the area constraints, the proofs reduce
mainly to slicing arguments.

4.6. Corollary. Divide the unit circle into finitely many intervals, assign a
(not necessarily distinct) fluid to each interval, and(optionally) assign an area
Ai to each fluid such that

∑
Ai = π (possibly including fluids not associated

with boundary intervals). SupposeC is minimizing among rectifiable chains with
coefficients inG of the formC + ∂W, with or without area constraints

∫
W
dA =

0. ThenC consists of finitely many arcs of constant curvature meeting at isolated
points, including points separating fluids at the boundary.

This problem has also been studied in [E] and in [FMMP].

4.7. General Norms. The more general case, where each interface energy is
given by a norm8ij(T ) of the tangent direction, is much more subtle. Triangle
inequalities8ik < 8ij+8jk no longer imply even the existence of a solution [M5].

If the norms are all multiples of a single norm,8ij = aij8, then triangle in-
equalities do imply existence. Proposition 4.2 still holds. With the help of a linear
transformation, one may assume that vertical projection does not increase cost. In
the argument that the minimizer lies close to the diameter, monotonicity may be
replaced by a simpler argument that there are no small components disconnected
from the rest of the cluster. Theorem 4.3 does not follow without monotonicity to
guarantee oriented tangent cones.

For norms that are all equal,8ij = 8 (the direct analog of soap-bubble clusters),
existence and regularity are proved in [MFG].
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4.8. Prescribed Combinatorial Type. The results of [M2, Sec. 3] on planar
soap bubbles of prescribed combinatorial type (allowing infinitesimal layers) ex-
tend to planar immiscible fluid clusters with costsaij > 0, even without assuming
triangle inequalities. At vertices [M2, 3.2(1)], the sum of the unit tangent vectors,
weighted by the appropriateaij, sum to zero. (In the minimizer among clusters
with connected regions, at a vertex [M2, 3.3(1)] the arcs need not meet in threes.)
Figure 1 illustrates how, for the minimizer, combinatorial typeAwith a01= a12 =
1 anda02 = 3 degenerates into one disc inside another.

Figure 1 If a01= a12 = 1 anda02 = 3, then combinatorial typeA degenerates
into one disc inside another, the minimizer.

5. Clusters in R3

In [T], Taylor proved that soap-bubble clusters inR3 consist of surfaces with con-
stant mean curvature meeting in threes at angles of 120 degrees along curves, which
in turn meet in faces at angles of about 109 degrees. She remarked (p. 492) that
classification of stationary nets on the sphere with minimizing cones for the immis-
cible fluids problem would yield classification of singularities. Our Proposition
5.2 gives such a classification for interface energiesaij near unity and therefore
yields the following theorem.

5.1. Theorem. Form immiscible fluids with interface energies sufficiently close
to1, an energy-minimizing cluster consists of surfaces with constant mean curva-
ture meeting in threes at angles of about120degrees along curves, which in turn
meet in fours at angles of about109degrees. The angles are precisely determined
by the relevant interface costs.

5.2. Proposition. Form immiscible fluids with interface weightsaij sufficiently
close to1, and for any assignment of distinct fluids to the regions of the two stan-
dardY and tetrahedral cones, there is a unique nearby stationary net, which has
a minimizing cone. There are no other stationary nets.

Proof. By compactness, for weights sufficiently close to 1, any stationary net with
energy-minimizing cone must be close to the standardY or tetrahedral net. Be-
cause they are stationary, weighted normals to the associated planes satisfy sim-
ple linear relations, which means that these normals are the edges of a triangle or



450 F rank Morgan

tetrahedron, unique up to rotation, so that the net is unique and furthermore the
cone is minimizing by [LM, Thm. 2.5]. To prove existence of theY or tetrahedral
net, take a triangle or tetrahedron with the given weights as edge lengths; planes
normal to the vertices determine the desired geodesics.
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