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0. Introduction

Let G/K be a Hermitian symmetric space realized as a bounded symmetric do-
main. Shimeno [Sho] gives the Plancherel decomposition fok thgpace of sec-

tions of a homogeneous line bundle otk . It is proved that the discrete parts
(also called relative discrete series) in the decomposition are all equivalent to holo-
morphic discrete series. The proof involves identifying the infinitesimal charac-
ters of the relative discrete series and those of the holomorphic discrete series. For
the unit disk inC, this was proved in [PPZ]. More explicitly, we have found the
intertwining operators from the relative discrete series onto the standard modules
of the holomorphic discrete series, that is, the Bergman spaces of holomorphic
functions; they turn out to be the iterates of the invariant Cauchy—Riemann opera-
tor. WhenG/K is the unit ball inC¢, we have proved [Z] by explicit calculation

of the reproducing kernels that the relative discrete series are equivalent to certain
weighted Bergman spaces of vector-valued holomorphic functions.

In the present paper we shall give a unified approach to the foregoing results.
Here is a brief introduction to the main idea and a summary of the results obtained.
Let D be the invariant Cauchy—Riemann operator acting on sections of a vector
bundleE over the unit ball. This operator maps to sections of the tensor product
of E with the holomorphic tangent bundle. LBtbe the conjugate operator. The
higher-order Laplace operatoks, = D™ D™ are invariant differential operators
under the group of biholomorphic mappings of the ball. In particularis the
negative of the invariant Laplace—Beltrami operator. The unit ball is a rank-1 Her-
mitian symmetric space and, in the case wlieis a line bundle, alL,, are poly-
nomials ofL,; see for example [Sha] for a general study on invariant differential
operators on line bundles (in our case, everything follows from direct calculation).
Our first result is an explicit formula for these polynomials. This is done with the
help of the spherical transform on the line bundle studied in [Z]. For line bundles
over the unit disk, the polynomials were found[Z]; in [EP] theywere given
for the trivial line bundle over the unit ball.
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The spectrum ol ; on a line bundle was determined in [Z], and hence in this
way we obtain the spectrum of dl},,. It turns out that the kernel df; corresponds
to the lowest eigenvalue df;, namely zero, and that the eigenspace is the cor-
responding weighted Bergman space; the kernél.of the sum of the first and
the second eigenspaces, and so on. Thus all are eigenspaces of the Rérates
of the Cauchy—Riemann operator. By an operator-theoretic argument we easily
prove that theD™ are intertwining operators from the eigenspaces—namely, the
relative discrete series—into the kernel@bn sections of a vector bundle, which
is then a Bergman space of vector-valued holomorphic functions on the unit ball.
The latter is, in representation theory, also called the holomorphic discrete series.

We note that our methods here are explicit and self-contained. It would be
very interesting to prove the corresponding results for general bounded symmetric
domains. We intend to return to this subject in future work.

The main results are summarized in Theorems 3.3, 3.6, and 4.1. In Section 1,
we prove that the operatof$” map sections of the vector bundle into sections of
its tensor product with theith symmetric tensor product of the holomorphic tan-
gent bundle. In Section 2, we recall some results obtained in [Z] and introduce the
Bergman spaces of vector-valued holomorphic functions. The product formula is
proved in Section 3, and the intertwining property in Section 4.

ACKNOWLEDGMENT. Part of this work was done while the second author (G.Z.)
visited the first author (J.P.) at the Mathematics Department of Lund University,
whose kind hospitality was most appreciated.

1. Powers of Invariant Cauchy—Riemann Operators

In this section we introduce the invariant Cauchy—Riemann operator on a vector
bundle E over a Kéhler manifold2, and we prove that its iterates map sections
of E to sections of the tensor product Bfwith a symmetric tensor product of the
holomorphic tangent bundiE®-9(Q) of Q. )

Let the K&hler metric oif2 locally be given by the matrixz;;). Let D be the
invariant Cauchy—Riemann operator éiras defined in [EP]. LocallyD can be
obtained as follows. Let, be a collection of local trivializing sections. ff =
fueq is any section of, then

_ _af
Df =h'—e, ® 0,
f = ®
where we use the Einstein convention. We recall the following important inter-
twining property ofD:
D(foy)=Df oy

if ¢ is any biholomorphic mapping @ into itself. The action on sections of the
bundles is the induced action. We denotedy7 *-9(Q) the symmetric tensor
subbundle of®” T™9(). Our first lemma says that the iteratesi@fmaps into
this subbundle.
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Lemma 1.1.  The operatorD™ mapsC>(E) into C*(E @ (0" T%(Q))).

Proof. The result follows by induction oven. We begin with the casa = 2.
Let f be a section of:. Then

o
D?*f = h“az <hf’ fj)ea@)a ®

ah]l afoz 2foz
=t — 0 ® 0 ® 0 + W —
g2k gz B O @ U R
Clearly, the second term is symmetriciiand/ and hence is i®27 %9 (Q).
Now €2 is a Kahler manifold, so there exists a Kéhler potential: a smooth func-
tion @ such that

ey ®0; ® 0;.

%P
rqg — azpazq N

It follows (see [EP]) that

ji 3
Oh _ w®hea g _ g P a0 (L.1)
azk azk 0zk0z490zP
Thus
ohli 9r« T 30 af
Rk f ey ®0; ® 9, = —hMpIPpdl f e, ®3; ® 0,

azk az/ 0z90z%dzP 377
which is clearly symmetric in and! and thus is ir©27*9(). This proves the
lemma form = 2. .

Now suppose that the claim is true for all < k, and consideD**+1, For f €
C*(Q) we haveD**'f = DD*f and soD**'f isin

E® (0T o TH2@).
On the other hand, we hav@*+f = D2D*-1, which implies thatD**+f is in
E® (O 'TH2Q) @ (0°TH2Q).

That is,D¥1f(x) is in the intersection of the two bundles just displayed. In other
words, D**1f is invariant under the symmetric grosp and also under the trans-
position(k, k + 1), wheresS, consists of the permutations in the fikstectors and

(k, k + 1) is the linear transformation permuting the last two vectors. Since the
symmetric grousy,1 is generated by, and(k, k + 1), we see thaD**f is in-
variant unders,, 1—that is, it belongs t& ® (017 *9(Q)). O

In what follows, E will always be a line bundle.
2. Irreducible Decomposition ofL?(B¢, du,) and Bergman
Spaces of Vector-Valued Holomorphic Functions

In this section, we recall some basic facts (obtaineji) about the irreducible
decomposition of thé.2-space of sections of a line bundle over the unit &l
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of C“. Inthe case of a trivial line bundle, this is well understood for any symmetric
space; see [H].

Letdm(z) be Lebesgue measure @d, and lete > —1. Consider the weighted
measure

ditg = Co(1 = |213)%dm(2),
where
1 T

T T —d)
is a normalizing constant.

The groupG = Auto(B?) of biholomorphic mappings aB¢ acts unitarily on
the spacd.?(B?, du,) via

g€G: f(2) > f(g2)Jy ()"t

wherev = « 4+ d 4 1 andJ, is the Jacobian determinant f The following G-
invariant differential operator was obtained by Peetre (see [Z, p. 104]):

I SR SN
- Zi— - j——V Zi— ). (2-1)
= ’3zj = Jazj 7 ]3Zj

j=

d 82

L=(1- |z|2>(Z

=1

0z;0%;

Similarly, we can find the generalization of spherical function, which is given
by the radial eigenfunction df,
v+d—il —v+d—ii
2 ' 2

(26 e

Here, F1 is the hypergeometric function.
The spectrum of is calculated in [Z]. We will be mostly interested in the
discrete spectrum, which contains finitely many points

Id+d—-v), 1=01,...k (2.4)

[

We denote the corresponding eigenspacealfj;?. The spherical functior;, is
for A = i(v — d — 2I) the only radial function imj’"z. In particular, forl = 0
we obtain the Bergman space of the holomorphic functions?B?, du,); the
spherical function in this space is the constant function 1.

Recall the invariant Cauchy—Riemann operafointroduced in Section 1. In
the present case it can be more explicitly written as

D = B(z,2)d,

¢i(z) = (1 — |z|2><—”+d—“>/22F1(

with eigenvalue

Mﬂﬁ) (2.2)

where

whereB(z, z) is the Berezin operator
Bz,2)=(1- 21 -z®3),
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andz ® z stands for the rank-1 operator given@yw z) (w) = (w, z)z. The opera-
tor D™ mapsC *-functions into the space @§” C¢-valued functions, a space we
hereafter denote bg>°(B?, ©™C%). There is a uniqu&-invariant Hilbert norm
onC®(B4, " C%), to wit

LF1I? = /Bd<(B(Z, D" @), f(2)) dpa(2),

where the inner product in the integral is calculated@tC¢ and where
(B(z, z)~H®™ is the induced action of the linear operaRiz, z)~* on symmetric
tensors. We denote b§?(B¢, ©"C¢, u,) the corresponding Bergman space of
holomorphic functions with value i@™C?. This space is an irreducibtg-space;
see [W].

DenoteD = D*, the conjugate oD in the Hilbert-space sense. Thép, =
D™D™ areG-invariant differential operators. It turns out now that the operator
in (2.1) can be obtained as a special casg,pflndeed, takingr = 1, direct cal-
culation shows thak = —L, = —DD. In the next section we will find a product
formula expressind.,, for generaln as a polynomial of_;.

3. A Product Formula for the Invariant Laplacians
on a Line Bundle overB®

In order to find the symbol af,, as a function of.,, we will derive a certain com-
mutation relation ofL,, with the Berezin transform and then calculate the sym-
bol of this transform. Roughly speaking the Berezin transform can be defined
as a convolution operator (in the sense of the gréypwith convolution kernel

(1 — |z%#. However, we will not go into details here. Instead we calculate the
action of Laplacians ol — |z|?)#. To simplify notation we denote

h(z) =1— |z]2

LemMma 3.1. The following basic formula holds:
D"hP = (=1)"™(B)uh" " ",

where(B8),, is the Pochhammer symba@l),, = 8(B+ 1) --- (8 + (m — 1)), and
where we have put®” =z ® --- © z (m times.

Proof. Indeed, .
DhP(z) = —BB(z, 2)(1 — |21 2.
Using the obvious formula
B(z,2)z=(1-z®72)z=1—-z1)% = h(2)%z, (3.1)

we find _
DhP(z) = —B(1 — |z1HF Tz = —Br#T(2)z.

Similarly, we have
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D?hf(z) = =D~ 1zHP " @ z = B(B + DI’ (D)2 @ 2.
Continuing the differentiation, we obtain the lemma. O
CoroLLARY. We can further deduce that

(B(z,2) H"D"h(2)F = (=D)"(B)nh(2)’ "2
Proof. This follows readily with the aid of (3.1). O

LemMA 3.2. The following formula holds:
Lyi1h? = Ly [B(B+ WP — (B+m)(B —m + v —d)h’].

Proof. Take f € C*(B“) with compact support. It suffices to prove that the inner
product of f with the LHS coincides with the inner product gfwith the RHS.
We find

(Lniah?, f) = (D" **hP, D" )
=C, /B (BG, ™ H"PD" 0@, D" (@))h(@)* dm(z)
= (=D"" (B)m11Ca
y /B {h) e P A, (3.2)

by the preceding corollary. Therefore, integrating by parts, the last integral
becomes

/ (h(z)ﬂJrafmleO(erl)’ [)erlf(Z)) dm(z)
Bd

2/ <h(z)/3+a7m+lz®(m+l)’5Dmf(z)>dm(z)
Bd

d
- /Bd< > i(h(z)’”“""*1@1@”‘), D’"f(z)> dm(z). (3.3)

=0y

However, direct differentiation yields
d

ad
D —(h()frem iy 2om)

j=1 9z;
= (d + m)h(z)/‘%La*erlZ@m _ (ﬁ +a—m+ 1)h(z);3+a7m|zl2ZOm.

Let us now writez|> = 1 — h(z). Then we see that the RHS of the foregoing
equality is the same as

—(B+a—m+Dh@f " 4 (d+ B+ a+ Dh() O

The integral (3.3) can thus be written as a sum of two: One is, apart from a factor
B+a—m+1,

/ (h(2)PT*=mz®" D" f(2)) dm(2),
Bd
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which, in view of the corollary to Lemma 3.1, can be written as

b / ((B(z,2)"HO™D™h(2)P, D" f(2)) h(2)* dm(z),
(ﬂ)m B4
that is,
(=n"
L.h?, f).
(ﬁ%1< fi

The other is treated in a similar way and reduces, apart from a faet@gr+o + 1,

to
=D~

(:3 + l)m—l
Inserting in (3.3) and then in (3.2) verifies our claim. O

(L,h"T2, f).

THEOREM 3.3. Supposg > —(v —d)/2. Then the spherical transforif of 1f
is given by
T(B+ =SB + =52)T()

rPo) = .
rrw+pre —d)

0 < Re(id) <28 +v —d.

Proof. First we show that, whei is in the strip in the theorem, the spherical
transform exists. In fact, when Re) > 0 then the hypergeometric function

vbd—ih —v+d—in
F , yd; |z
2 1( > > |Z|)

is a bounded function. From the asympotic formula for spherical function [Z,
Cor. 2.2], we see that the integral

/ W (@$1(2) dpa (@) (3.4)
B
is dominated, up to a constant, by

1- |Z|2)/3+(—v+d—Re(ik))/2+a dm(z),
Bd

which is finite if and only if

—v +d — Re(iA
13+er(l)+a>_l,

which is the second inequality in the theorem.
When Reil) = 0, the hypergeometric function is, up to a constant, bounded
by —log(1 — |z|?). The integral (3.4) is also dominated by
/ (1= [z D2 log(1 — |21) dm(2),
Bd

which is finite by our assumption that- —(v — d)/2 (see e.g. [R, Chap. 1]).
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Recalling the expression fgr, in (2.2), we now calculate the integral (3.4):
() = /B @62 dua(2)
= [ @il
Bd

v4+d—ik —v+d—ilr
><2F1< 5 5 ;d;|z|2>dua(z>

_ 2\ B4(—v+d—ir)/2 - v+d ) ( v+§_ik)m 2m
= ,a-1” Z @ 2" dpse (2)

_ i (s, (==t

m=0

(d) — / (1 |Z|2)ﬂ+( v+d— M)/2|Z|2m dl'l/ (Z)

The change in order of summation and integration is justified because the integral
is absolutely convergent. We use the following well-known integral formula (see
[R, Chap. 1]):

I'(s+d)T(t+v—d)L(v)
[(s+t+v)Td)T(v—d)

f 22 = |2 dpa(2) =
Bd
The integral now becomes

L(B+ =574 ) i (25%), (F252)., C(m +d)

L'd)r'(v—d) (d)nm! L(m+ B+ ”+d etk ) ’
Furthermore, using the formulac +m) = I'(c) (¢),,, We see that the summation
is . )

r(d) i (=512), (35572), 1
P(B+ =52 +v) i (B+ =52 +v), m!

which, but for the constant factor, is a hypergeometric series and is evaluated by
the Gauss formula (see [E, p. 61]):

v+d—ik —v+d—ir —v+d—ii

2F1< 5 , 5 ;06+,3+T
T+ B+ =2 4 1+ d)T (o + B+ 1+ =)
MNa+B+d+a)l(a+p+d+1-v) ’

Simplifying the product yields the theorem. O

m=0

+1+d; 1)

REMARK 3.4. The assumptiof > —(v—d)/2is equivalent t@? € L2(B4, du,).
In this case the spherical transfodrfi()) exists when RéA) = 0 by the Plan-
cherel formula in [Z]. The foregoing calculation shows thét\) is a meromor-
phic function of in the whole complex plane.

REMARK 3.5. The spherical transforif (1) is also the symbol of the Berezin
transfrom on the line bundle as a function of the invariant Laplacian. In the case
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of the trivial line bundle, the symbol was calculated by Peetre [P] for the unit ball,
and more recently by Unterberger and Upmeier [UU] for all bounded symmetric
domains.

Applying the spherical transform to Lemma 3.2, we have

Ly 1i(DRPO) = L, W) (BB + WP — (B+m)(B —m +v — d)hP()),

whereL,, (1) denotes the symbol of the operatoy,, Z,;? = L,,,(A)f. Using
Theorem 3.3, we find the recursive formula

v—d—+ik v—d—i\
L) = Lm(l)[( 5 + ﬁ)( 5 + ﬂ)

—(ﬂ—l—m)(ﬁ—m—l—v—d)].

The first product inside the brackets is

B2y Bv—dy+ (224 + Al
‘)_ —
2 2)°
and the second product is

B2+ B —d)+m@v—d)—

Lty = L m[(Td - m)z 4 (%ﬂ (35)

Using the formula repeatedly, we obtain

Liys10) = L (V) ]_[ [(— — j)2 + (%ﬂ (3.6)

Recalling (from (2.3)) that
v—d\? N\
b =(57) ()
m v—d 2 A 2
= f1[(52 ) + (3]
a0 =IT](*3 .
m —d 2 A 2
Lm()h) = |:<U_ - .] + 1) + <_> ]
jl:! 2 2

m . 2 2
=]‘[[(” d)+<%) +(j—1)(j—1—v+d)}.
j=1

We have, therefore, the following end result.

Thus,

we obtain

or
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THEOREM 3.6. The following product formula holds:

Lo =[](Li+ G =D —1—v+a)).
j=1

4. Invariant Cauchy—Riemann Operators as Intertwining
Operator into Holomorphic Discrete Series

We now apply the product formula in Theorem 3.6 to obtain the realization of the
relative discrete series of the line bundle oBé¢r

Recall thatL, = DD = —L, whereL is the invariant Laplacian of Section 2.
Therefore (see (2.4)),1 has spectrum-I(I +d — v) on Af"z. It follows now from
Theorem 3.6 that

m
@
kerL,, = Z A%Y
=1

form=1,2,...,k+ 1. Consequently,
A2 = kerL;, © kerL,

forl =0,1, ...,k However,L, = D™D™, and so keL.,, = ker D" and
A2 = kerD"* o kerD'.

On the other hand)’ mapsC>(B9) to C*(B%, ©'C?) by Lemmal.1, andD’
mapsAZ-2 one-to-one into the kernel db on C*(B4, ©'C¥) by the preceding
formula; this kernel is the space of analytic sections of the vector bundle. Fhus
mapsA’-? to an irreducible subspace 6/ (B%, ©'C¢). Clearly the image inter-
sects the Bergman spal:é(Bd, ®'CY, dug), which is irreducible. Thus the two
spaces must coincide. We have established the following result.

THEOREM 4.1. The operatorsD!, I = 0,1, ..., k, are intertwining operators
from A% onto the Bergman spade? (B2, ©'C%, du).

It would be interesting to find an orthogonal basis of the spaj’cé using this
theorem.
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