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0. Introduction

Let G/K be a Hermitian symmetric space realized as a bounded symmetric do-
main. Shimeno [Sho] gives the Plancherel decomposition for theL2-space of sec-
tions of a homogeneous line bundle overG/K. It is proved that the discrete parts
(also called relative discrete series) in the decomposition are all equivalent to holo-
morphic discrete series. The proof involves identifying the infinitesimal charac-
ters of the relative discrete series and those of the holomorphic discrete series. For
the unit disk inC, this was proved in [PPZ]. More explicitly, we have found the
intertwining operators from the relative discrete series onto the standard modules
of the holomorphic discrete series, that is, the Bergman spaces of holomorphic
functions; they turn out to be the iterates of the invariant Cauchy–Riemann opera-
tor. WhenG/K is the unit ball inCd, we have proved [Z] by explicit calculation
of the reproducing kernels that the relative discrete series are equivalent to certain
weighted Bergman spaces of vector-valued holomorphic functions.

In the present paper we shall give a unified approach to the foregoing results.
Here is a brief introduction to the main idea and a summary of the results obtained.
Let D̄ be the invariant Cauchy–Riemann operator acting on sections of a vector
bundleE over the unit ball. This operator maps to sections of the tensor product
of E with the holomorphic tangent bundle. LetD be the conjugate operator. The
higher-order Laplace operatorsLm = DmD̄m are invariant differential operators
under the group of biholomorphic mappings of the ball. In particular,L1 is the
negative of the invariant Laplace–Beltrami operator. The unit ball is a rank-1 Her-
mitian symmetric space and, in the case whenE is a line bundle, allLm are poly-
nomials ofL1; see for example [Sha] for a general study on invariant differential
operators on line bundles (in our case, everything follows from direct calculation).
Our first result is an explicit formula for these polynomials. This is done with the
help of the spherical transform on the line bundle studied in [Z]. For line bundles
over the unit disk, the polynomials were found in[PZ]; in [EP] theywere given
for the trivial line bundle over the unit ball.
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The spectrum ofL1 on a line bundle was determined in [Z], and hence in this
way we obtain the spectrum of allLm. It turns out that the kernel ofL1 corresponds
to the lowest eigenvalue ofL1, namely zero, and that the eigenspace is the cor-
responding weighted Bergman space; the kernel ofL2 is the sum of the first and
the second eigenspaces, and so on. Thus all are eigenspaces of the iteratesD̄m

of the Cauchy–Riemann operator. By an operator-theoretic argument we easily
prove that theD̄m are intertwining operators from the eigenspaces—namely, the
relative discrete series—into the kernel ofD̄ on sections of a vector bundle, which
is then a Bergman space of vector-valued holomorphic functions on the unit ball.
The latter is, in representation theory, also called the holomorphic discrete series.

We note that our methods here are explicit and self-contained. It would be
very interesting to prove the corresponding results for general bounded symmetric
domains. We intend to return to this subject in future work.

The main results are summarized in Theorems 3.3, 3.6, and 4.1. In Section 1,
we prove that the operators̄Dm map sections of the vector bundle into sections of
its tensor product with themth symmetric tensor product of the holomorphic tan-
gent bundle. In Section 2, we recall some results obtained in [Z] and introduce the
Bergman spaces of vector-valued holomorphic functions. The product formula is
proved in Section 3, and the intertwining property in Section 4.

Acknowledgment. Part of this work was done while the second author (G.Z.)
visited the first author (J.P.) at the Mathematics Department of Lund University,
whose kind hospitality was most appreciated.

1. Powers of Invariant Cauchy–Riemann Operators

In this section we introduce the invariant Cauchy–Riemann operator on a vector
bundleE over a Kähler manifold�, and we prove that its iterates map sections
of E to sections of the tensor product ofE with a symmetric tensor product of the
holomorphic tangent bundleT (1,0)(�) of �.

Let the Kähler metric on� locally be given by the matrix(hij ). Let D̄ be the
invariant Cauchy–Riemann operator onE as defined in [EP]. Locally,̄D can be
obtained as follows. Leteα be a collection of local trivializing sections. Iff =
fαeα is any section ofE, then

D̄f = h̄i ∂f
α

∂z̄j
eα ⊗ ∂i,

where we use the Einstein convention. We recall the following important inter-
twining property ofD̄:

D̄(f B ψ) = D̄f B ψ
if ψ is any biholomorphic mapping of� into itself. The action on sections of the
bundles is the induced action. We denote by�mT (1,0)(�) the symmetric tensor
subbundle of⊗mT (1,0)(�). Our first lemma says that the iterates ofD̄ maps into
this subbundle.
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Lemma 1.1. The operatorD̄m mapsC∞(E) intoC∞
(
E ⊗ (�mT (1,0)(�))).

Proof. The result follows by induction overm. We begin with the casem = 2.
Let f be a section ofE. Then

D̄2f = hk̄l ∂
∂z̄k

(
h̄i
∂f α

∂z̄j

)
eα ⊗ ∂i ⊗ ∂l

= hk̄l ∂h
̄i

∂z̄k

∂f α

∂z̄j
eα ⊗ ∂i ⊗ ∂l + hk̄lh̄ i ∂

2f α

∂z̄j ∂z̄k
eα ⊗ ∂i ⊗ ∂l.

Clearly, the second term is symmetric ini andl and hence is in�2T (1,0)(�).

Now� is a Kähler manifold, so there exists a Kähler potential: a smooth func-
tion8 such that

hpq̄ = ∂28

∂zp∂z̄q
.

It follows (see [EP]) that

∂h̄i

∂z̄k
= −h̄p ∂hpq̄

∂z̄k
hq̄i = −h̄p ∂38

∂z̄k∂z̄q∂zp
hq̄i . (1.1)

Thus

hk̄l
∂h̄i

∂z̄k

∂f α

∂z̄j
eα ⊗ ∂i ⊗ ∂l = −hk̄lh̄phq̄i ∂38

∂z̄q∂z̄k∂zp

∂f α

∂z̄j
eα ⊗ ∂i ⊗ ∂l,

which is clearly symmetric ini andl and thus is in�2T (1,0)(�). This proves the
lemma form = 2.

Now suppose that the claim is true for allm ≤ k, and considerD̄k+1. Forf ∈
C∞(�) we haveD̄k+1f = D̄D̄kf and soD̄k+1f is in

E ⊗ (�kT (1,0)(�)⊗ T (1,0)(�)).
On the other hand, we havēDk+1f = D̄2D̄k−1, which implies thatD̄k+1f is in

E ⊗ (�k−1T (1,0)(�)⊗ (�2T (1,0)(�))
)
.

That is,D̄k+1f(x) is in the intersection of the two bundles just displayed. In other
words,D̄k+1f is invariant under the symmetric groupSk and also under the trans-
position(k, k+1),whereSk consists of the permutations in the firstk vectors and
(k, k + 1) is the linear transformation permuting the last two vectors. Since the
symmetric groupSk+1 is generated bySk and(k, k + 1), we see that̄Dk+1f is in-
variant underSk+1—that is, it belongs toE ⊗ (�k+1T (1,0)(�)).

In what follows,E will always be a line bundle.

2. Irreducible Decomposition ofL2(Bd, dµµµααα) and Bergman
Spaces of Vector-Valued Holomorphic Functions

In this section, we recall some basic facts (obtained in[Z]) about the irreducible
decomposition of theL2-space of sections of a line bundle over the unit ballBd



390 Jaak Peetre & Genkai Z hang

ofCd . In the case of a trivial line bundle, this is well understood for any symmetric
space; see [H].

Letdm(z) be Lebesgue measure onCd, and letα > −1.Consider the weighted
measure

dµα = Cα(1− |z|2)αdm(z),
where

Cα = 1

πd

0(ν)

0(ν − d )
is a normalizing constant.

The groupG = Aut0(B
d) of biholomorphic mappings ofBd acts unitarily on

the spaceL2(Bd, dµα) via

g ∈G : f(z) 7→ f(gz)Jg(z)
ν/(d+1),

whereν = α + d + 1 andJg is the Jacobian determinant ofg. The followingG-
invariant differential operator was obtained by Peetre (see [Z, p. 104]):

L = (1− |z|2)
( d∑
j=1

∂2

∂zj ∂z̄j
−

d∑
j=1

z̄j
∂

∂z̄j
·

d∑
j=1

zj
∂

∂zj
− ν

d∑
j=1

z̄j
∂

∂z̄j

)
. (2.1)

Similarly, we can find the generalization of spherical function, which is given
by the radial eigenfunction ofL,

φλ(z) = (1− |z|2)(−ν+d−iλ)/2
2F1

(
ν + d − iλ

2
,
−ν + d − iλ

2
; d; |z|2

)
, (2.2)

with eigenvalue

−
((

ν − d
2

)2

+
(
λ

2

)2)
. (2.3)

Here2F1 is the hypergeometric function.
The spectrum ofL is calculated in [Z]. We will be mostly interested in the

discrete spectrum, which contains finitely many points

l(l + d − ν), l = 0,1, . . . , k, (2.4)

where

k =
[
ν − d

2

]
.

We denote the corresponding eigenspace byA
α,2
l . The spherical functionφλ is

for λ = i(ν − d − 2l) the only radial function inAα,2l . In particular, forl = 0
we obtain the Bergman space of the holomorphic functions inL2(Bd, dµα); the
spherical function in this space is the constant function 1.

Recall the invariant Cauchy–Riemann operatorD̄ introduced in Section 1. In
the present case it can be more explicitly written as

D̄ = B(z, z)∂̄,
whereB(z, z) is the Berezin operator

B(z, z) = (1− |z|2)(1− z⊗ z̄),
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andz⊗ z̄ stands for the rank-1 operator given by(z⊗ z̄)(w) = 〈w, z〉z. The opera-
tor D̄m mapsC∞-functions into the space of�mCd -valued functions, a space we
hereafter denote byC∞(Bd,�mCd). There is a uniqueG-invariant Hilbert norm
onC∞(Bd,�mCd), to wit

‖f ‖2 =
∫
Bd
〈(B(z, z)−1)�mf(z), f(z)〉 dµα(z),

where the inner product in the integral is calculated in�mCd and where
(B(z, z)−1)�m is the induced action of the linear operatorB(z, z)−1 on symmetric
tensors. We denote byL2(Bd,�mCd, µα) the corresponding Bergman space of
holomorphic functions with value in�mCd . This space is an irreducibleG-space;
see [W].

DenoteD = D̄∗, the conjugate ofD̄ in the Hilbert-space sense. ThenLm =
DmD̄m areG-invariant differential operators. It turns out now that the operatorL

in (2.1) can be obtained as a special case ofLm. Indeed, takingm = 1, direct cal-
culation shows thatL = −L1 = −DD̄. In the next section we will find a product
formula expressingLm for generalm as a polynomial ofL1.

3. A Product Formula for the Invariant Laplacians
on a Line Bundle overBd

In order to find the symbol ofLm as a function ofL1,we will derive a certain com-
mutation relation ofLm with the Berezin transform and then calculate the sym-
bol of this transform. Roughly speaking the Berezin transform can be defined
as a convolution operator (in the sense of the groupG) with convolution kernel
(1− |z|2)β . However, we will not go into details here. Instead we calculate the
action of Laplacians on(1− |z|2)β . To simplify notation we denote

h(z) = 1− |z|2.

Lemma 3.1. The following basic formula holds:

D̄mhβ = (−1)m(β)mh
β+mz�m,

where(β)m is the Pochhammer symbol,(β)m = β(β + 1) · · · (β + (m− 1)), and
where we have putz�m = z� · · · � z (m times).

Proof. Indeed,
D̄hβ(z) = −βB(z, z)(1− |z|2)β−1z.

Using the obvious formula

B(z, z)z = (1− z⊗ z̄)z = (1− |z|2)2z = h(z)2z, (3.1)

we find
D̄hβ(z) = −β(1− |z|2)β+1z = −βhβ+1(z)z.

Similarly, we have
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D̄2hβ(z) = −βD̄(1− |z|2)β+1⊗ z = β(β + 1)hβ+2(z)z⊗ z.
Continuing the differentiation, we obtain the lemma.

Corollary. We can further deduce that

(B(z, z)−1)�mD̄mh(z)β = (−1)m(β)mh(z)
β−mz�m.

Proof. This follows readily with the aid of (3.1).

Lemma 3.2. The following formula holds:

Lm+1h
β = Lm

[
β(β + ν)hβ+1− (β +m)(β −m+ ν − d )hβ].

Proof. Takef ∈C∞(Bd)with compact support. It suffices to prove that the inner
product off with the LHS coincides with the inner product off with the RHS.
We find

〈Lm+1h
β, f 〉 = 〈D̄m+1hβ, D̄m+1f 〉

= Cα
∫
Bd

〈
(B(z, z)−1)�(m+1)D̄m+1h(z)β, D̄m+1f(z)

〉
h(z)α dm(z)

= (−1)m+1(β)m+1Cα

×
∫
Bd

〈
h(z)β+α−m−1z�(m+1), D̄m+1f(z)

〉
h(z)α dm(z), (3.2)

by the preceding corollary. Therefore, integrating by parts, the last integral
becomes ∫

Bd
〈h(z)β+α−m−1z�(m+1), D̄m+1f(z)〉 dm(z)

=
∫
Bd
〈h(z)β+α−m+1z�(m+1), ∂̄D̄mf(z)〉 dm(z)

= −
∫
Bd

〈 d∑
j=1

∂

∂zj
(h(z)β+α−m+1zj z

�m), D̄mf(z)

〉
dm(z). (3.3)

However, direct differentiation yields

d∑
j=1

∂

∂zj
(h(z)β+α−m+1zj z

�m)

= (d +m)h(z)β+α−m+1z�m − (β + α −m+ 1)h(z)β+α−m|z|2z�m.
Let us now write|z|2 = 1− h(z). Then we see that the RHS of the foregoing

equality is the same as

−(β + α −m+ 1)h(z)β+α−mz�m + (d + β + α + 1)h(z)β+α−m+1z�m.

The integral (3.3) can thus be written as a sum of two: One is, apart from a factor
β + α −m+ 1, ∫

Bd
〈h(z)β+α−mz⊗m, D̄mf(z)〉 dm(z),
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which, in view of the corollary to Lemma 3.1, can be written as

(−1)m

(β)m

∫
Bd
〈(B(z, z)−1)�mD̄mh(z)β, D̄mf(z)〉h(z)α dm(z),

that is,
(−1)m

(β)m
〈Lmhβ, f 〉.

The other is treated in a similar way and reduces, apart from a factord+β+α+1,
to

(−1)m

(β + 1)m−1
〈Lmhβ+1, f 〉.

Inserting in (3.3) and then in (3.2) verifies our claim.

Theorem 3.3. Supposeβ > −(ν−d )/2. Then the spherical transform̃hβ ofhβ

is given by

h̃β(λ) = 0(β + ν−d+iλ
2 )0(β + ν−d−iλ

2 )0(ν)

0(β)0(ν + β)0(ν − d ) , 0 ≤ Re(iλ) < 2β + ν − d.

Proof. First we show that, whenλ is in the strip in the theorem, the spherical
transform exists. In fact, when Re(iλ) > 0 then the hypergeometric function

2F1

(
ν + d − iλ

2
,
−ν + d − iλ

2
; d; |z|2

)
is a bounded function. From the asympotic formula for spherical function [Z,
Cor. 2.2], we see that the integral∫

Bd
hβ(z)φλ(z) dµα(z) (3.4)

is dominated, up to a constant, by∫
Bd
(1− |z|2)β+(−ν+d−Re(iλ))/2+α dm(z),

which is finite if and only if

β + −ν + d − Re(iλ)

2
+ α > −1,

which is the second inequality in the theorem.
When Re(iλ) = 0, the hypergeometric function is, up to a constant, bounded

by− log(1− |z|2). The integral (3.4) is also dominated by∫
Bd
(1− |z|2)β+(−ν+d )/2+α|log(1− |z|2)| dm(z),

which is finite by our assumption thatl > −(ν − d )/2 (see e.g. [R, Chap. 1]).
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Recalling the expression forφλ in (2.2), we now calculate the integral (3.4):

h̃β(λ) =
∫
Bd
hβ(z)φλ(z) dµα(z)

=
∫
Bd
(1− |z|2)β(1− |z|2)(−ν+d−iλ)/2

× 2F1

(
ν + d − iλ

2
,
−ν + d − iλ

2
; d; |z|2

)
dµα(z)

=
∫
Bd
(1− |z|2)β+(−ν+d−iλ)/2

∞∑
m=0

(
ν+d−iλ

2

)
m

(−ν+d−iλ
2

)
m

(d )mm!
|z|2m dµα(z)

=
∞∑
m=0

(
ν+d−iλ

2

)
m

(−ν+d−iλ
2

)
m

(d )mm!

∫
Bd
(1− |z|2)β+(−ν+d−iλ)/2|z|2m dµα(z).

The change in order of summation and integration is justified because the integral
is absolutely convergent. We use the following well-known integral formula (see
[R, Chap. 1]):∫

Bd
|z|2s(1− |z|2)t dµα(z) = 0(s + d )0(t + ν − d )0(ν)

0(s + t + ν)0(d )0(ν − d ) .

The integral now becomes

0
(
β + ν−d−iλ

2

)
0(ν)

0(d )0(ν − d )
∞∑
m=0

((
ν+d−iλ

2

)
m

(−ν+d−iλ
2

)
m

(d )mm!

0(m+ d )
0
(
m+ β + −ν+d−iλ2 + ν)

)
.

Furthermore, using the formula0(c+m) = 0(c)(c)m,we see that the summation
is

0(d)

0
(
β + −ν+d−iλ2 + ν)

∞∑
m=0

(
ν+d−iλ

2

)
m

(−ν+d−iλ
2

)
m(

β + −ν+d−iλ2 + ν)
m

1

m!
,

which, but for the constant factor, is a hypergeometric series and is evaluated by
the Gauss formula (see [E, p. 61]):

2F1

(
ν + d − iλ

2
,
−ν + d − iλ

2
;α + β + −ν + d − iλ

2
+ 1+ d;1

)
= 0

(
α + β + −ν+d−iλ2 + 1+ d)0(α + β + 1+ −ν+d+iλ2

)
0(α + β + d + a)0(α + β + d + 1− ν) .

Simplifying the product yields the theorem.

Remark 3.4. The assumptionβ >−(ν−d )/2 is equivalent tohβ ∈L2(Bd, dµα).

In this case the spherical transform̃hβ(λ) exists when Re(iλ) = 0 by the Plan-
cherel formula in [Z]. The foregoing calculation shows thath̃β(λ) is a meromor-
phic function ofλ in the whole complex plane.

Remark 3.5. The spherical transform̃hβ(λ) is also the symbol of the Berezin
transfrom on the line bundle as a function of the invariant Laplacian. In the case
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of the trivial line bundle, the symbol was calculated by Peetre [P] for the unit ball,
and more recently by Unterberger and Upmeier [UU] for all bounded symmetric
domains.

Applying the spherical transform to Lemma 3.2, we have

Lm+1(λ)h̃
β(λ) = Lm(λ)

(
β(β + ν)h̃β+1(λ)− (β +m)(β −m+ ν − d )h̃β(λ)),

whereLm(λ) denotes the symbol of the operatorLm, L̃mf = Lm(λ)f̃ . Using
Theorem 3.3, we find the recursive formula

Lm+1(λ) = Lm(λ)
[(
ν − d + iλ

2
+ β

)(
ν − d − iλ

2
+ β

)
− (β +m)(β −m+ ν − d )

]
.

The first product inside the brackets is

β2 + β(ν − d )+
(
ν − d

2

)2

+
(
λ

2

)2

,

and the second product is

β2 + β(ν − d )+m(ν − d )−m2.

Thus,

Lm+1(λ) = Lm(λ)
[(
ν − d

2
−m

)2

+
(
λ

2

)2]
. (3.5)

Using the formula repeatedly, we obtain

Lm+1(λ) = Lm(λ)
m∏
j=1

[(
ν − d

2
− j

)2

+
(
λ

2

)2]
. (3.6)

Recalling (from (2.3)) that

L1(λ) =
(
ν − d

2

)2

+
(
λ

2

)2

,

we obtain

Lm+1(λ) =
m∏
j=0

[(
ν − d

2
− j

)2

+
(
λ

2

)2]
or

Lm(λ) =
m∏
j=1

[(
ν − d

2
− j + 1

)2

+
(
λ

2

)2]

=
m∏
j=1

[(
ν − d

2

)2

+
(
λ

2

)2

+ (j − 1)(j − 1− ν + d )
]
.

We have, therefore, the following end result.
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Theorem 3.6. The following product formula holds:

Lm =
m∏
j=1

(
L1+ (j − 1)(j − 1− ν + d )).

4. Invariant Cauchy–Riemann Operators as Intertwining
Operator into Holomorphic Discrete Series

We now apply the product formula in Theorem 3.6 to obtain the realization of the
relative discrete series of the line bundle overBd.

Recall thatL1 = DD̄ = −L, whereL is the invariant Laplacian of Section 2.
Therefore (see (2.4)),L1 has spectrum−l(l+d− ν) onAα,2l . It follows now from
Theorem 3.6 that

kerLm =
m∑
j=1

⊕
A
α,2
j−1

for m = 1,2, . . . , k + 1. Consequently,

A
α,2
l = kerLl+1ª kerLl

for l = 0,1, . . . , k. However,Lm = DmD̄m, and so kerLm = kerD̄m and

A
α,2
l = kerD̄ l+1ª kerD̄ l.

On the other hand,̄Dl mapsC∞(Bd) toC∞(Bd,�lCd) by Lemma1.1, andD̄ l

mapsAα,2l one-to-one into the kernel of̄D onC∞(Bd,�lCd) by the preceding
formula; this kernel is the space of analytic sections of the vector bundle. ThusD̄ l

mapsAα,2l to an irreducible subspace ofC∞(Bd,�lCd). Clearly the image inter-
sects the Bergman spaceL2

a(B
d,⊗lCd, dµα), which is irreducible. Thus the two

spaces must coincide. We have established the following result.

Theorem 4.1. The operatorsD̄ l, l = 0,1, . . . , k, are intertwining operators
fromA

α,2
l onto the Bergman spaceL2

a(B
2,�lCd, dµα).

It would be interesting to find an orthogonal basis of the spaceA
α,2
l using this

theorem.
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