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1. Introduction

Let K be a compact connected semisimple Lie groupGldte its complexifica-
tion, and letG = KAN be an lwasawa decomposition. LBtbe the centralizer
of Ain K, so thatH = TA is a Cartan subgroup @. SinceG andN are com-
plex, G/N is a complex manifold. Besides the Iéftaction onG/N, there is also
a right H-action becausé& normalizesn.

In [10], Schwarz suggests the following scheme of geometric quantization on
the spaces/N: Equip G/N with a K-invariant Kéhler structure, and consider
the corresponding prequantum line bundI¢6; 9]. Namely, the Chern class of
L is the cohomology class], andL has a connectioR whose curvature i&.
In fact, we shall see that i is Kéhler then it is exact, sb is just a trivial bun-
dle. However, the geometry arising from the connection is interesting. Given a
sections of L, we say that is holomorphic ifV;s = 0 for every antiholomorphic
vector fields. Let H(L) denote the holomorphic sectionslof The K-action on
G/N lifts to a K-representation off(L). Let ¢ be the Lie algebra oK. Then the
infinitesimal representation aH (L) is given by

§~S=Vg;s+\/—_l¢§s, Eet, seH(L) (1.2)

[6, (3.1)], where£? is the infinitesimal vector field o/N induced by the left
K-action anct — ¢°¢ is the moment map — C>(G/N) corresponding to the
K-action preserving. Note that the moment map exists, sin€ds semisimple

[7]. A K-invariant Kahler structure o&/N has potential function if and only if it

is invariant under the rigtit-action [3]. In joint work with Guillemin [4], we carry

out the foregoing construction for such Kahler structures and prove the following
theorem.

THEOREM. Letw be a K-invariant Kahler structure onG/N. If it is right T-
invariant, thenH (L) contains every finite-dimensional irreducibterepresenta-
tion with multiplicity 1.

Such a representation is callethadelif it is equipped with a unitary structure—a
term due to Gelfand and Zelevinski [5]. The preceding theorem is an analog of
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the Borel-Weil theorem [1], and holds even wheiis not positive definite. The
main result of this paper is a converse to the previous theorem.

THEOREM 1. Letw be aK-invariant Kahler structure orG/N. If it is not right
T-invariant, thenH (L) = 0.

Hence, for aK-invariant Kahler structure, the multiplicity-free K-spaceH (L)
occurs on two extremes. Namelg/(L) is either zero or contains every finite-
dimensional irreduciblek-representation, depending on whetheris invariant
under the righ-action (or equivalently whethes has potential function).

A partial result of Theorem 1 is obtained in [3]. There, we show that lifas
no potential function then the trivi&-representation is missing (L ).

In Section 2, we review some results from [3] and [4] that will be needed in
later sections. In Section 3, we construct an example wkere SU(2) and a
Kéhler structure otz /N whose prequantum line bundle has no holomorphic sec-
tion other than the zero section. In Section 4, we use this example to prove The-
orem 1 for the case whet€ has rank 1; in Section 5 we prove Theorem 1 for
of higher rank.

ACKNOWLEDGMENT. The author would like to thank So-Chin Chen, Victor Guil-
lemin, and David Vogan for many helpful suggestions.

2. Preliminaries

In this section, we recall some results in [3] and [4] that will be needed later. Recall
thatG = KAN isthe lwasawa decomposition and that= TA a Cartan subgroup
of G. Letg, ¢, a, n, t, h be the Lie algebras af, K, A, N, T, H respectively.

Letn be therank oK, and letiq, . . ., A, € h* be the positive simple roots. Let
C* be the multiplicative group of nonzero complex numbers, so thatd —
C* is the character correspondingita Thus exgA;, v) = x;(expv) forall v €
h. Given aK-invariant Kéhler structure on G/N, it can be written as

w= v—lBéF—i—Zwi
1

= V/=100F + ) _(de; + 0@;). (2.1)
1

This structure satisfies the following/—139F is K x T-invariant and Kéahler;
and, fori = 1,...,n, eachw; = d«; + d&; is a K-invariant(1, 1)-form. Also,

w; is not right7T-invariant and has no potential function unless it vanishes. In par-
ticular, forw to be right7-invariant or to have potential function, a necessary and
sufficient condition is that all the; vanish. Eachy; is a (0, 1)-form with d«; =

0. In [3] we show thaty; transforms by the charactgr under the righT-action.
This means that, for alle T and its right actiorr,,

Ria; = xi(H)a;.
We shall see that; also transforms by, under the rightA-action.
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The possible values of eagh is 1-dimensional in the sense that, if
o' =/=100F" + ) (de] + 0a;)
1

is another Kahler form, them«; + b;; = 0 for somes;, b; € C. This result holds
even whern is merely a closed-invariant real(1, 1)-form, which may not be
positive-definite.

Since the possible values @f in (2.1) are 1-dimensional based onwe can
find out more abouk;. BecausekK is compact semisimple, the Killing form dn
is negative-definite. LeV C ¢ be the orthocomplement éfC ¢ with respect to
the Killing form. Thus we have a vector space direct sum

E=t+V. (2.2)

The real vector spac€ has dimension 2, wherem is the number of positive
roots of G. SinceG is semisimplen < m. We may arrange the positive roots
A1, - .., Ay SO that the firsk of them are simple. There exists a basislof8,
p. 421],

é‘l’ )4 T é‘mv Ym € V7 (23)

such that, for alk e t,
[€. 6] = —vV=10u, &)y, [E vl = V=101, 64 (2.4)

Further, up to a constant scalay;,[y;] € t is dual to the restricted roat; € t* via
the Killing form. Let{¢*, y'} C V* be the dual basis of (2.3), which we extend to
{¢*, y*} C € by annihilatingt. The lwasawa decomposition allows us to imbed
V into g/n as a complex subspace via

Veststt+a=g/n.

In fact, the almost-complex structure g@fn sends; to y; and sends; to —¢;. It
follows that¢* — /=1y € A%Y(g/n)*. By Iwasawa,G/N = KA, SOK x A acts
transitively onG/N. Therefore, we may identify*, y;* with the K x A-invariant
1-forms whose values ate G/N are exactly, y;*. Heree € G/N = KA denotes
the Cartesian product of identity elementskafA.

Consider thek x A-invariant(0, 1)-form

v =¢F — \/—_].yi* (2.5)
on G/N. From (2.4) we have that, for ajle t,
adft; = —v/=10., 9y, adiy} =~-10u, ).
This means that; of (2.5) satisfies
adfv; = (A, &)v; (2.6)

forall¢ et. Letr € T, and letL,, R, denote (respectively) its left and right actions.
In particular, the(0, 1)-form v; is left T-invariant, so (2.6) means that

Rjv; = LyR}v; = Ad;v; = x;(D)v;.
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There exists a uniqug € C*°(A), which can be identified with &-invariant

function onG/N, so that
fivi = a;.

SinceG/N = KA, such anf; is automatically right7-invariant. On the other
hand, in the construction of v; = «; [3, Prop. 2.2] we see that, up to a nonzero
scalar, f; is given by fi(ka) = x;(a)~* for all ka € KA = G/N. Thus f; trans-
forms by x; under the rightA-action. From the behaviors gf andv; under the
right actions ofT and A, we obtain the following result fag; = f;v;.

ProrosiTioN 2.1. Fori =1,...,n, «; of (2.1)is a K-invariant (0, 1)-form that
transforms byy; : H — C* under the rightH-action. NamelyR;«; = x;(h)a;

for all right H-actions ofh € H. Its value ate € G/N isc(¢ —+/—1y}) for some
ceC.

It can be checked from (2.1) thatis exact, though this also follows from the
Whitehead lemma [7, p. 417]:

H?(G/N,R) = H*(KA,R) = H%(K,R) = H?(t) = 0.
Therefore, since is closed, it must be exact.

3. Example

In this section we construct an example of a Kahler structuosm G/N, where
G = SL(2, C), such that its prequantum line bundléas no global holomorphic
section other than the zero section. In later sections, our proof of Theorem 1 for
arbitraryw on G/N is based on this example.

Throughout this section, &3 denoteC? with origin removed. For our exam-
ple, letK = SU2) andG = SL(2, C). Recall thatG = KAN is the lwasawa
decomposition? is the centralizer ofi in K, andH = TA is a Cartan subgroup
of G. In this case, we can ha# A, H to be diagonal matrices given by

T = {diag{e‘/?le, e_‘/?w)}, A = {diagr,rY); 0 < reR},
H = {diagz,z™!); 0# z€C}.
Also, N is the complex upper triangular 2 2 matrix with 1 along the diago-
nal. ConsideiG acting onC? in the standard manner. Tl orbit of the vector
(1,0) € C?is C3. The isotropy subgroup dfL, 0) is N, soG/N = C32. In fact,
sincek = SU(2) = S andA = R* as manifolds, the polar coordinat€§ =

5% x R* is just the lwasawa decompositiGiyN = KA.
Let(z, u) be the standard coordinates@%n, and letr denote the length function

(3.1)

r=(zZ +ui)Y?

Fix a nonzero constaate C, and consider thél, 1)-form w on Cg defined by
o= S (Gdi—idD), o=da+ia. (3.2)
r

Note thatc/r* is well-defined, for we ignore the origin here.
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ProrosiTion 3.1. The(l, 1)-formw in (3.2)is SU(2)-invariant and closed.

Proof. We first check thatr in (3.2) is SU2)-invariant, and this will imply that
w is also SWY2)-invariant. Because the functian»* is clearly SU2)-invariant,
it suffices to check dit — u dz. Pick

k= (_"E Z)eSU(Z)

satisfyingaa + bb = 1, and letL; denote the left action by. Then
Li(zdi —id?) = (L{Z)(L} dit) — (Lji) (L} d7)
= (az + bit)(—bdZ + adii) — (—bZ + ait)(a dz + bdi)
= —udz+zdu.
It follows thata is SU(2)-invariant, and so is.
To check thatv is closed, we note that

1. _ i}
Eaa =3(zZ+ui) 2 A (Zdi —ad?) + (zZ +ui) 23z dia — i d?)
= —2(zZ +uit) 3(zdz + udi) A Zdi — i d7) + 2(zZ + uin)~°dz A di
=0.

Henceda = d@ = 0 and so
dow = dda + 3&) = (3 + 9)(da + da) = 0.
This proves the proposition. O

Let L be the prequantum line bundle associated tuf (3.2). Namely, the Chern
class ofL is the cohomology classy], andL is equipped with a connectiovi
whose curvature i®. Sincew is exact,L is a trivial bundle. Given a sectio

we say thak is holomorphicif Vis = 0 for every antiholomorphic vector field

We claim that, forw of (3.2),L has no global holomorphic section other than the
zero section. Suppose otherwise; HtL) # 0 be the space of its holomorphic
sections. The&K-action onG/N lifts to a K-representation oi/(L). Let C* be

the multiplicative group of nonzero complex numbers. Recall that the Cartan sub-
group of G is H = TA, whereH = C* by (3.1). Leth be its Lie algebra. Pick a
nonzero element of the weight space

H(L); = {se H(L); £ -5 = A(&)s for all £ e h}, (3.3)

wherex € h*. Foré e t, &£ - s in (3.3) is the infinitesimal representation arising
from the group action and is given in (1.1). Since= /—1t, if £ € t then [6,
(5.2)]n = ~/—1£ eaacts ons in (3.3) byn - s = V/—1(& - 5).

From the section & s € H(L),, we define the domai® = D; by

D ={peCf; s, #0}. (3.4)

Let Z andU be thez- andu-axes onC32, respectively:
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Z ={(z,0)eC3}, U = {(0,u) e C3}. (3.5)

Because is nonzero and holomorphi® is a dense open set@j. Choosing an-
other weight space or holomorphic section if necessary, we may assunie that
intersectsZ andU. Let x: H — C* be the character correspondingit@& h*,

and letL} be the representation arising from the left actioh ef . SinceL;s =
x(h)s, if O c C?is anH-orbit then

onbD=¢y or OCD. (3.6)
SinceZ andU are H-orbits that intersecb, it follows thatZ, U C D.

ProposiTiON 3.2. Suppose thad # s € H(L),, and that the domaiD defined
in (3.4)intersectsZ andU. Then there exists a neighborhoBdf the origin such
that (B\{0}) C D.

Proof. Suppose otherwise, so that the origin is a limit poin€gf D. There exists
a sequencg(z;, u;)} C C%\D that converges to the origin. Sin@e U C D, we
have(z;, u;) ¢ (Z U U) and therefore;, u; # 0. By (3.1), we obtaim; € H by
h; = diag(u;, u;*). Becausez;, u;) ¢ D, (3.6) implies that;(z;, u;) ¢ D.

On the other hand, singe;, u;) converges to the origin, the sequerger;} C
C converges to Olt follows that the sequenci;(z;, u;) = (z;u;, 1)}, not con-
tained inD, converges t@0, 1) e U C D. But D is open, so we get a contradic-
tion here. This proves the proposition. O

Recallthat O£ s € H(L), and the domaiD defined in (3.4) contains the standard
axesZ andU in (3.5). Sinces is holomorphic,Vs annihilates all antiholomor-
phic vector fields. Therefore, there exist complex-valued functfogss C*°(D)
such that

V=1Vs = ys = (fdz+ gdu)s

for some(1, 0)-form y = fdz + gdu on D. Herez andu are the standard co-
ordinate functions oiC3. By the definition of curvature/y = » on D. We now
derive a contradiction, which arises from the above assumption t#at @ H(L)
exists. In what follows, we compute the functighFrom (3.2),

©= a(%(zcm = deZ)) + 5(%(zdu - udz))
r r

= ;—62{(c22 + eu?)dz Adii + (—cZii + ¢zu) dz A dZ
+ (czit — czu) du A dit + (—cit? — cz%) du Adz).  (3.7)
Becausen = dy is a(1, 1)-form andy = f dz + gdu is a(1, 0)-form,
w=dy =dy
= %d% Adz + %dﬁ Adz + 2—‘;& Adu + %dﬁ Adu.  (3.8)
From (3.7) and (3.8), we obtain
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3 3
a—j; = 2(Czu — cZit) (27 + uit) "3, a_J; = 2(cz® + cu®)(zz + ui) 3. (3.9)

Taking antiderivatives with respect fou in (3.9) yields

2uit® — cu) + j(z, u, it) (3.10)

f = (z7 + uit) " 2(2cz "zt + cz 2uit
and
f ==z +uid) ?(cz?u= + cu) + h(z, 7, u), (3.11)

wherej, h are independent @f u respectively. LetB be the neighborhood of the
origin given by Proposition 3.2, and 18, = B\{0}. SinceBy C D, f is smooth
on By. By (3.11), we know thai/ is smooth omBg. Further, by (3.10) and (3.11),

h=zZ+un)?2ut+eu)+ f
= (27 + uit) "2(cz?u™t + cu + 2cz7Zi + cz " 2ui® — ¢u) + j
= (22 + uit) 2(cz %u"Y(z%Z% + 2zZuii + u?ia®) + j
=cz%u 4+ Jj-
Thereforei, and hencer, are independent af. We conclude that# is a holo-

morphic function onBg. By Hartog’s theoremy# is holomorphic onB.
Consider the function®uh, which is holomorphic orB. Define By C B by

B1={(z,u) € B; u =0}

We claim that the restriction affuh to By is not constant.

Suppose that?uh = b € C on By; thenuh = bz=2 on B;. But uh, being
holomorphic onB, restricts toB; as a holomorphic function there. This gives a
contradiction, sincéz—2 blows up on(0, 0) € B;. Hence the restriction of the
holomorphic functiory?uh to By is not constant, as claimed.

Let ¢ be the nonzero constant in (3.11). Siricuh)|, is not a constant func-
tion, there existgq # 0 such thatzg, 0) € By C B and

(2%uh)| (9.0 # c. (3.12)

Then (3.11) says that, aBy\ Z,

2 -1

(zZ 4+ uit)’f = —cZ?u™t — ¢u + (zZ + uin)’h

_ _ Z + uii)?

=—c?u ' —cu+ —(ZZ ui)
u

(uh)
= 72u"Y—c + z%uh) — ¢u + (2zZii + uit®yuh.  (3.13)

Fix zo # 0 given by (3.12), and considéro, u) € Bp\Z. We evaluate (3.13)
at (zo, u) and take its limit as — 0. Then the limit of the LHS converges be-
causef is smooth atzg, 0) € Bo C D. In the RHS of (3.13), we recall that: is
holomorphic neatzg, 0). Therefore,

Iimo(—c + zéuh)

converges and equals a honzero constant, owing to (3.12). Also,
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Iimo(—Eu + (2z0Z0it + uit®)uh) = 0.
u—

Therefore, in (3.13),
lim RHS
(zo,u)—(z0,0)
blows up due to the terigu 1.

This contradiction arises from our assumption thétas global holomorphic
sections other than the zero section. We therefore conclude that for the example in
this section wher& = SU(2) andw is the(1, 1)-formin (3.2), the only holomor-
phic section of. is the zero section. We shall use this example to prove Theorem 1
in the following two sections.

4. Groups of Rank 1

Recall thatK is a compact connected semisimple Lie group. In this section, we
prove Theorem 1 for the case whekehas rank 1. In this case there are two
possibilities fork, namely SY2) or SQ3) [2, p. 185].

We first considelkX = SU(2). From Secion 3 we know tha = SL(2, C) and
G/N = C3, whereC3 is C2 with origin removed. Given a closed $2J-invariant
(1, )-form w on C%, let L, be its corresponding prequantum line bundle. The
Chern class ok , is the cohomology class)], and the curvature of the connec-
tion onL, is w. As observed in Section 2y is exact, sd_,, is a trivial bun-
dle. Hence, given any two sueh «’, their prequantum line bundlés,, L - are
topologically equivalent; however, the connectidnsv’ can give rise to distinct
geometric properties.

Given an arbitrary closed SB)-invariant(1, 1)-form w on C2, we apply (2.1)
and express it canonically as

0 = wo+ w1 = 0o + (da1 + 0&1),

wherewg is right 7-invariant. Suppose thatis not right7-invariant, so thab; =
daq + da; does not vanish. Lt ,,, L wy, L », be their corresponding prequan-
tum line bundles. Becaus&, is right T-invariant, there exist plenty of holomor-
phic sections ot . In particular,L ,,, contains nonvanishing global holomor-
phic sections [4, Prop. 3.1]. Sinte, =L, ® L ,,, such a nonvanishing section
of L ,, defines an isomorphism

H(L,) = H(L,). (4.1)

Now let w be the specific S{2)-invariant (1, 1)-form given in (3.2), and let
L, be its prequantum line bundle. We write= w( + w1 as described in (2.1),
wherew; = daq + 9&;. In Section 3 we saw that/(L,,) = 0. It follows from
(4.1) thatH(L ,,,) = 0. This means thab, # 0, for otherwise the prequantum
line bundle corresponding to = wg has plenty of holomorphic sections. Hence,
in particular,o; # 0.

Let ' be another closed-invariant(1, 1)-form onC3. We again apply (2.1)
and writew’ = w{, + @}, Wherew; = da; + d&;. Suppose thab is not right
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T-invariant, so thatr; # 0. From Section 2, we know that the possible values of
a1 ande; are 1-dimensional. Therefore, choosing the correct constart in
(3.2), we getr; = ;. It follows thatw; = wj, SOH(L ;) = 0. Applying (4.1) to
o’ = wy + wy, this implies thatd (L /) = 0. Thus Theorem 1 is proved for the
case ofK = SU(2).

We now consider the cage= SO(3), whose complexification i€ = SO(3, C).
The Iwasawa decomposition of $8C) gives unipotent subgrould;, as well as
a maximal torug/; of SO(3). The double covering S2) —> SO(3) extends to
the covering

7:SL(2,C)/N — SO3, C)/Ns.

Herex (T) = Ty is a double covering of the circle onto itself.

Becauserl; normalizesNg, it acts on S@3, C)/N;1 on the right. Letw be an
SQO(3)-invariant Kéhler structure on §@ C)/N;, and suppose that it is not right
Ti-invariant. Thenr*w is an SU2)-invariant Kahler structure on $2, C)/N
and is not rightT-invariant. IfL , has any nonzero holomorphic section then it
induces a nonzero holomorphic sectionsofL ,, which is the prequantum line
bundle corresponding to*w. This is impossible, sé/(L ,,) = 0.

This proves Theorem 1 fak of rank 1.

5. Groups of Higher Rank

In this section, we consider the case where the rank of the Lie gkoupay be
greater than 1. Recall th6t= KAN is the Iwasawa decomposition and tiiat=
TA is a Cartan subgroup @f. Let

n =rankK = dim¢ H.
Let w be aK-invariant Kéhler structure o6/N. It has the form

n n
w=Y w =~—130F + ) (da; + 0a;), (5.1)
> >
0 1

as described in (2.1), whet = +/—199F is itself K&hler and has potential func-
tion. Suppose thab is not right T-invariant, so thats; = da; + da; # O for
somei =1, ..., n. Without loss of generality, we may assume that# 0. Re-
call from Section 2 thad; is indexed by the simple roat; € h*. Namely, under
the right H-action, it transforms by the character: H — C* associated to the
rooti; € h*. This means that; satisfiesyi(expv) = exp(ry, v) forall v € b, and
that R; oy = x1(h)az under the right actiolR;, of h € H.

Leto C t be the hyperplane annihilated by,

o={vet (A, v) =0}.

Let“ be the centralizer of in ¢, consisting ot € £ such that£, v] = 0 whenever
v € 0. We define the semisimple Lie algeth@by

B =[t,¢7] Ct
Let g2, = tZ ® C, and let a Cartan subalgebragif be given by
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b ={vebh; (v,0) =0},

where the pairing used is the Killing form. Lef = g7 N n; then we have an
Iwasawa decomposition

9o = tS P a’ dn. (5.2)
HeretZ is a rank-1 semisimple Lie algebra, and a maximal toral subalgetia of
is given byt = t N h°. From the Lie algebras in (5.2), we have the connected
subgroupsGZ, KZ, A°, N° of G. Also, T? is the subgroup corresponding #d
and H° = T°A° is a Cartan subgroup a¥Z. Consider the complex manifold
GI/N° = KZA®. SinceH? normalizesN?, it acts onGZ/N’ on the right. The
spaceGg/N° imbeds naturally int@ /N,

j: GZN® < G/N. (5.3)

This is a holomorphi& g, x H?-equivariant imbedding. Sinee andw of (5.1)
areK-invariant Kéhler forms, it follows that*w and j*w¢ are K -invariant Kah-
ler forms onGZ/N’. But sincew; is not Kéhler, some work is still needed to

ensure that it does not vanish 6t§,/N°.

ProrosiTion 5.1.  Letj be theimbeddinb.3),and letw; # Obe theK-invariant
(1, 1)-formin(5.1). Thenj*w, # 0.

Proof. Recall the elements, y1 € V C £ in (2.3) and their duat;, y; € £*.
By Proposition 2.1w1 = da; + d&; satisfies(as), = c(¢; — +/—1y;) for some
nonzero constante C. Heree € GI/N° = KA’ — KA = G/N is the prod-
uct of identity elements ok and A. Sincej is K, x H°-equivariant,j*ay is
KZ-invariant and transforms by; : A — R™ under the rightA” -action.

Because’ centralizess, (2.4) implies that, y; € £°. Also, up to a constant
scalar, [1, 1] € tis the vector dual to the restricted raqte t* via Killing form.
Thus [1, y1] €t C ¢Z Infact, taking the real span of these two vectors, we have

a vector space direct sum
b= t7 + R(¢1, y). (5.4)
Here, is the unique positive root of this rank-1 Lie algebra. We compare (5.4)
with (2.2) and apply Proposition 2.1 @J/N°. It says that evenkZ-invariant
Kéahler structures’ onGZ/N? can be expressed uniquely@s= wj+ ], where
w) = day + day. Further, theKZ-invarianta; transforms byy; under the right
A°-action, and;). = ¢'(¢f — ~/—1y;) for somec’ € C. If ¢’ # 0 thenw] #
0. Setc = ¢/, so that(ey), = («7).. Bothay andw; are Kg-invariant and trans-
form by x1: A° — R™ under the rightA”-action. Therefore, sinckZ x A” acts
transitively onGZ/N?, (a1). = (@), implies thatj*e; = «;. Then
Jroy = j*@ar+ 0@y
= 3j 1 + )"
= doy + day
=w] #0.
This proves the proposition. O
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Recall thaty;: T — S* is the character corresponding to the restricted roat
t*. Since(A1, t7) # 0, there are many e T° such thaty,(¢) # 1. For sucty, let
R, denote its right action. Then, singas KZ, x H-equivariant,

R} j w1 = j*Rjw1 = j* 1) w1 = x1(t) j w1 # jw1.

It follows that j*w is not invariant under the right” -action.

As observed in Section 2 is exact, so there exists a complex line bundle
whose Chern class i&] = 0. It is equipped with a connection whose curvature
is w. Suppose that £ 0 is a global holomorphic section &f. We derive a con-
tradiction from here. Sinc& acts transitively orG /N, we may assume thaf #

0 for somep € GZ/N® — G/N. Then j*s is a holomorphic section of the line
bundle;j*L on GZ/N?, and it is not the zero section. BytL is the prequantum

line bundle corresponding to Kahler forjfiw. SinceK has rank 1, this contra-
dicts the result of Section 4. We therefore conclude that the only global holomor-
phic section oL is the zero section. This completes the proof of Theorentil.
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