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1. Introduction

Let6g denote a closed orientable surface of genusg ≥ 2. LetG be a nontrivial
finite group. IfG can be embedded in the group of orientation-preserving self-
homeomorphisms of6g, then we say thatG acts on6g. In this case,6g can be
realized as a Riemann surface andG as a subgroup of its automorphism group.

For each fixedg, there can be only finitely many finite groupsG that act on
6g, since by a famous result of Hurwitz [11] the order ofG is bounded above by
84(g − 1). For some small values ofg, complete listings of those groups which
act on6g have been obtained (see e.g. [15; 16; 19; 27]).

On the other hand, for eachG there is an infinite sequence of values ofg such
thatG acts on6g [13; 22]. The determination of this sequence, here called the
genus spectrumof G, is termed theHurwitz problemin [22]. The genus spec-
trum for a cyclic group of prime order was determined in [12; 14; 22] and can be
deduced from earlier results [17; 8] (see also [5]).

Much effort has gone in to determining the smallest member of this genus spec-
trum for various classes of groups [3; 6; 7; 19]. Indeed, moving beyond the restric-
tions imposed here—that is, to consider nonclosed and/or nonorientable surfaces
or allowing the self-homeomorphisms to be orientation reversing—the correspond-
ing smallest numbers have been widely investigated (see [1] and the references
there).

To describe the results of this paper, we use the notation that evolved from [13;
14] as follows: For each finite groupG, there is an integern0(G), easily com-
puted from the Sylow subgroup structure ofG, such that ifG acts on6g theng =
1+ n0(G)g0 for someg0 ≥ 1. The integerg0 is called areduced genus forG.
Let µ0 = µ0(G) denote theminimum reduced genusfor G and letσ0 = σ0(G)

denote theminimum stable reduced genusfor G, that is, minimal with the prop-
erty that allg0 ≥ σ0 are reduced genera. In addition, the integers in the interval
[µ0, σ0] that do not occur as reduced genera ofG will constitute the (reduced)
gap sequenceof G. The infinite sequence of integers

{ g ≥ 2 | G acts on6g }
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will be called thegenus spectrumof G. This is obviously determined byn0, µ0,

σ0, and the gap sequence ofG.
WhenG is ap-group withp odd,n0(G) = pn−e whereG had orderpn and

exponentpe. The integern − e is thecyclicp-deficiencyof G. In [14], these in-
variants were determined for cyclicp-groups. Formulas were obtained forσ0(G)

andµ0(G) and necessary and sufficient conditions were obtained for an integer to
be a reduced genus for such a groupG.

In this paper, these results are extended to considerp-groups of cyclicp-
deficiency≤ 2, but also to a class ofp-groups satisfying a condition known
as themaximal exponent property(MEP) (see Section 2). For MEP groups, a
lower bound forσ0(G) in terms of the group exponent is obtained (Theorem 4.2).
Not surprisingly, the minimum number of generators ofG, the rank ofG, also
plays a role in the determination ofσ0(G), and it is shown thatσ0(G) is constant
on all p-groups with MEP, rank 2, and the same exponent (Theorem 4.7). On
the other hand, for elementary abelian groups,σ0(G) grows with the rank ofG
(Corollary 7.3).

The necessary and sufficient conditions for an integer to be a reduced genus of
G, which are obtained in the cases whereG has cyclicp-deficiency 2, show that
for eachp ≥ 5 and eache ≥ 3 there exist pairs of nonisomorphicp-groups of the
same order and exponentpe that have identical genus spectra (Theorem 6.1).

The situation forp = 2 will not be considered here. It is considerably more
complicated than for oddp, as the analysis of 2-groups of 2-cyclic deficiency 1
in [26] shows.

A different approach to determining the genus spectrum is taken in [24]. It is
shown there that a suitable translation of the genus spectrum is a subsemigroup of
the positive integers. In [24], generators for the semigroup are obtained when the
groupG is the simple group of order 168. Related ideas are also widely applied
in [21].

Finite groups acting on 3-dimensional handlebodies were intensively investi-
gated in [23], wherein machinery was established allowing the methods and results
discussed in this paper to be extended to that situation (cf. [20]).

The authors would like to thank the referee, whose comments have led to a con-
siderable improvement in the presentation of the results here—in particular, in the
formulation and method of proof of Theorem 7.2.

2. Preliminaries

It is assumed throughout thatG is ap-group and thatp is an odd prime. LetG
have orderpn and exponentpe, so that it has cyclicp-deficiencyn − e. Then
n0 = n0(G) = pn−e and, as shown in [13], our first result follows.

Theorem 2.1. If G acts on6g (g ≥ 2), theng − 1∈ n0N and furthermore, for
all but a finite number of integersg whereg ∈ 1+ n0N, G acts on6g.

The general approach is to regard these groups of symmetries as quotient groups
of Fuchsian groups as follows. IfG acts on the compact surface6g (g ≥ 2), then
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6g can be endowed with a conformal structure such thatG becomes a group of
automorphisms of the compact Riemann surface6g. The universal cover of6g is
thenU, the upper half-plane, and6g is conformally equivalent toU/K whereK
is a torsion-free Fuchsian group such thatK ∼= 51(6g). The action ofG can then
be lifted to conformal automorphisms ofU, and we find it convenient to use the
language of Fuchsian groups.

Theorem 2.2. G acts on a compact surface6g of genusg ≥ 2 if and only if
there exists a Fuchsian group0 and an epimorphismφ : 0 → G such that the
kernel ofφ is isomorphic to51(6g).

If the kernel ofφ is torsion-free, thenφ is called asmoothepimorphism.
SinceG is ap-group of orderpn and exponentpe, in order forφ to be smooth,

the periods of0 can only be of the formpi where 1≤ i ≤ e. Let 0 havexi con-
jugacy classes of maximal cyclic subgroups of orderpi so that0 has presentation
of the form

Generators: c11, c12, . . . , c1x1, c21, . . . , cexe , a1, b1, . . . , ah, bh;
Relations: cp

i

ij = 1 for i = 1,2, . . . , e, j = 1,2, . . . , xi; (1)

h∏
k=1

[ak, bk]
∏
i,j

cij = 1.

The last relation is frequently referred to as thelong relation. This group has
signature(h;p(x1), p2(x2), . . . , pe(xe)), wheren(r) indicates that the periodn is
repeatedr times.

If µ(0) denotes the area of a fundamental region for0 andK the kernel ofφ,
then the equationµ(K) = B(G)µ(0) yields the Riemann–Hurwitz relation

2(g − 1) = pn
[
2(h− 1)+

e∑
i=1

xi

(
1− 1

pi

)]
. (2)

Thus to determine ifGacts on6g,one must determine integersh ≥ 0 andxi ≥ 0—
the data{h; x1, x2, . . . , xe}—such that (2) holds and such that there exists a smooth
epimorphismφ from the group0, determined by the data, ontoG. Sometimes the
abbreviated notation{h; xi} will be used for the data.

From (2), it is immediately clear that forp odd,g ≡ 1 (modpn−e) (see Theorem
2.1), and it remains to consider solutions of the diophantine equation

N = peh+
e∑
i=1

xi
pe − pe−i

2
. (3)

Let�e = �e(p) denote all the solutionsN of (3) for whichh ≥ 0 andxi ≥ 0
for all i. The set�e can be usefully expressed using a truncatedp-adic expansion
of 2N, and the results below follow from this [14]. Let

2N = a0 + a1p + a2p
2 + · · · + aepe, (4)
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where 0≤ ai < p for i = 1,2, . . . , e − 1 andae ≥ 0. Define

Se(2N) =
e∑
k=0

ak.

Theorem 2.3.

�e = {N ∈N | Se(2N) ≥ (e − i)(p − 1) },
whereai is the first nonzero coefficient in the expansion of2N at (4).

Since the coefficients on the right-hand side of (3) have greatest common divisor
1, the equation will have a solution for all large enoughN.

Definition. Let σe(p) denote the minimum stable solution in�e(p); that is,
σe(p) is minimal with the property that allN ≥ σe(p) lie in �e(p).

Corollary 2.4.
σe(p) = 1

2[(e(p − 1)− 3)pe + 3].

3. Groups with MEP

Recall thatG is a group of orderpn and exponentpe wherep is an odd prime.

Definitions.

(1) For eachN with 1≤ N ≤ e, define

3N(G) = 〈x ∈G | xpN = 1〉.
(2) G is said to have propertyMN if all elements of order≥ pN lie in G \

G′3N−1(G).

(3) The groupG is said to have themaximal exponent property(MEP) if G has
exponentpe and propertyMe. This property can be stated more positively
since it is equivalent to requiring that the set of elements of order less thanpe

form a subgroup containingG′.

The formulation of the maximal exponent property is prompted by the problem
under investigation, but it is worth noting how groups with MEP relate to other
(more familiar) classes ofp-groups.

First note that, ifG is a regularp-group, then

3m(G) = { x ∈G | o(x)|pm }.
(For results on regularp-groups, see [10; 25]). Thus the set of elements of or-
der less thanpe form a subgroup. This subgroup, however, may fail to contain
G′. Indeed, any non-abelianp-group of exponentp must fail to have MEP. There
are non-abelianp-groups of orderp3, so necessarily regular, and of exponentp,

so such groups do not have MEP. There are also groups with MEP that fail to be
regular (see below).
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Perhaps more closely related are “powerful”p-groups, whereG is powerful if
G/Gp is abelian. (For results on powerfulp-groups, see [4].)

Lemma 3.1. If G is a finite powerfulp-group, then the set of elements of order
less thanpe form a subgroup.

Proof. Define inductivelyG1 = G, Gi+1 = G
p

i [Gi,G]. WhenG is powerful,
Gi+1 = Gp

i so that [Gi,G] ⊂ Gi+1. It thus follows thatγ3(G), the third term in
the lower central series, is a subgroup ofG3.

Now, for anyp-group,

(xy)p ≡ xpyp[y, x]p(p−1)/2 (modγ3(G)).

For a powerfulp-group, [y, x] ∈ G2 and so [y, x]p(p−1)/2 ∈ G3. Thus(xy)p ≡
xpyp (modG3).

Thus the mappingx 7→ xpG3 induces a homomorphismφ : G/G2→ G2/G3.

Now every normal subgroup of a powerfulp-group is itself powerful, so we can
repeat this. IfG has exponentpe, thenGe+1 is trivial so that the compositionx 7→
xp

e−1
is an endomorphism ofG. The kernel consists of all elements of order less

thanpe.

Corollary 3.2. If G is a powerfulp-group, thenG has MEP.

Proof. If G is powerful, thenG′ ⊂ Gp ⊂ 3e−1(G) = { x ∈G | o(x)|pe−1 }. Thus
G has MEP.

However, not all groups with MEP are powerful. Consider the following group,
the details of which are discussed in Section 6.

G6 = 〈x, y, z | xpe = yp = zp = 1, [x, y] = z, [x, z] = 1, [y, z] = xpe−1〉.
The elementsz, xp

e−1
lie in G′6, whileGp

6 = 〈xp〉 so thatG6 is not powerful.
Note also thatG′63

e−1(G6) = 〈xp, y, z〉 so thatG6 has MEP. In the casep = 3,
this group also fails to be regular, as any 2-generator 3-group must have a cyclic
commutator subgroup.

Lemma 3.3. The following classes ofp-groups have the Maximal Exponent
Property.

(1) Powerfulp-groups, and hence abelian and metacyclicp-groups.
(2) Groups of ordersp3, p4 apart from those that have exponentp and are non-

abelian.
(3) Groups of exponent≥ p3 and cyclicp-deficiency≤ 2.
(4) Direct sums of MEP groups.

Proof.

(1) This has already been proved (Corollary 3.2).
(2) This follows by checking the lists of such groups [2].
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(3) Groups of cyclic deficiency 0 are cyclic and those of cyclic deficiency 1 or 2
(see [9]) are described in Sections 5 and 6, from which the condition may be
verified.

(4) If G,H have MEP—treating separately the cases whereG,H have the same
exponent and different exponents—the result follows easily.

4. The Invariant σσσ0(G) When G Has MEP

The main results of this section obtain information onσ0(G) for groupsG with
MEP.

Lemma 4.1. LetG act on6g (g ≥ 2) with corresponding Fuchsian group0,
whose associated data is{h; x1, x2, . . . , xN} for someN ≤ e. If G has property
MN andxN 6= 0, thenxN ≥ 2.

Proof. Let φ : 0→ G be a smooth epimorphism defining the action and suppose
thatxN = 1. The long relation in0 implies thatφ(cN1) ∈G′3N−1(G). This con-
tradicts the propertyMN.

Theorem 4.2. LetG have exponentpe. If G has MEP, thenσ0(G)≥ σe(p)− 1.

Proof. Suppose thatg0 = σe(p) − 2 = 1
2[(e(p − 1) − 3)pe − 1] is a reduced

genus forG. Theng = n0g0 + 1 satisfies (2) and so

2g0 = 2pe(h− 1)+
e∑
i=1

xi(p
e − pe−i ). (5)

Now 2g0 ≡ −1 (modp) and from (5) we havexe ≡ 1 (modp). Thus, by Lemma
4.1,xe = x ′ep + p + 1 with x ′e ≥ 0. Whene = 1, there is no possible solution to
(5) with x ′1 ≥ 0 andh ≥ 0. From (5), sincee ≥ 2 we obtain

1

2p
[2g0 + 2pe − (p + 1)(pe − 1)] = pe−1h+

e−1∑
i=1

yi

2
(pe−1− pe−1−i ), (6)

wherey1 = x1+ px ′e, yi = xi for i = 2, . . . , e − 2, andye−1 = xe−1+ x ′e. The
integer defined by (6) lies in�e−1(p). But this integer is equal to

1
2[((e − 1)(p − 1)− 3)pe−1+ 1].

If e = 2 andp = 3 then this expression is negative; otherwise, it is equal to
σe−1(p)−1.Either case gives a contradiction, since by its definitionσe−1(p)−1 /∈
�e−1(p).

This result certainly does not hold for allp-groupsG.We have already noted that a
non-abelian group of orderp3 and exponentp fails to have MEP. A straightforward
calculation for such a groupG (cf. groupG4 in Theorem 6.1) shows that

σ0(G) = 1
2(p

2 − 6p + 3) for p ≥ 7,

which is less thanσ1(p)− 1.
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Now σ0(G) will be evaluated for the cases whereG hasrank 2—that is, when
the minimal number of generators is 2. For a finitep-group, the Frattini subgroup
8(G) = G′Gp and so

8(G) ⊂ G′3e−1(G).

WhenG has rank 2,
G/8(G) ∼= Zp ⊕ Zp.

Thus, ifG has rank 2 and MEP then

G/G ′3e−1(G) ∼= Zp or Zp ⊕ Zp. (7)

Note that, in the case wheree = 1, G itself must be abelian and isomorphic to
Zp ⊕ Zp.

Lemma 4.3. LetG have MEP and rank2. ThenG can be generated by two ele-
ments of orderpe whose product has orderpe. In the first of the two options at
(7),G can also be generated by two elements of orderpe whose product has order
less thanpe. This cannot happen in the second option.

Proof. LetG = 〈a, b〉 and5 : G→ G/G′3e−1(G). Then5(a) and5(b) cannot
both be trivial. Suppose that5(a) is nontrivial. If5(b) is trivial then5(ab) is
nontrivial andG = 〈a, ab〉. Thus assume that5(b) is nontrivial. Sincep is odd,
at least one of5(ab) and5(a−1b) must be nontrivial.

Suppose that the first option at (7) holds. Suppose, as before, that5(a) and
5(b)are nontrivial. Then there exists an integeri with5(b)i = 5(a)and(i, p) =
1. NowG = 〈a, b−i〉 and5(ab−i ) is trivial. The last part is clear.

If g0 is a reduced genus forG and ifxe 6= 0 in equation (5), thenxe ≥ 2 if G has
MEP. This equation then yields

2(g0 + 1) = 2peh+
e∑
i=1

yi(p
e − pe−i ) (8)

with yi = xi for 1≤ i ≤ e − 1 andye = xe − 2. Thusg0 + 1∈�e(p).

Theorem 4.4. If g0 ≥ 1 satisfies(8) with eitherh > 0 or ye > 0, theng0 is a
reduced genus forG whenG has rank2 and MEP.

Proof. Under these conditions, the data{h; xi} wherexi = yi for 1 ≤ i ≤ e − 1
andxe = ye + 2 defines a Fuchsian group0 as at (1). By Lemma 4.3, we can let
G = 〈a, b〉 whereB(a) = B(b) = B(ab) = pe.

If ye > 0, and soxe > 2, define a smooth epimorphismφ : 0→ G as follows:
φ(ak) = φ(bk) = 1 for all k; φ(ce1) = a, φ(ce2) = b andφ(cej ) = (ab)ij for 3≤
j ≤ xe.Map all other generatorscij onto powers ofab such thatφ is smooth, and
adjust theij such that(ij, p) = 1 and the long relation is satisfied. Ifh > 0, de-
fineφ(a1) = φ(b1) = a, map other hyperbolic generators trivially(φ(ce1) = bi,
φ(ce2) = bj ), and map all other elliptic generators onto powers ofb such that the
orders are preserved. Now adjusti, j such that the long relation holds.
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Lemma 4.5.

(1) If p ≥ 5 andg0 ≥ σe(p)− 1, then there is a solution to(8) with eitherh > 0
or ye > 0.

(2) If p = 3 andg0 ≥ σe(3), then there is a solution to(8) with eitherh > 0 or
ye > 0.

Proof. If g0 ≥ σe(p) − 1, theng0 + 1 ∈ �e(p) and so there existh′ ≥ 0 and
si ≥ 0 such that

2(g0 + 1) = 2peh′ +
e∑
i=1

si(p
e − pe−i ). (9)

Supposeh′ = se = 0. Then

2(g0 + 1) =
e−1∑
i=1

si(p
e − pe−i ) ≥ 2σe(p).

Now, except for the casep = 3, at least onesi ≥ p. For otherwise

2(g0 + 1) ≤ [e(p − 1)− p]pe + p ≤ [e(p − 1)− 3]pe + 3= 2σe(p),

with equality only in the casep = 3. Thus forp ≥ 5 andg0 ≥ σe(p)− 1, or for
p = 3 andg0 ≥ σe(3), we can assume that at least onesj ≥ p. Let sj = ps ′j + t,
where 0≤ t < p ands ′j ≥ 1. Then (9) can be rewritten as

2(g0 + 1) = 2peh+
e∑
i=1

yi(p
e − pe−i ),

whereh = s ′j (p − 1)/2 andyi = si for 1 ≤ i ≤ e − 1 andi 6= j, j − 1. We
thus haveyj−1 = sj−1+ s ′j , yj = t, andye = 0, so there is a solution of (8) with
h > 0.

The exceptional case occurs whenp = 3 andg0 = σe(3)− 1, in which case there
is a solution to (9) withh′ = se = 0 and all othersi = 2. This turns out to be the
only solution of interest.

Lemma 4.6. The only solution to

(2e − 3)3e + 3= 2h3e +
e∑
i=1

yi(3
e − 3e−i )

with h, yi ≥ 0 occurs whenh = ye = 0 and all otheryi = 2.

Proof. The proof proceeds by induction one. The result is trivial fore = 1.When
e = 2, the equation reduces to

18h+ 6y1+ 8y2 = 12,

which clearly has only the solutionh = y2 = 0 andy1 = 2. Now suppose the
result is true fore ≥ 2, and consider
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(2(e + 1)− 3)3e+1+ 3= 2h3e+1+
e+1∑
i=1

yi(3
e+1− 3e+1−i ).

Clearlyye+1= 3y ′e+1. Using 3e+1− 1= 3(3e − 3e−1)+ (3e − 1) and dividing by
3 yields

(2e − 3)3e + 3+ 2(3e − 1) = 2h3e + (y1+ 3y ′e+1)(3
e − 3e−1)

+
e−1∑
i=2

yi(3
e − 3e−i )+ (ye + y ′e+1)(3

e − 1). (10)

Now ye + y ′e+1 ≡ 2 (mod 3) and soye + y ′e+1 ≥ 2. Thus, by applying the in-
ductive assumption to (10), we obtainh = 0, y1+ 3y ′e+1 = 2, yi = 2 for i =
2,3, . . . , e−1 andye+y ′e+1−2= 0.The result now follows for the casee+1.

The preceding results are gathered together in the second main result of this section
as follows.

Theorem 4.7. LetG be a finitep-group of exponentpe. LetG have MEP and
rank 2.

(1) If p ≥ 5 thenσ0(G) = σe(p)− 1.
(2) If p = 3 andG/G′3e−1(G) ∼= Z 3, thenσ0(G) = σe(3)− 1.
(3) If p = 3 andG/G ′3e−1(G) ∼= Z 3⊕ Z 3, thenσ0(G) = σe(3).
Proof. If p ≥ 5, the result follows from Theorems 4.2 and 4.4 and Lemma 4.5.
Now assume thatp = 3 ande ≥ 2, so thatσe(3)− 1≤ σ0(G) ≤ σe(3). Suppose
then thatg0 = σe(3) − 1. Then the only solution to (8) hash = 0, ye = 0, and
yi = 2 for otheri, so that the only Fuchsian group0 that could correspond to an
action has signature(0;3(2),32(2), . . . ,3e(2)). Let 0 have presentation as at (1).

If G/G ′3e−1(G) ∼= Z 3 then, by Lemma 4.3,G can be generated by two ele-
mentsa, b of order 3e whose product has order 3m with m < e. We can thus de-
fine a smooth epimorphismψ : 0 → G by ψ(ci1) = ψ(ci2)

−1 = a3e−i for i 6=
m, e, ψ(cm1) = ab, ψ(cm2) = (ab)−2, ψ(ce1) = a, andψ(ce2) = b.

If G/G ′3e−1(G) ∼= Z 3⊕ Z 3, then any two elements of order 3e in G that gen-
erateG will have their product of order 3e, by Lemma 4.3. In this case there is
clearly no smooth epimorphism from0 ontoG.

If p = 3 ande = 1 thenG = Z 3⊕Z 3 andσ1(3) = 0. All the preceding discus-
sion assumes that we are considering onlyg ≥ 2 and sog0 ≥ 1. However, note
that in this caseG acts on61, so the result remains true forp = 3 ande = 1.

5. p-Groups of Cyclic Deficiency 1

Cyclic p-groups of automorphisms of compact surfaces were studied in detail in
[14]. In this section, necessary and sufficient conditions are given forg0 to be a
reduced genus for the two classes ofp-groups ofp-cyclic deficiency 1. Details
are given for the non-abelian case, the abelian case being similar and easier. In
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the next section, the same method will be employed on more complex groups, and
there many details will be omitted (see [26]).

LetG have exponentpe so thatB(G) = pe+1. Forp odd, there are two classes
of p-groups of cyclic deficiency 1:

(1) Zpe ⊕ Zp;
(2) 〈x, y | xpe = yp = 1, y−1xy = x1+pe−1〉 (e ≥ 2) (11)

(see e.g. [25]). For these groupsn0 = p and so, ifG acts on6g, g − 1 = pg0.

Recall the general method to determine whichg0 are reduced genera forG.
From the Riemann–Hurwitz relation (2), we must have

2g0 = 2pe(h− 1)+
e∑
i=1

xi(p
e − pe−i ). (12)

From the resulting data{h; xi}, construct a Fuchsian group0 and then show that
there is a smooth epimorphismφ : 0→ G.

For any such data{h; x1, x2, . . . , xe}, the following notation is introduced and
will be standard throughout the remainder of the paper:

M =


0 if all xi = 0,

e if xe 6= 0,

m if xm 6= 0 but xm+1= · · · = xe = 0.

(13)

Note that, from (12), we would then haveg0 = pe−Mg′0.
LetG be defined at (11). It is not difficult to show that every element ofG can

be uniquely expressed asxiy j with 0 ≤ i < pe and 0≤ j < p. Also, B(xiy j ) =
B(xi) wheni 6= 0. It follows that3N(G) = 〈xpe−N, y〉, which is abelian for 1≤
N < e. Furthermore, the commutator subgroup is generated byxp

e−1
so thatG

has propertyMN for 2≤ N ≤ e. Thus, from Theorem 4.7,

σ0(G) = σe(p)− 1. (14)

Theorem 5.1. Let g0 ≥ 1. Theng0 is a reduced genus forG if and only ifg0

satisfies(12) and the data{h; xi} satisfies at least one of the conditions in the
following table:

h M xM

(1) ≥ 2 = 0
(2) ≥ 1 = 1 ≥ 1
(3) ≥ 1 2≤ M ≤ e − 1 ≥ 2
(4) ≥ 0 = e ≥ 2 and the RHS of(12) is positive.

Proof. Assume first thatg0 is a reduced genus forG. Clearly from (12), ifM =
0 thenh ≥ 2. Since elements of orderpe in G cannot be products of elements of
smaller order, if 1≤ M < e thenh ≥ 1 sinceφ is an epimorphism. SinceG has
propertyMN for 2 ≤ N ≤ e, it follows from Lemma 4.1 thatxM ≥ 2 for 2 ≤
M ≤ e.



p-Groups of Symmetries of Surfaces 325

Now suppose conversely thatg0 satisfies (12) and that the data satisfies one of
the conditions stated. We use the notation given at (1) for0 and construct a smooth
epimorphismφ : 0→ G in each case.

(1) φ(a1) = φ(b1) = x, φ(a2) = φ(b2) = y, andφ(al) = φ(bl) = 1 for
l ≥ 2.

(2) φ(a1) = x, φ(b1) = y, andφ(al) = φ(bl) = 1 for l > 1. Also, φ(c1t ) =
xjtp

e−1
for t = 1,2, . . . , x1 with jt chosen such that(jt , p) = 1 and

∑x1
i=1 jt ≡

−1 (modp).
(3) φ(a1) = x, φ(b1) = y, andφ(al) = φ(bl) = 1 for l > 1. Note that

φ

( h∏
j=1

[aj, bj ]

)
= xpe−1

.

For all (i, j) 6= (M,1), (M,2), let φ(cij ) be a power ofx of orderpi. Finally, let
φ(cMi) = xjipe−M (i = 1,2), wherej1, j2 are chosen such that(ji, p) = 1 and
the long relation is satisfied.

(4) If the RHS of (12) is positive, then eitherh > 0 or 0 has a period differ-
ent from those generated byce1, ce2. In the first case we can defineφ as in case
(3). Suppose then thath = 0 and that the data gives a generatorckl different from
ce1, ce2. For all cij different from these three, letφ(cij ) be a power ofx of order
pi. Let φ(ckl) = xj1pe−k y−1, φ(ce1) = xj2y, andφ(ce2) = xj3, wherej1, j2, j3

are relatively prime top and chosen such that the long relation is satisfied.

The four conditions given in Theorem 5.1 can now be converted into conditions
ong0 in terms of itsp-adic expansion using the notation introduced in Section 2.

Theorem 5.2. Letg0 ≥ 1. Theng0 is a reduced genus forG if and only if either

(1) g0 = peg′0 for someg′0 ≥ 1, or
(2) g0 = pe−1g′0 andg′0 − 1

2(p − 1)∈�1(p), or
(3) for some1< M < e, g0 = pe−Mg′0 andg′0 − pM + 1∈�M(p), or
(4) g0 + 1∈�e(p) \ {0}.
Proof.

(1) This is immediate from (12).
(2) Let h′ = h − 1 andx ′1 = x1− 1, so thath′ ≥ 0 andx ′1 ≥ 0. From (12) we

haveg0 = pe−1g′0, where

2g′0 − (p − 1) = 2ph′ + x ′1(p − 1)∈�1(p).

Conversely, if these conditions are satisfied then we can construct the data
{h; xi} satisfying (12).

(3) A similar argument to that just given applies withh′ = h−1 andx ′M = xM−2.
(4) In this case, takex ′e = xe − 2 to obtain

2g0 + 2pe − 2(pe − 1) = 2hpe +
e−1∑
i=1

xi(p
e − pe−i )+ x ′e(pe − 1).
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The condition that the RHS of (12) is positive gives that not all the coefficients
on the RHS of this last equation are zero.

Using the description of the sets�N(p) given in Theorem 2.3, one can determine
the genus spectrum forG. In particular, we have the following corollary.

Corollary 5.3. µ0(G) = 1
2(p

e − pe−1− 2).

Proof. Note that the smallest value in�N(p) is 0, while the smallest nonzero
value is1

2(p
N −pN−1). The corollary then follows easily from Theorem 5.2.

For the abelian groups defined previously, a similar analysis yields our next result.

Theorem 5.4. Letg0 ≥ 1. All suchg0 are reduced genera forZ 3⊕ Z 3. If pe 6=
3, theng0 is a reduced genus forZpe ⊕ Zp if and only if either

(1) g0 = peg′0 for someg′0 ≥ 1, or
(2) for some1≤ M ≤ e − 1, g0 = pe−Mg′0 andg′0 − pM + 1∈�M(p), or
(3) g0 + 1∈�e(p) \ {0}.

We can readily deduce that

σ0(Zpe ⊕ Zp) = σe(p)− 1,

µ0(Zpe ⊕ Zp) = 1
2(p

e − pe−1− 2).

A simple calculation then yields the following.

Corollary 5.5. If G1 = Z 9 ⊕ Z 3 andG2 = 〈x, y | x9 = y3 = 1, y−1xy =
x4〉, thenG1 andG2 have the same genus spectrum. It is{1+3g0 | g0 ≥ 2 except
g0 = 4 }.

This result shows that the genus spectrum does not determine the isomorphism
class of the group.

6. p-Groups of p-Cyclic Deficiency 2,p Odd

At the end of the preceding section, two nonisomorphic groups with identical
genus spectra were exhibited. In this section we show that this is not an isolated
example by producing, for eachp ≥ 5 ande ≥ 3, four nonisomorphic groups
of p-cyclic deficiency 2 with identical genus spectra (Theorem 6.1). In fact, in
the twelve isomorphism classes of such groups there exist further nonisomorphic
groups with identical genus spectra. The methods are as in the preceding section
and information on the subgroup structure of these four nonisomorphic groups is
given, but other details are omitted (cf. [26]).

If e ≥ 3 andp ≥ 5 then there are exactly twelve isomorphism classes ofp-
groups of exponentpe and orderpe+2 [9]. This classification will be detailed next.
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Each such groupG contains a normal subgroupH of indexp that is a group of
p-cyclic deficiency 1.

Case A:G is a split extension ofH by Zp. In all cases,G can be generated by
three elementsx, y, z of orderspe, p, p respectively. Every element ofG can be
uniquely expressed in the form

xiy jzk with 0 ≤ i ≤ pe − 1 and 0≤ j, k ≤ p − 1,

and the orders of these elements are the same as the orders of the corresponding
elements of the abelian groupZpe ⊕ Zp ⊕ Zp. There are seven classes of groups;
the additional relations that the generators must satisfy, in addition to having orders
pe, p, p, are

(G1) [x, y] = [y, z] = [z, x] = 1;
(G2) [x, y] = xpe−1

, [x, z] = [y, z] = 1;
(G3) [x, y] = [x, z] = 1, [y, z] = xpe−1;
(G4) [x, y] = z, [x, z] = [y, z] = 1;
(G5) [x, y] = z, [x, z] = xpe−1

, [y, z] = 1;
(G6) [x, y] = z, [x, z] = 1, [y, z] = xpe−1;
(G7) [x, y] = z, [x, z] = 1, [y, z] = xrpe−1

, wherer is a quadratic nonresidue
modp.

Note thatG1,G2,G3 have rank 3, while the remainder have rank 2.

Case B:G is a nonsplit extension ofH byZp. In this caseG can be generated
by two elementsx, y of orderspe, p2 respectively. Every element ofG can be
uniquely expressed in the form

xiy j with 0 ≤ i ≤ pe − 1 and 0≤ j ≤ p2 − 1,

and the orders of the elements are the same as the orders of the corresponding
elements in the abelian groupZpe ⊕ Zp2.

There are five such classes of groups, which satisfy the additional relations:

(G8) [x, y] = 1;
(G9) [x, y] = xpe−1;
(G10) [x, y] = xpe−2;
(G11) [x, y] = yp;
(G12) [x, y] = xpe−2

yp, [x, yp] = xpe−1
.

Notes. (1) Fore = 3, G10 is isomorphic toG12.

(2) In the presentation ofG12 given in [9], the second listed equality is omitted.
That relation does not seem to be a consequence of the others.

The underlying method of obtaining the necessary and sufficient conditions forg0

to be a reduced genus for each of these groups is similar to that given in Section
5 for the non-abelianp-group,p odd, of cyclic deficiency 1. Thus one must de-
termine the subgroupsG′ and3N(G) for eachN in order to determine for which
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values ofN the group has propertyMN, 1 ≤ N ≤ e (see Section 4). All these
groups have MEP and so satisfyσ0(G) ≥ σe(p)− 1 by Theorem 4.2; for those of
rank 2,σ0(G) = σe(p)− 1 by Theorem 4.7(p ≥ 5).

For each of these groups,n0 = p2 and sog − 1= p2g0 with

2g0 = 2pe(h− 1)+
e∑
i=1

xi(p
e − pe−i ). (15)

As in Section 5, the necessary and sufficient conditions thatg0 be a reduced
genus forG are thatg0 satisfy (15) for some data{h; xi} satisfying certain condi-
tions (cf. Theorem 5.1) expressed in terms of inequalities onh, xi,M. These con-
ditions can, in turn, be translated into number-theoretic conditions ong0 in terms
of the divisibility by powers ofp and its truncatedp-adic expansion via the sets
�M(p) (see Section 2 and Theorems 5.2 and 5.4).

Theorem 6.1. The groupsG4,G5,G6,G7 have the same genus spectrum.

Proof. As noted previously, each element in each of these groups can be uniquely
expressed in the formxiy jzk, with 0 ≤ i ≤ pe − 1, 0 ≤ j, k ≤ p − 1,
and B(xiy jzk) = B(x ′iy ′jz ′k) wherex ′, y ′, z ′ are the canonical generators of
Zpe ⊕ Zp ⊕ Zp. From the foregoing presentations, it is straightforward to ob-
tain that

G′4 = 〈z〉, G′i = 〈xp
e−1
, z〉, i = 5,6,7;

3N(G) = 〈xpe−N , y, z〉 for 1≤ N ≤ e − 1.

It thus follows that eachG has propertyMN for 2≤ N ≤ e. Thus, as in Theorem
5.1, one deduces thatg0 is a reduced genus forG if and only if g0 satisfies (15)
and the data{h; xi} satisfies at least one of the following conditions:

h M xM

(1) ≥ 2 = 0
(2) ≥ 1 = 1 ≥ 1
(3) ≥ 1 2≤ M ≤ e − 1 ≥ 2
(4) ≥ 0 = e ≥ 2 and the RHS of (15) is positive.

Because they are identical for each of the four groups and each group has the same
exponent, these conditions translate into identical number-theoretic conditions on
g0 in order thatg0 be a reduced genus (cf. Theorem 5.2). The result follows.

Remark. A similar analysis on the other groups (cf. [26]) yields

(i) G2 andG3 have the same genus spectrum,
(ii) G9 andG11 have the same genus spectrum,

(iii) G10 andG12 have the same genus spectrum.
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7. Elementary Abelianp-Groups, p Odd

All groups ofp-cyclic deficiency≤ 2 have MEP. Hence, for these groups that also
have rank 2, it follows from Theorem 4.7 thatσ0(G) = σe(p)− 1. It can also be
shown that even when the rank is 3,σ0(G) = σe(p)−1, so that in all these cases the
minimum stable reduced genus depends only on the exponent. In this section it will
be shown that, for elementary abelianp-groups,σ0(G) grows with the rank ofG.

LetG = Zk
p. ThusG has cyclicp-deficiencyk− 1, and the signature of a can-

didiate Fuchsian group has the form(h;p(x)). Such a group is denoted by0(x, h)
with (x, h) belonging to the latticeL = N × N. Let f(x, h) be the function
defined by

f(x, h) =
(
p − 1

2

)
x + ph

so that, if there is a smooth epimorphismφ : 0(x, h)→ Zk
p, then the correspond-

ing reduced genusg0 = f(x, h)− p. This holds for allk ≥ 1.
We use a geometric approach to investigate the genus spectrum of these groups

and introduce some new notation:

S(G) = { (x, h)∈L | ∃ a smooth epimorphismφ : 0(x, h)→ G }.
Now, if 0 = 0(x, h) then

0

0p0 ′
∼=
{

Z2h
p if x = 0,

Z2h+x−1
p if x 6= 0.

Also,0p0 ′ is torsion-free if and only ifx 6= 1. The next lemma follows readily.

Lemma 7.1. LetG = Zk
p. Then(x, h)∈ S(G) if and only if:

(a) k is odd, andx + 2h ≥ k + 1 with x 6= 1; or
(b) k is even, andx + 2h ≥ k + 1 with x 6= 1 or (x, h) = (0, k/2).

Remark. Note that the cyclic groupsZp act on the sphere and the groupsZp⊕Zp

act on the torus. However, our initial assumption thatg exceed unity rules these
cases out, so that small modifications must be made to Lemma 7.1 for these cases:
If k = 1 then we require thatx + 2h ≥ 3 with x 6= 1, and if k = 2 then we ex-
clude the possibility(0,1). Corresponding modifications are required in some of
the following statements also.

ThusS(G) consists of all lattice points above L1 with the exception of{ (1, h) :
h ≥ 0 }, together with the point(0, k/2) whenk is even (see Figure 1). The level
curves of the functionf have slope−(p−1)/2p, and L2 and L3 are level curves.
Thus

µ0(Zk
p) =

{
f(k + 1,0)− p = (k + 1)(p − 1)/2− p k odd,

min{f(k + 1,0)− p, f(0, k/2)− p} k even.
(16)

From this we obtain

µ0(G) =
{
(k + 1)(p − 1)/2− p if p ≤ k + 1,

kp/2− p if p > k + 1.
(17)
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Figure 1

Let I(G) denote the gap sequence forG.

Theorem 7.2. I(Zk
p) = I(Zp) ∩ [µ0(Zk

p),∞).

Proof. Consider first the case wherep ≤ k+1. ThusI(Zk
p) = { g0 | g0 + p is not

the value of a level curve through a point ofS(Zk
p) }. Now, if U is the set of lat-

tice points above L2 with the exception of{ (1, h) : h ≥ 0 }, then I(Zp) ∩
[µ0(G),∞) = { g0 | g0 + p is not the value of a level curve through a point of
U }. ThusI(Zk

p) ⊃ I(Zp) ∩ [µ0(Zk
p),∞).

Now consider the triangle bounded by the lines L1, L2 and theh-axis. Suppose
(x, h) lies inside this triangle. Thenx + 2h < k+ 1 andx + 2h+ 2h/(p− 1) >
k + 1. Thush > (p− 1)/2. Let h = q(p− 1)/2+ r, where 0≤ r < (p− 1)/2.
Thenf(x, h) = f(x + q, r) and(x + q, r)∈ S(Zk

p). Thus

I(Zk
p) = I(Zp) ∩ [µ0(Zk

p),∞).
For the cases wherep > k + 1, a similar argument applies. We need to con-

sider the triangle bounded by the lines L1, L3 and theh-axis. Thus consider(x, h)
such thatx + 2h ≤ k andx(p − 1)/2+ ph ≥ pk/2. It follows thatpk = x ≥
(p− 1)x + 2ph ≥ pk. The only solution isx = 0, h = k/2, and the result again
follows.

Corollary 7.3.

(1) I(Zk
p) = φ if and only if k ≥ p − 1. In these cases,σ0(Zk

p) = µ0(Zk
p) =

(k + 1)(p − 1)/2− p.
(2) If k < p − 1 thenσ0(Zk

p) = σ0(Zp) = 1
2[p(p − 4)+ 1].

Proof. By Theorem 7.2,I(Zk
p) = φ if and only if σ0(Zp) ≤ µ0(Zk

p). Both parts
of the corollary then follow by a direct computation.
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