p-Groups of Symmetries of Surfaces

C. MAacLACHLAN & Y. TaLu

1. Introduction

Let X, denote a closed orientable surface of gegius 2. Let G be a nontrivial
finite group. IfG can be embedded in the group of orientation-preserving self-
homeomorphisms of,, then we say thaf acts onX,. In this caseX, can be
realized as a Riemann surface aids a subgroup of its automorphism group.

For each fixedg, there can be only finitely many finite grougsthat act on
>,, since by a famous result of Hurwitz [11] the order@fs bounded above by
84(g — 1). For some small values @f, complete listings of those groups which
act onx, have been obtained (see e.qg. [15; 16; 19; 27]).

On the other hand, for eaah there is an infinite sequence of valuesgauch
that G acts onX, [13; 22]. The determination of this sequence, here called the
genus spectrurof G, is termed theHurwitz problemin [22]. The genus spec-
trum for a cyclic group of prime order was determined in [12; 14; 22] and can be
deduced from earlier results [17; 8] (see also [5]).

Much effort has gone in to determining the smallest member of this genus spec-
trum for various classes of groups [3; 6; 7; 19]. Indeed, moving beyond the restric-
tions imposed here—that is, to consider nonclosed and/or nonorientable surfaces
or allowing the self-homeomorphisms to be orientation reversing—the correspond-
ing smallest numbers have been widely investigated (see [1] and the references
there).

To describe the results of this paper, we use the notation that evolved from [13;
14] as follows: For each finite grou@, there is an integet(G), easily com-
puted from the Sylow subgroup structuretfsuch that ifG acts onx, theng =
1+ no(G)go for somegy > 1. The integerg is called areduced genus fo6.

Let wo = uo(G) denote theminimum reduced gendsr G and letog = 0¢(G)
denote theminimum stable reduced genfes G, that is, minimal with the prop-
erty that allgo > o are reduced genera. In addition, the integers in the interval
[1o, 00] that do not occur as reduced generatoivill constitute the feduced

gap sequencef G. The infinite sequence of integers

{g>2]|Gactsonx, }
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will be called thegenus spectruraf G. This is obviously determined byo, 1o,
oo, and the gap sequence Gf

WhengG is a p-group with p odd,no(G) = p"—¢ whereG had orderp” and
exponentp®. The integem — e is thecyclic p-deficiencyof G. In [14], these in-
variants were determined for cycliggroups. Formulas were obtained tay(G)
anduo(G) and necessary and sufficient conditions were obtained for an integer to
be a reduced genus for such a graup

In this paper, these results are extended to congidgroups of cyclicp-
deficiency< 2, but also to a class op-groups satisfying a condition known
as themaximal exponent properfMEP) (see Section 2). For MEP groups, a
lower bound foloo(G) in terms of the group exponent is obtained (Theorem 4.2).
Not surprisingly, the minimum number of generatorstafthe rank ofG, also
plays a role in the determination 6§(G), and it is shown thato(G) is constant
on all p-groups with MEP, rank 2, and the same exponent (Theorem 4.7). On
the other hand, for elementary abelian groupgG) grows with the rank ofz
(Corollary 7.3).

The necessary and sufficient conditions for an integer to be a reduced genus of
G, which are obtained in the cases whérédas cyclicp-deficiency 2, show that
for eachp > 5 and eacla > 3 there exist pairs of nonisomorphpegroups of the
same order and exponent that have identical genus spectra (Theorem 6.1).

The situation forp = 2 will not be considered here. It is considerably more
complicated than for odg, as the analysis of 2-groups of 2-cyclic deficiency 1
in [26] shows.

A different approach to determining the genus spectrum is taken in [24]. Itis
shown there that a suitable translation of the genus spectrum is a subsemigroup of
the positive integers. In [24], generators for the semigroup are obtained when the
groupG is the simple group of order 168. Related ideas are also widely applied
in [21].

Finite groups acting on 3-dimensional handlebodies were intensively investi-
gated in [23], wherein machinery was established allowing the methods and results
discussed in this paper to be extended to that situation (cf. [20]).

The authors would like to thank the referee, whose comments have led to a con-
siderable improvement in the presentation of the results here—in particular, in the
formulation and method of proof of Theorem 7.2.

2. Preliminaries

It is assumed throughout thét is a p-group and thap is an odd prime. LeG
have orderp™ and exponenp®, so that it has cycligp-deficiencyn — e. Then
no = no(G) = p"~¢ and, as shown in [13], our first result follows.

THEOREM 2.1. If G acts onX, (g > 2), theng — 1 € noN and furthermore, for
all but a finite number of integegswhereg € 14+ ngN, G acts onx,.

The general approach is to regard these groups of symmetries as quotient groups
of Fuchsian groups as follows. @ acts on the compact surfagg (g > 2), then
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¥, can be endowed with a conformal structure such éhdtecomes a group of
automorphisms of the compact Riemann surfageThe universal cover of, is
thenU, the upper half-plane, and, is conformally equivalent t&//K wherek

is a torsion-free Fuchsian group such tRa& IT;(X,). The action ofG can then
be lifted to conformal automorphisms &f and we find it convenient to use the
language of Fuchsian groups.

THEOREM 2.2. G acts on a compact surfacg, of genusg > 2 if and only if
there exists a Fuchsian group and an epimorphismg: I' — G such that the
kernel of ¢ is isomorphic tally(%,).

If the kernel of¢ is torsion-free, thew is called asmoothepimorphism.

SinceG is ap-group of orderp™ and exponenp¢, in order for¢ to be smooth,
the periods of” can only be of the fornp’ where 1< i < e. LetI" havex; con-
jugacy classes of maximal cyclic subgroups of orgéeso thatl™ has presentation
of the form

Generators: C11, C125 « « 5 Clxy, C21, « « « 5 Cex, s A1, bl, coe,ap, bh;

Relations: ci‘]’.i =1fori=21,2...,e, j=12,...,x; 1)

h
l_[[ak, by] l_[ c;j=1
k=1 i

The last relation is frequently referred to as theg relation. This group has
signature(h; p*v, p2x2  peoy wheren™ indicates that the period is
repeated times.

If «(T") denotes the area of a fundamental regionff@and K the kernel ofp,
then the equatiop (K) = o(G)u(T") yields the Riemann—Hurwitz relation

20g—1) = p”|:2(h -1+ Zx,-(l - %)] 2)
i=1

Thus to determine i acts orx,, one mustdetermine integérs> O andy; > 0—
the data{h; x1, x2, . . ., x.}—such that (2) holds and such that there exists a smooth
epimorphismy from the groud”, determined by the data, ona Sometimes the
abbreviated notatiofh:; x;} will be used for the data.

From (2), itisimmediately clear that fgrodd,g = 1 (modp”~¢) (see Theorem
2.1), and it remains to consider solutions of the diophantine equation

N=peh+2xi%. 3)
i=1

Let Q. = Q.(p) denote all the solution¥ of (3) for whichk > 0 andx; > 0
for all i. The set2, can be usefully expressed using a truncateatlic expansion
of 2N, and the results below follow from this [14]. Let

2N=a0+a1p+a2p2+~-~+aepg, (4)
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where0<a; < pfori =1,2,...,e —1anda, > 0. Define
e
S{2N) =Y a.
k=0

THEOREM 2.3.
Q,={NeN|S.2N)>(e—i)(p—D1}

whereq; is the first nonzero coefficient in the expansior2of at (4).

Since the coefficients on the right-hand side of (3) have greatest common divisor
1, the equation will have a solution for all large enough

DEeFINITION. Let o.(p) denote the minimum stable solution §i.( p); that is,
o.(p) is minimal with the property that alV > o.(p) lie in Q.(p).

COROLLARY 2.4.
o.(p) = 3[(e(p—1) —3)p° +3].

3. Groups with MEP
Recall thatG is a group of ordep” and exponenp¢ wherep is an odd prime.

DEFINITIONS.
(1) ForeachVv with1l < N < e, define

AMG) = (xeG | xP" = 1).

(2) G is said to have propertyy if all elements of order> p" lie in G \
G'AVYG).

(3) The groupG is said to have thenaximal exponent properMEP) if G has
exponentp® and propertyM,. This property can be stated more positively
since it is equivalent to requiring that the set of elements of order lesgpthan
form a subgroup containing’.

The formulation of the maximal exponent property is prompted by the problem
under investigation, but it is worth noting how groups with MEP relate to other
(more familiar) classes gf-groups.

First note that, ifG is a regularp-group, then

A"(G) ={x€G |o(x)|p"}.

(For results on regulap-groups, see [10; 25]). Thus the set of elements of or-
der less tharp® form a subgroup. This subgroup, however, may fail to contain
G’. Indeed, any non-abelign-group of exponenp must fail to have MEP. There

are non-abeliap-groups of ordep?, so necessarily regular, and of expongnt

so such groups do not have MEP. There are also groups with MEP that fail to be
regular (see below).
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Perhaps more closely related are “powerfafgroups, wheres is powerful if
G/G? is abelian. (For results on powerfptgroups, see [4].)

Lemma 3.1. If G is a finite powerfulp-group, then the set of elements of order
less thanp® form a subgroup.

Proof. Define inductivelyG; = G, G;y1 = G{’[Gi, G]. WhenG is powerful,
Giy1= Gf’ so that [G;, G] C G;.;. It thus follows thaty3(G), the third term in
the lower central series, is a subgroupG.

Now, for anyp-group,

(xy)? = xPyP[y, x]?P7V/2 (mody3(G)).

For a powerfulp-group, [y, x] € G, and so p, x]??~9/2 € G3. Thus(xy)? =
xPyP (modG3).

Thus the mapping — x?G3 induces a homomorphisgh: G/G, — G2 /G3s.
Now every normal subgroup of a powerfptgroup is itself powerful, so we can
repeat this. I{G has exponenp?, thenG, ., is trivial so that the composition —
x?tisan endomorphism af. The kernel consists of all elements of order less
thanpe®. O

CoroLLARY 3.2. If G is a powerfulp-group, thenG has MEP.

Proof. If G is powerful, therG’ ¢ G? ¢ A" YG) = {x € G | o(x)| p¢~1}. Thus
G has MEP. O

However, not all groups with MEP are powerful. Consider the following group,
the details of which are discussed in Section 6.

Go=(x,y,z|x" =y =2 =1 [x,y] =2, [x,d] =1 [y, 2] =x""),

The elements, x** lie in Gg. while G§ = (x”) so thatG is not powerful.
Note also thaGéA“l(Ga) = (x?, y, z) so thatGe has MEP. In the casp = 3,
this group also fails to be regular, as any 2-generator 3-group must have a cyclic
commutator subgroup.

LemMmA 3.3. The following classes op-groups have the Maximal Exponent
Property.

(1) Powerful p-groups, and hence abelian and metacygligroups.

(2) Groups of orderg?, p* apart from those that have expongnand are non-
abelian.

(3) Groups of exponent p2 and cyclicp-deficiency< 2.

(4) Direct sums of MEP groups.

Proof.

(1) This has already been proved (Corollary 3.2).
(2) This follows by checking the lists of such groups [2].
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(3) Groups of cyclic deficiency 0 are cyclic and those of cyclic deficiency 1 or 2
(see [9]) are described in Sections 5 and 6, from which the condition may be
verified.

(4) If G, H have MEP—treating separately the cases widgr& have the same
exponent and different exponents—the result follows easily. O

4. The Invariant oo(G) When G Has MEP

The main results of this section obtain informationayiG) for groupsG with
MEP.

Lemma 4.1. LetG actonX, (g > 2) with corresponding Fuchsian group,
whose associated data {8; x1, xo, . . ., xy} for someN < e. If G has property
My andxy # 0, thenxy > 2.

Proof. Let¢: I' — G be a smooth epimorphism defining the action and suppose
thatxy = 1. The long relation il implies thatp (cy1) € G’AY ~X(G). This con-
tradicts the property/y . O

THEOREM 4.2. LetG have exponent®. If G has MEP, thew(G) > o.(p) — 1.

Proof. Suppose thago = o.(p) — 2 = %[(e(p — 1) — 3)p¢ — 1] is a reduced
genus forG. Theng = nogo + 1 satisfies (2) and so

2g0=2p°th—1) + in(l?e —p<h. 5)
i—1

Now 2go = —1 (modp) and from (5) we have, = 1 (modp). Thus, by Lemma
4.1,x, =x,p+ p + Lwithx, > 0. Whene = 1, there is no possible solution to
(5) withx] > 0 andi > 0. From (5), sincee > 2 we obtain

1 ) e=1 ; )
3, (28020 = (P + D(p* ~ D] = PR %(p“‘l —-p ¥, (6)
i=1

wherey; = x1+ px,, yi = x; fori =2,...,e — 2, andy,_1 = x,_1+ x,. The
integer defined by (6) lies if2,_1(p). But this integer is equal to
sle—D(p—1—3pt+1].

If e = 2 andp = 3 then this expression is negative; otherwise, it is equal to
o.—1(p) — 1. Either case gives a contradiction, since by its definitign(p) — 1 ¢
Qe—l(P)- U

This result certainly does not hold for altgroupsG. We have already noted that a
non-abelian group of order® and exponeng fails to have MEP. A straightforward
calculation for such a grou@ (cf. groupG,4 in Theorem 6.1) shows that

00(G) = 3(p>—6p+3) for p>7,

which is less thaw(p) — 1.
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Now o(G) will be evaluated for the cases wheafehasrank 2—that is, when
the minimal number of generators is 2. For a finitgroup, the Frattini subgroup
®(G) = G'G? and so

®(G) C G'AYG).
WhenG has rank 2,
G/OG)=Z,8Z,.

Thus, if G has rank 2 and MEP then
G/G'NNG)=Z,0rZ,®Z,. )

Note that, in the case wheee= 1, G itself must be abelian and isomorphic to
Z,®Z,.

LemMma 4.3. LetG have MEP and ran2. ThenG can be generated by two ele-
ments of ordep¢ whose product has ordegse. In the first of the two options at
(7), G can also be generated by two elements of opgfavhose product has order
less thanp®. This cannot happen in the second option.

Proof. LetG = (a, b) andIl: G — G/G'A*"Y(G). ThenIl(a) andI1(b) cannot
both be trivial. Suppose th&i(a) is nontrivial. If [1(d) is trivial thenI1(ab) is
nontrivial andG = {a, ab). Thus assume thai (b) is nontrivial. Sincep is odd,
at least one of1(ab) andIl(a~1h) must be nontrivial.

Suppose that the first option at (7) holds. Suppose, as before[lthatand
I1(b) are nontrivial. Then there exists an integyafith I[1(»)! = I1(a) and(i, p) =
1. Now G = {a, b~%) andIl(ab~) is trivial. The last part is clear. O

If gois areduced genus f@F and ifx, # 0 in equation (5), them, > 2 if G has
MEP. This equation then yields

20g0+1) =2ph+ Y yi(p*—p) ®)
i=1

with y; = x; forl <i <e—1andy, = x, — 2. Thusgo + 1€ Q.(p).

THEOREM 4.4. If go > 1 satisfieq8) with eitherkr > 0 or y, > O, thengg is a
reduced genus fo& whenG has rank2 and MEP.

Proof. Under these conditions, the ddtg x;} wherex; = y; forl <i <e-—1
andx, = y, + 2 defines a Fuchsian grodipas at (1). By Lemma 4.3, we can let
G = (a, b) whereo(a) = o(b) = o(ab) = p°©.

If y. > 0, and sax, > 2, define a smooth epimorphisgn I' — G as follows:
¢ (ar) = ¢ (br) = Lforallk; ¢(c.a) = a, dp(c.2) = bandp(c,;) = (ab)’ for3 <
J < x.. Map all other generatoks; onto powers of:b such thatp is smooth, and
adjust the; such thati;, p) = 1 and the long relation is satisfied. Af> 0, de-
fine ¢ (a1) = ¢ (b1) = a, map other hyperbolic generators trivialy (c.1) = b’,
¢ (c.2) = b/), and map all other elliptic generators onto powers efich that the
orders are preserved. Now adjisj such that the long relation holds. O
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LEmmMmA 4.5.
(1) If p > 5andgp > 0.(p) — 1, then there is a solution t8) with eithersz > 0
ory, > 0.

(2) If p =3andgg > 0.(3), then there is a solution t(8) with eithersz > 0 or
ve > 0.

Proof. If go > o0.(p) — 1, thengy + 1 € Q.(p) and so there exist’ > 0 and
s; > 0 such that

200+ 1) =2p°h' + Y _si(p* = p). ©)
i=1
Supposé’ = s, = 0. Then

e—1

2000+ D =) si(p—p) = 20.(p).
i=1

Now, except for the case = 3, at least one; > p. For otherwise
2080+ =[e(p—1) —plp°+p =[e(p—1) —3]p° +3=20.(p),
with equality only in the casg = 3. Thus forp > 5 andgg > o.(p) — 1, or for

p = 3andgo > 0.(3), we can assume that at least ope> p. Lets; = psj/ +t,
where 0< ¢ < p ands/ > 1. Then (9) can be rewritten as

2080+ 1) =2ph+ Y yi(p* = p),
i=1
whereh = s/(p —1)/2andy; = s;forl <i <e—1andi # j,j—1 We
thus havey;_1 = s;_1+ s/, y; = t, andy. = 0, so there is a solution of (8) with
h > 0. O

The exceptional case occurs when= 3 andgo = 0.(3) — 1, in which case there
is a solution to (9) withh’ = s, = 0 and all othes; = 2. This turns out to be the
only solution of interest.

LemMma 4.6. The only solution to

(26 — 33 +3=2h3 + Y _ yi(3 —37)
i=1

with &, y; > 0 occurs wherk = y, = 0 and all othery; = 2.

Proof. The proof proceeds by induction enThe result s trivial fore = 1. When
e = 2, the equation reduces to

18h + 6y1 + 8y, = 12,

which clearly has only the solutiolh = y, = 0 andy; = 2. Now suppose the
result is true fore > 2, and consider
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e+l
(2(e +1) — 3)3e+l +3= 2h3€+l + Z yi(36+l _ 3e+l—i)'
i=1

Clearlyy.1 = 3y ;. Using 3™ — 1 = 3(3* — 3°°1) + (3¢ — 1) and dividing by
3yields

(2e —3)3° +3+2(3° — 1) = 2h3° + (y1 + 3y, (3 — 37
e—1
+ ) i =3+ (ye +y/,)@ — 1. (10)
i=2
Now y, + y,,, = 2 (mod 3 and soy, + y,., > 2. Thus, by applying the in-
ductive assumption to (10), we obtain= 0, y; + 3y, ., = 2, y; = 2 fori =
2,3,...,e—1landy.+y,, ,—2=0.Theresultnow follows for the cage-1. [J

The preceding results are gathered together in the second main result of this section
as follows.

THEOREM 4.7. LetG be a finitep-group of exponenp®. Let G have MEP and
rank 2.

(1) If p > 5thenoco(G) =o.(p) — 1.
2) If p = 3andG/G'A"X(G) = Z3, thenoo(G) = 0.(3) — 1.
() If p=3andG/G'A“"XG) = Z3® Z3, thenoo(G) = 0,(3).

Proof. If p > 5, the result follows from Theorems 4.2 and 4.4 and Lemma 4.5.
Now assume thgt = 3 ande > 2, so thato,(3) — 1 < 0¢(G) < 0.(3). Suppose
then thatgy = 0.(3) — 1. Then the only solution to (8) hdas= 0, y, = 0, and

y; = 2 for otheri, so that the only Fuchsian groupthat could correspond to an
action has signatur@; 3@, 32@ . 3°@) LetI" have presentation as at (1).

If G/G'A“"Y(G) = Z3 then, by Lemma 4.3¢G can be generated by two ele-
mentsa, b of order 3 whose product has ordef'vith m < e. We can thus de-
fine a smooth epimorphismi: ' — G by ¥(ci1) = ¥(ci2) ™t = a®>  fori #
m, e, Y(cm) = ab, Y(cmz) = (ab)™2, Y(ca) = a, andyr(c.2) = b.

If G/G'A°"Y(G) = Z3 @ Z3, then any two elements of ordef B G that gen-
erateG will have their product of order<3 by Lemma 4.3. In this case there is
clearly no smooth epimorphism frofontoG.

If p =3ande = 1thenG = Z3;® Z3ando1(3) = 0. All the preceding discus-
sion assumes that we are considering gnly 2 and sogo > 1. However, note
that in this cas& acts onX;, so the result remains true fpr=3 ande = 1. O

5. p-Groups of Cyclic Deficiency 1

Cyclic p-groups of automorphisms of compact surfaces were studied in detail in
[14]. In this section, necessary and sufficient conditions are givepoftw be a
reduced genus for the two classespefiroups ofp-cyclic deficiency 1. Details

are given for the non-abelian case, the abelian case being similar and easier. In
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the next section, the same method will be employed on more complex groups, and
there many details will be omitted (see [26]).
Let G have exponenp® so thato(G) = p¢**. For p odd, there are two classes
of p-groups of cyclic deficiency 1:
Q) Z,e®Zy:;
(2) (,y |xr = yr =1,y ey =xM) (e>2) (11)

(see e.g. [25]). For these groups = p and so, ifG acts onx,, ¢ — 1 = pgo.
Recall the general method to determine whighare reduced genera far.
From the Riemann—Hurwitz relation (2), we must have

280 =2p°(h =D+ Y xi(p* = p). (12)
i=1

From the resulting datgs; x;}, construct a Fuchsian grodpand then show that
there is a smooth epimorphisgn I' — G.

For any such daté; x3, x2, . . ., x.}, the following notation is introduced and
will be standard throughout the remainder of the paper:
0 if all x; =0,
M={e if x,#0, (13)
m if x, #0butx,;1=---=x.,=0.

Note that, from (12), we would then hayg = p¢~"gj,.

Let G be defined at (11). Itis not difficult to show that every elementafan
be uniquely expressed ay/ with0 < i < p¢and 0< j < p. Also, o(xy/) =
o(x’) wheni # 0. It follows that AN(G) = (x?"", y), which is abelian for 1<
N < e. Furthermore, the commutator subgroup is generated’by so thatG
has propertyMy for 2 < N < e. Thus, from Theorem 4.7,

00(G) = 0.(p) — L. (14)
THEOREM 5.1. Letgo > 1. Thengg is a reduced genus fag if and only if gg

satisfies(12) and the data{/; x;} satisfies at least one of the conditions in the
following table

h M XM
1) =2 =0
2 =1 =1 >1
B =1 2<M=<e—-1 =2
4 =0 =e > 2 and the RHS of12)is positive.

Proof. Assume first thag is a reduced genus fa@r. Clearly from (12), ifM =

0 thenk > 2. Since elements of order® in G cannot be products of elements of
smaller order, if 1< M < e thenh > 1 sinceg is an epimorphism. Sincé has
propertyMy for 2 < N < e, it follows from Lemma 4.1 thak,, > 2 for 2 <

M <e.
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Now suppose conversely thgg satisfies (12) and that the data satisfies one of
the conditions stated. We use the notation given at (1l famd construct a smooth
epimorphismyp: I' — G in each case.

(1) ¢(a1) = ¢(by) = x, ¢p(a2) = ¢p(b2) = y, andg(a;) = ¢(b)) = 1 for
[ >2

(2)1¢(a1) =x, ¢(b1) =y, and¢(a;) = ¢ (b)) = Lforl > 1. Also, ¢(cy,) =
X fort = 1,2,...,x1 with j, chosen such thatj,, p) = 1 and) %, j, =
—1 (modp).

() p(ay) = x, ¢p(b1) =y, and¢(a;) = ¢(b;) = 1 forl > 1. Note that

¢<j1i[aj, bj]) =xr.

Forall (i, j) # (M, 1), (M, 2), let¢(c;;) be a power of of orderp’. Finally, let
¢(cpi) = xdip ™ (i = 1, 2), wherej, j, are chosen such thgj;, p) = 1 and
the long relation is satisfied.

(4) If the RHS of (12) is positive, then eithér> 0 or I has a period differ-
ent from those generated by, c... In the first case we can defigeas in case
(3). Suppose then that= 0 and that the data gives a generatgrifferent from
ce1, ce2. For all ¢;; different from these three, lgt(c;;) be a power ofx of order
pi. Letg(cy) = lepeiky’l, o (co1) = x/2y, andg(c.2) = x/3, wherejy, jo, ja
are relatively prime tg and chosen such that the long relation is satisfied

The four conditions given in Theorem 5.1 can now be converted into conditions
on go in terms of itsp-adic expansion using the notation introduced in Section 2.

THEOREM 5.2. Letgo > 1. Thengo is a reduced genus faF if and only if either
(1) go = p°g; for somegy > 1, or

(2) g0 =p“'gpandgy — 3(p — 1) € Qu(p), or

(3) forsomel < M < e, go = p*Mgpandgy — p” + 1€ Qu(p), or

(4) go+1eQ.(p)\{O}.

Proof.

(1) This is immediate from (12).

(2) Leth’ = h —1andx; = x; — 1, so thath’ > 0 andx; > 0. From (12) we
havego = p*~g(, where

2g0— (p—1) =2ph’ + x3(p — 1) € Qu(p).

Conversely, if these conditions are satisfied then we can construct the data
{h; x;} satisfying (12).

(3) Asimilarargumentto that just given applies with= 2 —1 andx}, = xy —2.

(4) Inthis case, take, = x, — 2 to obtain

e—1

280+ 2p° = 2(p* = 1) = 2hp* + ) xi(p* — p™) +x,(p° — D).
i=1
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The condition that the RHS of (12) is positive gives that not all the coefficients
on the RHS of this last equation are zero. O

Using the description of the sy (p) given in Theorem 2.3, one can determine
the genus spectrum far. In particular, we have the following corollary.

COROLLARY 5.3. 1o(G) = 3(p* — p*~t—2).

Proof. Note that the smallest value @y (p) is 0, while the smallest nonzero
value iS%(pN — pN¥~1). The corollary then follows easily from Theorem 5.2

For the abelian groups defined previously, a similar analysis yields our next result.

THEOREM 5.4. Letgg > 1. All suchgq are reduced generafaf s @ Z3. If p¢ #
3, thengg is a reduced genus fdt ,- @ Z, if and only if either

(1) go = p°gg for somegy > 1, or
(2) forsomel < M <e—1, go= p*Mgyandgy — pM + 1€ Qu(p), or
(3) go+1eQ.(p)\{0}.

We can readily deduce that
GO(Zpe @ Zp) =0.(p) — 1
I/LO(Zp" ® Zp) = %(Pe - p%l — 2)

A simple calculation then yields the following.

COROLLARY 5.5. If G1=Zg® ZzandG, = (x,y | x°=y3 =1, yxy =
x%), thenG; and G, have the same genus spectrum. [tis-3gq | go > 2 except
go=4}.

This result shows that the genus spectrum does not determine the isomorphism
class of the group.

6. p-Groups of p-Cyclic Deficiency 2,p Odd

At the end of the preceding section, two nonisomorphic groups with identical
genus spectra were exhibited. In this section we show that this is not an isolated
example by producing, for eagh > 5 ande > 3, four nonisomorphic groups
of p-cyclic deficiency 2 with identical genus spectra (Theorem 6.1). In fact, in
the twelve isomorphism classes of such groups there exist further nonisomorphic
groups with identical genus spectra. The methods are as in the preceding section
and information on the subgroup structure of these four nonisomorphic groups is
given, but other details are omitted (cf. [26]).

If e > 3 andp > 5 then there are exactly twelve isomorphism classes-of
groups of exponeni¢ and ordep¢*2 [9]. This classification will be detailed next.
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Each such groug contains a normal subgroup of index p that is a group of
p-cyclic deficiency 1.

Case A:G is a split extension o byZ ,. In all cases can be generated by
three elements, y, z of ordersp¢, p, p respectively. Every element ¢f can be
uniquely expressed in the form

x'ylzt with 0<i < p*—1and 0<jk=<p-1

and the orders of these elements are the same as the orders of the corresponding

elements of the abelian grodp- ® Z, ® Z,,. There are seven classes of groups;

the additional relations that the generators must satisfy, in addition to having orders

p¢, p, p, are

(G [x.y]l=1[y. 2] =[z.x] =L

(G2 [xy] =2 v =[y.d =1

(Ga) [x, ] =[x, =1 [y, =x""";

(Ga) [xy] =z [x. o] =[y. 2l =L

Gs) [x, ] =z, [x, g =x""", [y, 2] = L;

(Go) [x,y] =z [x,2] =1 [y, e] =x";

(G?) [x,y] =z, [x, 21 =1, [v,7] = X", wherer is a guadratic nonresidue
modp.

Note thatG,, G,, G3 have rank 3, while the remainder have rank 2.

Case B:G is a nonsplit extension aff by Z ,. In this case5 can be generated
by two elements;, y of ordersp¢, p? respectively. Every element @t can be
uniquely expressed in the form

x'y/ with 0<i<p®—1and 0<j < p?—1,

and the orders of the elements are the same as the orders of the corresponding
elements in the abelian grod,c © Z 2.
There are five such classes of groups, which satisfy the additional relations:

(Gg) [x,y] =1, )
(Go) [x,y] =x";
(G1o) [x,y] = 27",
(G1p) [x,y] =y , )
(G12) [x,y] = x7""yP, [x, yP] = x" .

Notes. (1) Fore = 3, Gy1g is isomorphic taG1o.
(2) In the presentation a¥,, given in [9], the second listed equality is omitted.
That relation does not seem to be a consequence of the others.

The underlying method of obtaining the necessary and sufficient conditiopg for

to be a reduced genus for each of these groups is similar to that given in Section
5 for the non-abeliap-group, p odd, of cyclic deficiency 1. Thus one must de-
termine the subgroupS’ and A¥(G) for eachN in order to determine for which
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values ofN the group has propert¥fy, 1 < N < e (see Section 4). All these
groups have MEP and so satisfy(G) > o.(p) — 1 by Theorem 4.2; for those of
rank 2,00(G) = o.(p) — 1 by Theorem 4.7p > 5).

For each of these groupsy = p? and sog — 1 = p2go with

280 =2p°(h =D+ > xi(p* = p). (15)
i=1

As in Section 5, the necessary and sufficient conditions ghdite a reduced
genus forG are thatgg satisfy (15) for some datgh; x;} satisfying certain condi-
tions (cf. Theorem 5.1) expressed in terms of inequalitiek,on, M. These con-
ditions can, in turn, be translated into number-theoretic conditiong @mterms
of the divisibility by powers ofp and its truncategh-adic expansion via the sets
Qu(p) (see Section 2 and Theorems 5.2 and 5.4).

THEOREM 6.1. The groupsG,, Gs, Gg, G7 have the same genus spectrum.

Proof. As noted previously, each element in each of these groups can be uniquely
expressed in the formiy/zk, with 0 < i < p* -1, 0 < j k < p — 1,

and o(x'y’z*) = o(x''y"z’*) wherex’, y’, 7/ are the canonical generators of
Z, ®Z,® Z, From the foregoing presentations, it is straightforward to ob-
tain that

e—1

Gy=(2), Gi=(x" ,z2), i=586T

=z

AVG) = (xP"",y,z) for 1<N <e—1
It thus follows that eacldér has propertyy for 2 < N < e. Thus, as in Theorem
5.1, one deduces thagp is a reduced genus fa@¥ if and only if go satisfies (15)
and the datdh; x;} satisfies at least one of the following conditions:

h M Xy
1) =2 =0
(2 =1 =1 >1
B >1 2<M<e—-1 >2
4 =0 =e > 2 and the RHS of (15) is positive.

Because they are identical for each of the four groups and each group has the same
exponent, these conditions translate into identical number-theoretic conditions on
go in order thatgo be a reduced genus (cf. Theorem 5.2). The result follovis.

REMARK. A similar analysis on the other groups (cf. [26]) yields

(i) G,andGjs have the same genus spectrum,
(i) Gg¢andGii have the same genus spectrum,
(iii) Gi1pandGi, have the same genus spectrum.
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7. Elementary Abelian p-Groups, p Odd

All groups of p-cyclic deficiency< 2 have MEP. Hence, for these groups that also
have rank 2, it follows from Theorem 4.7 th&$(G) = o.(p) — 1. It can also be
shown thateven when the rank is3(G) = o.(p) —1, sothatin allthese casesthe
minimum stable reduced genus depends only on the exponent. Inthis section it will
be shown that, for elementary abeliargroups oo(G) grows with the rank o6.
LetG = Z’;,. ThusG has cyclicp-deficiencyk — 1, and the signature of a can-
didiate Fuchsian group has the foti p™). Such a group is denoted by x, /)
with (x, #) belonging to the latticd. = N x N. Let f(x, h) be the function
defined by
p—1
2

so that, if there is a smooth epimorphigmI'(x, h) — Z’;,, then the correspond-
ing reduced genugy = f(x, h) — p. This holds for allk > 1.
We use a geometric approach to investigate the genus spectrum of these groups
and introduce some new notation:
S(G) = {(x, h) € L | 3 a smooth epimorphismp: I'(x, ) — G }.

Now, if I' = I'(x, h) then

f(x,h) =( )x+ph

12

r { Zi” if x=0,
2n 2h+x—-1 ;

rer z2mt if x 0.

Also, I'’T" is torsion-free if and only ifc # 1. The next lemma follows readily.

LemMMA 7.1. LetG = Z%. Then(x, h) € S(G) if and only if:
(a) kisodd, andx + 2k > k + 1 withx £ 1; or
(b) kiseven,and + 2k > k + 1 withx # 1or (x, h) = (0, k/2).

RemARk. Note thatthe cyclic groups, actonthe sphere and the groupsbZ,
act on the torus. However, our initial assumption thaixceed unity rules these
cases out, so that small modifications must be made to Lemma 7.1 for these cases:
If kK = 1 then we require that + 2k > 3 with x # 1, and ifk = 2 then we ex-
clude the possibility0, 1). Corresponding modifications are required in some of
the following statements also.

ThusS(G) consists of all lattice points above L1 with the exceptioh df, /) :
h > 0}, together with the point0, k/2) whenk is even (see Figure 1). The level
curves of the functiorf have slope-(p —1)/2p, and L2 and L3 are level curves.
Thus

fle+1,00—p=(k+D(p—1/2—p kodd

ky
Ho(Z,) = { min{ f(k +1,0) — p, £(0,k/2) — p} teven 1O

From this we obtain
k+(p-1/2—p if p<k+1,

“O(G)Z{kp/z—p if p>k+1 (@7
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(0, (k+1)/2)

Ll
L2
0, k/2)

L3

(k+1,0) x

Figure 1

Let I(G) denote the gap sequence @r
THEOREM 7.2. I(Z’;) =1(Z,)N [Mo(Z],‘,), 00).

Proof. Consider first the case whepe< k+ 1. ThusI(Z’]‘,) ={go| go+ pisnot
the value of a level curve through a pointhfZ’;) }. Now, if U is the set of lat-
tice points above L2 with the exception ¢t1,4) : & > 0}, thenI(Z,) N
[1o(G), 00) = {go | go+ p is not the value of a level curve through a point of
U}. ThusI(Z%) D I(Z,) N [po(Z4), 00).

Now consider the triangle bounded by the lines L1, L2 anditlagis. Suppose
(x, h) lies inside this triangle. Then+ 2k < k+ 1 andx +2h +2h/(p —1) >
k+ 1 Thush > (p—21)/2.Leth =q(p —1)/2+r, whereO0<r < (p —1)/2.
Thenf(x,h) = f(x +¢q,r)and(x +q,r) € S(Z’;). Thus

I(Z}) = 1(Z,) N [po(Z}), o0).

For the cases where > k + 1, a similar argument applies. We need to con-
sider the triangle bounded by the lines L1, L 3 anditkeis. Thus considdx, &)
such thatc + 24 < k andx(p — 1)/2 + ph > pk/2. It follows that pk = x >
(p —Vx+2ph > pk. The only solution isx = 0, & = k/2, and the result again
follows. O

COROLLARY 7.3.
(1) I(Z’;) = ¢ if and only ifk > p — 1. In these casesro(Z}) = pno(Zh) =

(k+1(p—-1/2—p.
(2) If k < p—1thenoo(ZX) = 00(Z,) = 3[p(p — 4 + 1.

Proof. By Theorem 7.2/(Z%) = ¢ if and only if 00(Z ;) < 110(Z%). Both parts
of the corollary then follow by a direct computation. O
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