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Let X be anm × n matrix (m ≤ n) of indeterminates over a fieldK of positive
characteristic, and denote the ideal generated by itst-minors byIt . We show that
the Rees ringR(It ) ofK[X], as well as the algebraAt generated by thet-minors,
areF-rational if charK > min(t, m − t). Without a restriction on characteristic
this holds forK[X]/Ir+1 and the symbolic Rees ringRs(It ). The determinantal
ringK[X]/Ir+1 is actuallyF-regular, as was previously proved by Hochster and
Huneke [13] and Conca and Herzog [5] through different approaches.

Our main tool is the filtration induced by the straightening law. The associ-
ated graded ring with respect to this filtration is typically given by a Segre prod-
uctK[H ] #Nm F(X), whereH is a normal semigroup representing the weights of
the standard bitableaux present in the object under consideration,Nm represents
all the possible weights, andF(X) parameterizes the set of standard bitableaux of
K[X]. The ringF(X) itself is the Segre productF1(X)#Nm F2(X), whereF1(X)

(resp.F2(X)) are the coordinate rings of the flag varieties associated withX (resp.
the transpose ofX).

We prove thatF(X) is F-regular. Normal semigroup rings are alsoF-regular
since they are direct summands of polynomial rings. Furthermore,F-regularity
is inherited by Segre products, andF-rationality is preserved under deformations.
Hence a ring with an associated graded ring of typeK[H ] #Nm F(X) is (at least)
F-rational. This applies especially toK[X]/Ir+1,R(It ), andAt .

The results and the method of this paper are a variant of the method applied by
Bruns [1] in characteristic 0, whereF-rationality is to be replaced by the property
of having rational singularities. By a theorem of Smith [15], our results in positive
characteristic actually imply those previously obtained in characteristic 0.

1. The Filtration Induced by the Straightening Law

In this section we discuss the filtration onK[X] induced by the straightening law
and identify its associated graded ring. The filtration was first described by De
Concini, Eisenbud, and Procesi [7]. We use the language of Young tableaux; for
unexplained terminology the reader is referred to Bruns and Vetter [4, Sec. 11].
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In order to simplify notation we assume in the following that them × n ma-
trix X of indeterminates has at least as many columns as rows. Let(6 | T) be a
bitableau withu rows. Itsshapeis the sequencer1, . . . , ru of its row lengths. We
define itsweightby w(6 | T) = (w1, . . . , wm) wherewi = |{ j : rj = i }|. The
weights of the bitableaux therefore correspond bijectively to the elements of the
semigroupNm. It is clear that the shape of(6 | T) depends only on its weight.
Therefore, givenw ∈Nm, we may set

γt = γt (w) = γt (r1, . . . , ru) =
u∑
i=1

(ri − t + 1)+,

where(a)+ = max{a,0}. The collection of the functionsγt defines a partial order
� on the semigroupNm by

w � w ′ ⇐⇒ γt (w) ≤ γt (w ′), t = 1, . . . , m.

Bitableaux with ascending rows correspond bijectively to products of minors if
one interprets the entries of the left tableau as row indices and those of the right
tableau as column indices. The functionsγt can therefore be applied to products
of minors. Standard bitableaux represent standard monomials of minors.

Let Jw be theK-subspace ofK[X] generated by all standard bitableaux of
weightw ′ � w, and letJ�w be generated by those of weightw ′ � w. We quote
the straightening law onK[X] as given in [7]; see also [4, 11.3].

Theorem 1.1. Let (6 | T) be a bitableau of weightw, and let4w be the initial
tableau of weightw. Then(6 | 4w) and (4w | T) have standard representations

(6 | 4w) =
∑
i

ai(6i | 4w) and (4w | T) =
∑
j

bj(4w | Tj )

for ai, bj ∈K. Furthermore,(6 | T) ≡∑ i,j aibj(6i | Tj )modJ�w .

TheK-vector subspacesJw are in fact ideals ofK[X]. This follows easily from
Theorem 1.1. (Furthermore,Jw =

⋂
I
(γt (w))
t ;we will discuss the symbolic powers

I
(u)
t in what follows.)

It will be useful to consider filtrations that are more general than those parame-
terized by the semigroupN of natural numbers with its natural partial order. Let
H be an additive semigroup with partial order≤ (which is, of course, supposed
to be monotone with respect to addition). Then an(H,≤)-filtration on a ringR
is a familyF = (Jh)h∈H of idealsJh satisfying the conditionsJgJh ⊂ Jg+h for
all g, h ∈ H andJg ⊂ Jh for all g, h ∈ H with g ≤ h. We define the associated
graded ring by

grF R =
⊕
g∈H

Jg

J>g
, J>g =

∑
h>g

Jh.

With its natural multiplication, grF R is anH -graded ring. However, note that we
can speak of the leading form of an elementx ∈ R only if there exists a unique
g ∈H with x ∈ Jg \ J>g .
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The semigroupNm of weights is partially ordered by�; as we shall see, Theo-
rem 1.1 gives us the associatedNm-graded ring. LetF1(X) denote the subalgebra
of K[X] generated by all tableaux(4w | T) andF2(X) the subalgebra generated
by the tableaux(6 | 4w). ThenF1(X) andF2(X) are multihomogeneous coordi-
nate rings of flag varieties, and it follows immediately from Theorem 1.1 that they
are sub-ASLs ofK[X] in a natural way. (See [4] for the notion of ASL.) Moreover,
they areNm-gradedK-algebras whose homogeneous elements of multidegreew

are the linear combinations of standard bitableaux of weightw. By

F(X) = F1(X)#Nm F2(X) =
⊕
w∈Nm

F1(X)w ⊗K F2(X)w

we denote their Segre product (asNm-gradedK-algebras).
Let S denote the(Nm,�)-filtration (Jw)w∈N. Since we want to use some the-

orems that are available only forN-filtrations (or could at best be formulated for
Nm with its product partial order), we coarsen the filtrationS. Let

λ(w) =
m∑
i=1

wi and Jj =
∑
λ(w)≥j

Jw;

then we may also consider the associated graded ring ofK[X] with respect to the
N-filtration T = (Jj ).
Theorem 1.2. grT K[X] ∼= grS K[X] ∼= F(X).
Proof. The polynomial ringK[X] has aK-basis given by the set of standard mono-
mials. The idealsJw andJj are spanned overK by subsets of the standard ba-
sis, and the filtrations are separated. Therefore grT K[X] and grS K[X] are iso-
morphic toK[X] as gradedK-vector spaces, where in both cases the isomorphism
maps a linear combination of standard monomials inK[X] to the same linear com-
bination of the initial forms of the standard monomials. (Note that a product of
minors has an initial form in grS K[X].)

Let ∗ denote leading forms with respect toS. It follows easily from the def-
inition of weight that(δ1 · · · δs)∗ = δ∗1 · · · δ∗s for all minors δ1, . . . , δs of X. In
conjunction with the fact that the leading forms of the standard monomials form
aK-basis, it is clear that the productsδ∗1 · · · δ∗s with δ1 ≤ . . . ≤ δs constitute a
K-basis of grS K[X]. Passing to leading forms in Theorem 1.1, we obviously ob-
tain a straightening law on grS K[X] that makes it an ASL overK. Furthermore
Theorem 1.1 shows that the straightening law coincides with that ofF(X).

The very same arguments apply to grT K[X]. Additionally one need only no-
tice thatw ≺ w ′ impliesλ(w) < λ(w ′). (It follows that grT K[X] has anNm-
gradation that refines itsN-gradation.)

2. F-Regularity of Flag Varieties

In the sequel we will apply the following theorems of tight closure theory;R is
always supposed to be a Noetherian ring of characteristicp.
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(TC1) R regular⇒ R F -regular⇒ R weaklyF -regular⇒ R F -rational⇒ R

normal and Cohen–Macaulay (providedR is a homomorphic image of a
Cohen–Macaulay ring) (Hochster and Huneke [12, (3.4), (4.2)]).

(TC2) A direct summandS of a F-regular ringR is F-regular (Hochster and
Huneke [11, (4.12)]). (We say that a ringS is adirect summandof a ring
T if there exists an injective ring homomorphismϕ : S → T such that
ϕ(S) is a directS-module summand ofT .)

(TC3) If the associated graded ring ofR with respect to a separatedN-filtration
is F-rational, thenR is F-rational (Conca, Herzog, and Valla [6, 2.3]).

(TC4) A GorensteinF-rational ring isF-regular [12, (4.7)].
(TC5) If an excellent ringR is F-regular, then so isR [X] [12, (7.31)].
(TC6) LetR0 andS0 be finitely generatedZ-algebras such thatR0 ⊗Z K and

S0⊗ZK are weaklyF-regular for all fieldsK.Then(R0⊗ZK)⊗K(S0⊗ZK)
is weaklyF-regular for all fieldsK. (This follows immediately from [12,
(7.45)].)

It is important for us that theK-algebraF(X) is F-regular. We first prove an
auxiliary result about subalgebras of the homogeneous coordinate ringG(X)of the
Grassmannian variety ofm-dimensional vector subspaces ofKn. As aK-algebra,
G(X) is generated by them-minors ofX. These form a distributive lattice0(X)
on whichG(X) is an ASL.

Proposition 2.1. Suppose thatK is a field of characteristicp > 0. Let3 be a
subset of0(X) for which the subalgebraK[3] ofG(X) is a sub-ASL ofG(X).
Then3 is a sublattice andK[3] is F-rational.

Proof. According to Sturmfels [16, 3.2.9], the initial algebra inτ (G(X)) with re-
spect to a diagonal term order is generated by the diagonal monomials of the max-
imal minors. (We refer the reader to Eisenbud [8] for term orders and related no-
tions.) This is not hard (to prove and) to generalize. In fact, ifδ = δ1 · · · δs is a
standard monomial of maximal minors, then inτ (δ) is just the product of the diag-
onal monomials of theδi andδ can obviously be reconstructed from inτ (δ). It fol-
lows that there is no cancellation of initial terms in linear combinations of standard
monomials, and therefore inτ (K[3]) is generated by the diagonal monomials of
the elements of3.

Letµ andλ be incomparable elements of3. The only possibility for the prod-
uct of their diagonals to occur on the right-hand side of the straightening relation
is through the product(λuµ)(λtµ). (By u andtwe denote the lattice operations
in 0(X).) Hence this product must appear on the right-hand side with coefficient
1. In particular it follows that3 is a sublattice of0(X).

For each distributive lattice(L,t,u), theK-algebra

AL = K[Xl : l ∈L]
/
(XkXl −Xku lXkt l , k, l ∈L)

is an affine normal semigroup ring (Hibi [10]). The equations definingA3 hold
for the initial monomials of the maximal minorsλ ∈ 3 as well. We thus have a
surjective homomorphismAL → inτ (K[3]). It is in fact an isomorphism, since
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the Hilbert functions ofA3, K[3], and inτ (K[3]) coincide. This holds forA3
andK[3] since they are ASLs on isomorphic graded posets, and it holds forK[3]
and inτ (K[3]) by the general properties of the initial algebra.

Thus inτ (K[3]) is a normal affine semigroup ring. That makes it a direct sum-
mand of a polynomial ring overK (see e.g. Bruns and Herzog [3, 6.1.10]) and
so it isF-regular by (TC2) and especiallyF-rational. By (TC3),K[3] is also
F-rational.

Theorem 2.2. Suppose thatK is a field of characteristicp > 0. Then theK-
algebrasF1(X), F2(X), F1(X)⊗K F2(X), andF(X), as well as their polynomial
extensions, areF-regular.

Proof. Let X̃ be am × (n + m) matrix. Then one has a “natural” surjective ho-
momorphismG(X̃)→ K[X] whose kernel is generated byε ± 1, whereε is the
maximal element of0(X̃) (see [4, Sec. 4]). Under this homomorphism, the par-
tially ordered set1(X) of minors ofX corresponds bijectively to the partially or-
dered set0(X̃) \ {ε}. Let3 be the subset of0(X̃) corresponding to the poset of
minors generatingF1(X). Then it is not hard to see that3 indeed satisfies the hy-
pothesis of Proposition 2.1. In fact, the straightening law inK[X] is derived from
that inG(X̃) by substituting±1 for ε. Because all terms in the straightening rela-
tions ofF1(X) have two factors, such a substitution cannot occur when one goes
fromK[3] to F1(X); in other words,K[3] ∩ (ε ± 1) = 0. It follows thatF1(X)

is isomorphic toK[3] and is thereforeF-rational.
Let U be the group of unipotent lower triangularm × m matrices. A matrix

M ∈U acts onK[X] by the substitutionX 7→MX. The ring of invariantsK[X]U

is justF1(X), as follows immediately from [4, 11.6]. SinceU is a connected alge-
braic group without nontrivial characters,F1(X) is a factorialK-algebra (see e.g.
[4, 6.5.5]); furthermore, it is Cohen–Macaulay (as follows for example from the
F-rationality) and is therefore Gorenstein. SuchF-rational algebras areF-regular
(TC4). The same argument applies toF2(X).

Note that the ASLsF1(X) andF2(X) can be defined overZ. Therefore (TC6)
implies that their tensor product is weaklyF-regular. Since it is also factorial,F-
regularity is guaranteed by (TC4).

The Segre productF(X) is a direct summand of the tensor product. Thus it
is F-regular, too. The assertion on polynomial extensions follows at once from
(TC5).

3. F-Rationality of Determinantal Rings and Their Rees Rings

Before turning to the investigation of Rees rings, we draw a consequence of
Theorem 2.2 for the determinantal ringsK[X]/Ir+1 (previously proved by Hoch-
ster and Huneke [13, (7.14)] and, as part of more general results, by Glassbrenner
and Smith [9] and Conca and Herzog [5, 5.2] through different approaches).

Theorem 3.1. LetK be a field of characteristicp > 0. ThenK[X]/Ir+1 is F-
regular.
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Proof. The standard basis ofR = K[X]/Ir+1 is given by the standard bitableaux
(which now represent residue classes of products of minors) with at mostr columns.
The filtration induced byS onR is effectively an(Nr ,�)-filtration, and the asso-
ciated graded ring isF1(X

′)#F2(X
′′), whereX′ consists of the firstr rows ofX

andX′′ consists of the firstr columns. The same holds for the filtration induced
by T . Statement (TC3) thus implies thatR is F-rational.

If X is a square matrix, thenR is Gorenstein by a theorem of Svanes (see e.g.
[3, 7.3.5]) and hence isF-regular. In the general case it is enough to note thatR

is a direct summand of̃R = K[X]/Ir+1(X̃), whereX̃ is an×nmatrix of indeter-
minates. In fact, one obviously has a sequenceR→ R̃→ R whose composition
is the identity.

In the following we want to apply a filtration argument to a Rees ring, an object
that itself is defined in terms of a filtration. Given anN-filtration G = (Ii) on a
ring R, we setR(G, R) = ⊕

i∈N IiT
i . Let (H,≤) be a partially ordered semi-

group, and letF = (Jh) be an(H,≤)-filtration. Then we can define filtrations
(J̃h) and(Ĩi) onR(G, R) and grF R (respectively) by setting

J̃h =
⊕
i∈N

Ii ∩ Jh and Ĩi =
⊕
h∈H

Jh ∩ (Ii + J>h )
J>h

.

We again denote these filtrations byF andG, respectively.

Lemma 3.2. Let R be a ring (a K-algebra), and letF = (Jh)h∈H and G =
(Ii)i∈N be filtrations onR. ThengrF (R(G, R)) andR(G,grF R) are isomorphic
as bigraded rings(K-algebras).

Proof. The bidegree(h, i) component of grF (R(G, R)) is (Ii ∩ Jh)/(Ii ∩ J>h ),
and the corresponding component ofR(G,grF R) is

Jh ∩ (Ii + J>h )
J>h

∼= (Jh ∩ Ii)+ J>h
J>h

∼= Jh ∩ Ii
J>h ∩ Ii

.

Thus the two objects are naturally isomorphic as abelian groups(K-vector spaces).
It is easily verified that the isomorphism respects multiplication.

In the cases of interest, grF R is aNm-graded ring, and the ideals forming the fil-
trationG can be defined in terms of the filtrationF . Then the algebraR(G,grF R)
can be further analyzed: it is the Segre product of a Rees algebra of a semigroup
ring with grF R.

LetH be a semigroup, and letH = (Hi)i∈N be a filtration ofH by idealsHi

(i.e.,Hi +H ⊂ Hi andHi +Hj ⊂ Hi+j for all i, j). Then we also denote the fil-
tration(HiK[H ])i∈N of K[H ] byH. ObviouslyR(H,K[H ]) is itselfH -graded
in a natural way:

R(H,K[H ])h =
⊕

(h,i) : h∈Hi
KXhT i.
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Furthermore it is a semigroup ring:R(H,K[H ]) ∼= K[R(H, H )], where

R(H, H ) =
⋃
i

{ (h, i) : h∈Hi }

is theRees semigroupof H with respect to the filtrationH.
As before, let(H,≤) be a partially ordered semigroup with filtration(Hi)i∈N

and letR be a ring with an(H,≤)-filtrationF .We define a filtrationG = (Ii)i∈N
on R by puttingIi =

⊕
h∈Hi Rh. With these hypotheses, the following lemma

holds.

Lemma 3.3. grF (R(G, R)) ∼= R(G,grF R)) ∼= R(H,K[H ])#H (grF R).

Proof. The first isomorphism is given by Lemma 3.2, and the second follows eas-
ily if one writes out the decomposition ofR(G,grF R) as the direct sum of its
(N×H )-graded components:

R(G,grF R) =
⊕
i∈N

⊕
h∈Hi

(grF R)hT i;

R(H,K[H ])#H grF R has the same decomposition.

We now return to the polynomial ring, its determinantal ideals, the(Nm,�)-
filtration S, and itsN-coarseningT .
Theorem 3.4. SupposeK is a field of characteristicp > 0, letH = (Hi)i∈N be
a filtration of Nm, and define the filtrationG = (Ii) of K[X] by Ii =

∑
w∈Hi Jw.

Suppose thatR(H,K[Nm]) is a finitely generated normalK-algebra. Then the
Rees algebraR(G,K[X]) isF-rational and therefore a normal Cohen–Macaulay
K-algebra.

Proof. Extending the filtrationsS andT toR(G,K[X]), we obtain isomorphic
K-algebras grS R(G,K[X]) and grT R(G,K[X]). This follows from the same
argument as Theorem 1.2. It is therefore enough to show theF-rationality of
grS R(G,K[X]). By virtue of Lemma 3.3 it is isomorphic to the Segre product
of S = R(H,K[Nm]) with F(X). The Segre product is a direct summand of
S⊗K F(X). By hypothesis,S is a normal affine semigroup ring and therefore a di-
rect summand of a polynomial ring overK.Altogether this shows thatS #Nm F(X)
is a direct summand of a polynomial extension ofF(X); it is thereforeF-regular
in view of Theorem 2.2.

Corollary 3.5. The symbolic Rees algebraRs(It ) =
⊕∞

i=0 I
(i)
t T

i of K[X]
with respect to the idealIt isF-rational. The same holds for the “ordinary” Rees
algebraR(It ) =

⊕∞
i=0 I

i
t T

i if charK > min(t, m− t).
Proof. Letλ1, . . . , λu be linear forms with nonnegative coefficients onQm. Then
the filtrationH = (Hi)i∈N with Hi = { z ∈Nm : λj(z) ≥ i, i = 1, . . . , u } satis-
fies the hypothesis of Theorem 3.4. In fact,R(H,Nm) is the subsemigroup̃H of
Nm+1 consisting of allz ′ ∈Nm+1 such that
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λi(z
′
1, . . . , z

′
m) ≥ z ′m+1, i = 1, . . . , u.

It is normal and finitely generated since it is the intersection ofZm+1 with finitely
many rational halfspaces (see [3, 6.1]).

For the symbolic Rees algebra we setu = 1 andλ1 = γt . Then the result fol-
lows sinceI (i)t is spanned as aK-vector space by all standard bitableaux(6 | T)
with γt (6 | T) ≥ i.

For the ordinary Rees algebra we setu = t andλi = γi/(t − i + 1) for i =
1, . . . , t. The idealsI it have the primary decomposition

I it =
t⋂

j=1

I
(i(t−j+1)
j

if charK = 0 or charK > min(t, m − t) (see [7] and [4]). In other words,I it is
spanned as aK-vector space by all standard bitableaux(6 | T) with γj(6 | T) ≥
i(t − j + 1) for j = 1, . . . , t.

Remarks 3.6. (a) One can replace the polynomial ringK[X] by a residue class
ring K[X]/Ir+1 and modify all the data accordingly. The proof of Theorem 3.1
shows that no essential changes happen on the level of the associated graded rings,
and Theorem 3.4 and Corollary 3.5 remain true after this adaptation to the more
general situation. In particular, the (symbolic) Rees algebra ofK[X]/Ir+1 with re-
spect toIt/Ir+1 is F-rational. (Such a relative version is also available for Propo-
sition 3.7.)

(b) It follows easily from Corollary 3.5 that the associated graded ring grIt K[X]
is Cohen–Macaulay if charK > min(t, m− t).

(c) The idealsJw are stable under the GL(m,K) × GL(n,K) action onK[X]
(see [4, Sec. 11]). Hence this action can be naturally extended to the Rees algebra
R(G,K[X]) of Theorem 3.4. One sees easily thatR(H,K[Nm]) is isomorphic
to its ring ofU-invariants, so we have deduced theF-rationality of the Rees alge-
bra from theF-regularity of its ring ofU-invariants in a manner similar to the case
of characteristic 0 treated in [1]. (HereU must be chosen as the direct product of
the group of unipotent lower triangularm×m matrices and that of the unipotent
upper triangularn× n matrices.)

(d) The assertions about theF-rationality of the Rees rings can also be derived
from the structure of the initial algebras that we have investigated in [2].

Our final result concerns the algebra generated by thet-minors.

Proposition 3.7. LetK be a field of characteristicp > min(m,m − t). Then
the subalgebraAt of K[X] generated by thet-minors isF-rational and therefore
a normal Cohen–Macaulay ring.

Proof. Let G andU denote the restrictions ofS andT (respectively) toAt . Then
one sees easily that grU At ∼= grG At ∼= K[H ] # F(X), whereH is the subsemi-
group ofNm consisting of the weightsw such that a bitableau of weightw belongs
toAt . It is not hard to show thatH is a normal semigroup.
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