F-Rationality of Determinantal Rings
and Their Rees Rings

WINFRIED BRUNS & ALDO CONCA

Let X be anm x n matrix (im < n) of indeterminates over a field of positive
characteristic, and denote the ideal generated byrisors byl,. We show that
the Reesrin@R (1,) of K[X], as well as the algebr4, generated by theminors,

are F-rational if charK > min(z, m — ). Without a restriction on characteristic
this holds forK[X]/I,+1 and the symbolic Rees rir§°(1;). The determinantal
ring K[X]/I,1 is actually F-regular, as was previously proved by Hochster and
Huneke [13] and Conca and Herzog [5] through different approaches.

Our main tool is the filtration induced by the straightening law. The associ-
ated graded ring with respect to this filtration is typically given by a Segre prod-
uct K[H]#n» F(X), whereH is a normal semigroup representing the weights of
the standard bitableaux present in the object under considerBifiorgpresents
all the possible weights, anfd( X ) parameterizes the set of standard bitableaux of
K[X]. Thering F(X) itself is the Segre produdt (X ) #y» F2(X), whereF1(X)
(resp.F»(X)) are the coordinate rings of the flag varieties associatedXv{tiesp.
the transpose aof).

We prove thatF'(X) is F-regular. Normal semigroup rings are alBeregular
since they are direct summands of polynomial rings. Furthermoregularity
is inherited by Segre products, aRerationality is preserved under deformations.
Hence a ring with an associated graded ring of tijé/] #n» F(X) is (at least)
F-rational. This applies especially #6[ X] /1,11, R(I;), andA;.

The results and the method of this paper are a variant of the method applied by
Bruns [1] in characteristic,vhere F-rationality is to be replaced by the property
of having rational singularities. By a theorem of Smith [15], our results in positive
characteristic actually imply those previously obtained in characteristic 0

1. The Filtration Induced by the Straightening Law

In this section we discuss the filtration &f{ X] induced by the straightening law
and identify its associated graded ring. The filtration was first described by De
Concini, Eisenbud, and Procesi [7]. We use the language of Young tableaux; for
unexplained terminology the reader is referred to Bruns and Vetter [4, Sec. 11].

Received January 17, 1997.

The visit of the first author to the University of Genova that made this paper possible was supported
by the Vigoni program of the DAAD and the CRUI.

Michigan Math. J. 45 (1998).

291



292 WINFRIED BRUNS & ALDO CONCA

In order to simplify notation we assume in the following that the<x n ma-
trix X of indeterminates has at least as many columns as rows:3Lefl) be a
bitableau withu rows. Itsshapes the sequence, . . ., r, of its row lengths. We
define itsweightby w(X | T) = (wa, ..., w,,) Wherew; = [{j : r; =i }|. The
weights of the bitableaux therefore correspond bijectively to the elements of the
semigroupN™. It is clear that the shape @& | T) depends only on its weight.
Therefore, giverw € N, we may set

vi=yi(w) =y, ....1) = Z(ri —t+1,,
i=1
where(a); = maxa, 0}. The collection of the functiong, defines a partial order
=< on the semigroupi” by

w=w e yw <yw), t=1,...,m.

Bitableaux with ascending rows correspond bijectively to products of minors if
one interprets the entries of the left tableau as row indices and those of the right
tableau as column indices. The functignscan therefore be applied to products
of minors. Standard bitableaux represent standard monomials of minors.

Let J, be theK-subspace oK [X] generated by all standard bitableaux of
weightw’ > w, and letJ be generated by those of weight > w. We quote
the straightening law oK [ X] as given in [7]; see also [4, 11.3].

THeoreEM 1.1. Let(Z | T) be a bitableau of weight, and letE,, be the initial
tableau of weightv. Then(Z | E,) and (E,, | T) have standard representations

(T 8w =Y ai(Zi | By) and (By | T)=) bi(Ey|T)
i J

fora;, b; € K. Furthermore(X | T) = Zi_j aibj(%; | T;) modJ; .

The K-vector subspaces, are in fact ideals oK [X]. This follows easily from
Theorem 1.1. (Furthermorg, = () 1"*™”; we will discuss the symbolic powers
1™ in what follows.)

It will be useful to consider filtrations that are more general than those parame-
terized by the semigroull of natural numbers with its natural partial order. Let
H be an additive semigroup with partial order(which is, of course, supposed
to be monotone with respect to addition). Then(ah <)-filtration on a ringR
is a family F = (Jn)nen Of idealsJ, satisfying the conditiond, J, C J,4; for
allg,h e HandJ, C J, forall g, h € H with g < h. We define the associated

graded ring by
J >
gr;R:@]—i, Jg = E Jh.

geH "8 h>g

With its natural multiplication, g¢ R is anH-graded ring. However, note that we
can speak of the leading form of an element R only if there exists a unique
geHwithx e J,\ J; .
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The semigroupN™ of weights is partially ordered by; as we shall see, Theo-

rem 1.1 gives us the associafsti-graded ring. Le#;(X) denote the subalgebra

of K[X] generated by all tableawe,, | T) and F»>(X) the subalgebra generated
by the tableauxx | €,). ThenFy(X) andF»(X) are multihomogeneous coordi-
nate rings of flag varieties, and it follows immediately from Theorem 1.1 that they
are sub-ASLs oK [ X]in a natural way. (See [4] for the notion of ASL.) Moreover,
they areN"-gradedK-algebras whose homogeneous elements of multidagree
are the linear combinations of standard bitableaux of weaighy

F(X) = Fi(X) #hun F2(X) = @ Fu(X)w ®k F2(X)u
weN™
we denote their Segre product (8% -gradedk-algebras).
Let S denote thgN™, <)-filtration (J,,),en. Since we want to use some the-
orems that are available only fd¥-filtrations (or could at best be formulated for
N™ with its product partial order), we coarsen the filtrat®nLet

A(w):iwi and J; = Z Ju:
i=1

Mw)=j

then we may also consider the associated graded rikg] &f with respect to the
N-filtration 7" = (J;).

THEOREM 1.2. g K[X] = grs K[X] = F(X).

Proof. The polynomial ringk [ X] has akK-basis given by the set of standard mono-
mials. The ideals/,, and J; are spanned ovek by subsets of the standard ba-
sis, and the filtrations are separated. TherefoyelgfX] and grs K[X] are iso-
morphic toK [ X] as graded-vector spaces, where in both cases the isomorphism
maps a linear combination of standard monomial§ jix ] to the same linear com-
bination of the initial forms of the standard monomials. (Note that a product of
minors has an initial form in grK[X].)

Let * denote leading forms with respect £ It follows easily from the def-
inition of weight that(é,---é,)* = 687 ---6; for all minorséy, ..., 5 of X. In
conjunction with the fact that the leading forms of the standard monomials form
a K-basis, it is clear that the products- - - 87 with §; < ... < §, constitute a
K-basis of gg K[X]. Passing to leading forms in Theorem 1.1, we obviously ob-
tain a straightening law on grK [ X] that makes it an ASL oveK. Furthermore
Theorem 1.1 shows that the straightening law coincides with thA{ &f).

The very same arguments apply tg-g[ X]. Additionally one need only no-
tice thatw < w’ impliesA(w) < A(w’). (It follows that g K[X] has anN"-
gradation that refines ifS-gradation.) O

2. F-Regularity of Flag Varieties

In the sequel we will apply the following theorems of tight closure the@&ys
always supposed to be a Noetherian ring of charactepistic
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(TC1) R regular= R F-regular= R weakly F-regular= R F-rational= R
normal and Cohen—Macaulay (provid&ds a homomorphic image of a
Cohen—Macaulay ring) (Hochster and Huneke [12, (3.4), (4.2)]).

(TC2) A direct summand of a F-regular ringR is F-regular (Hochster and
Huneke [11, (4.12)]). (We say that a riisgs adirect summanaf a ring
T if there exists an injective ring homomorphism S — T such that
¢(S) is a directS-module summand df'.)

(TC3) If the associated graded ring Bfwith respect to a separat@dfiltration
is F-rational, thenr is F-rational (Conca, Herzog, and Valla [6, 2.3]).

(TC4) A GorensteirF-rational ring isF-regular [12, (4.7)].

(TC5) If an excellent ringr is F-regular, then so i®[X] [12, (7.31)].

(TC6) Let Ry and Sy be finitely generated.-algebras such thaty, ®; K and
So®z K are weaklyF-regular for all fieldK. Then(Ro®z K)Qx (So®zK)
is weakly F-regular for all fieldsK. (This follows immediately from [12,
(7.45)].)

It is important for us that th&-algebraF(X) is F-regular. We first prove an
auxiliary result about subalgebras of the homogeneous coordinate (¥pgof the
Grassmannian variety ef-dimensional vector subspaceskf. As aK-algebra,
G (X) is generated by the-minors of X. These form a distributive latticE(X)
on whichG(X) is an ASL.

ProrosiTioN 2.1. Suppose thak is a field of characteristipp > 0. Let A be a
subset ofl"(X) for which the subalgebr& [A] of G(X) is a sub-ASL ofG (X).
ThenA is a sublattice anK [A] is F-rational.

Proof. According to Sturmfels [16, 3.2.9], the initial algebra (& (X)) with re-
spect to a diagonal term order is generated by the diagonal monomials of the max-
imal minors. (We refer the reader to Eisenbud [8] for term orders and related no-
tions.) This is not hard (to prove and) to generalize. In fact, 4 §;--- 3, is a
standard monomial of maximal minors, then(@@) is just the product of the diag-
onal monomials of thé; ands can obviously be reconstructed from (8). It fol-
lows that there is no cancellation of initial terms in linear combinations of standard
monomials, and therefore K[ A]) is generated by the diagonal monomials of
the elements of\.

Let « andA be incomparable elements af The only possibility for the prod-
uct of their diagonals to occur on the right-hand side of the straightening relation
is through the produgh ) (A L ). (By mandu we denote the lattice operations
in I'(X).) Hence this product must appear on the right-hand side with coefficient
1. In particular it follows thatA is a sublattice of*(X).

For each distributive latticel, 1, 1), the K-algebra

AL = K[X[ e L]/(Xle — XkﬂIXkUlv k, le L)

is an affine normal semigroup ring (Hibi [10]). The equations defimnghold
for the initial monomials of the maximal minoise A as well. We thus have a
surjective homomorphism; — in;(K[A]). Itis in fact an isomorphism, since
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the Hilbert functions ofd ,, K[A], and in,(K[A]) coincide. This holds for 5
andK[A]since they are ASLs on isomorphic graded posets, and it holdg[fa}
and in,(K[A]) by the general properties of the initial algebra.

Thus in (K[A]) is a normal affine semigroup ring. That makes it a direct sum-
mand of a polynomial ring oveK (see e.g. Bruns and Herzog [3, 6.1.10]) and
so it is F-regular by (TC2) and especially-rational. By (TC3),K[A] is also
F-rational. O

THEOREM 2.2. Suppose thakK is a field of characteristipp > 0. Then thek-
algebrasFi(X), F2(X), F1(X) ®k F2(X), and F(X), as well as their polynomial
extensions, aré-regular.

Proof. Let X be am x (n + m) matrix. Then one has a “natural” surjective ho-
momorphismG(X) — K[X]whose kernel is generated byt 1, wheres is the
maximal element of (X) (see [4, Sec. 4]). Under this homomorphism, the par-
tially ordered sefA (X) of minors of X corresponds bijectively to the partially or-
dered sel’(X) \ {¢}. Let A be the subset df(X) corresponding to the poset of
minors generating’1(X). Then it is not hard to see thatindeed satisfies the hy-
pothesis of Proposition 2.1. In fact, the straightening law [X] is derived from
that inG(X) by substitutingt1 for ¢. Because all terms in the straightening rela-
tions of F1(X) have two factors, such a substitution cannot occur when one goes
from K[A] to Fi(X); in other wordsK[A] N (e £ 1) = 0. It follows that F1(X)

is isomorphic toK[A] and is therefore -rational.

Let U be the group of unipotent lower triangular x m matrices. A matrix
M € U acts onK [ X] by the substitutionX +— M X. The ring of invariantsk [ X1V
is justF1(X), as follows immediately from [4, 11.6]. Sinééis a connected alge-
braic group without nontrivial characterg;(X) is a factorialK-algebra (see e.g.

[4, 6.5.5]); furthermore, it is Cohen—Macaulay (as follows for example from the
F-rationality) and is therefore Gorenstein. Sutiational algebras are-regular
(TC4). The same argument appliesA(X).

Note that the ASLg1(X) and F>(X) can be defined oveét. Therefore (TC6)
implies that their tensor product is weakld#yregular. Since it is also factoriak;-
regularity is guaranteed by (TC4).

The Segre producF(X) is a direct summand of the tensor product. Thus it
is F-regular, too. The assertion on polynomial extensions follows at once from
(TCS5). O

3. F-Rationality of Determinantal Rings and Their Rees Rings

Before turning to the investigation of Rees rings, we draw a consequence of
Theorem 2.2 for the determinantal ring$X]/I..1 (previously proved by Hoch-

ster and Huneke [13, (7.14)] and, as part of more general results, by Glassbrenner
and Smith [9] and Conca and Herzog [5, 5.2] through different approaches).

TueoreM 3.1. Let K be a field of characteristip > 0. ThenK[X]/I,,1 is F-
regular.
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Proof. The standard basis & = K[X]/I,,1 is given by the standard bitableaux
(which now representresidue classes of products of minors) with atroolstmns.
The filtration induced bys on R is effectively an(N”, <)-filtration, and the asso-
ciated graded ring i1 (X') # F>(X"), whereX’ consists of the first rows of X
and X” consists of the first columns. The same holds for the filtration induced
by 7. Statement (TC3) thus implies thatis F-rational.

If X is a square matrix, theR is Gorenstein by a theorem of Svanes (see e.qg.
[3, 7.3.5]) and hence ig-regular. In the general case it is enough to note that
is a direct summand @t = K[X]/I,41(X), whereX is an x n matrix of indeter-
minates. In fact, one obviously has a sequeRce- R — R whose composition
is the identity. O

In the following we want to apply a filtration argument to a Rees ring, an object
that itself is defined in terms of a filtration. Given BiAfiltration G = (I;) on a

rng R, we setR(G, R) = @,y I;T'. Let (H, <) be a partially ordered semi-
group, and letF = (J;,) be an(H, <)-filtration. Then we can define filtrations
(J») and(I;) onR(G, R) and g R (respectively) by setting

~ ~ I+ I
Ji=@nns and =@d0UEA)
ieN heH Jh

We again denote these filtrations Byandg, respectively.

LemMma 3.2. Let R be a ring(a K-algebrg, and let F = (Jy)pey and G =
(I;);en be filtrations onR. Thengrz(R (G, R)) and R (G, grx R) are isomorphic
as bigraded ringg K-algebrag.

Proof. The bidegred#, i) component of ge(R(G, R)) is (I; N Jy)/(I; N J;]),
and the corresponding component/®tg, grr R) is

~

Wi +J7) o NI+ Iy In
Jy N J7 /el

Thus the two objects are naturally isomorphic as abelian gregkipgctor spaces).
It is easily verified that the isomorphism respects multiplication. O

In the cases of interest, giR is aN"-graded ring, and the ideals forming the fil-
trationg can be defined in terms of the filtratidh Then the algebr& (G, grx R)

can be further analyzed: it is the Segre product of a Rees algebra of a semigroup
ring with grz R.

Let H be a semigroup, and 181 = (H;);y be a filtration ofH by idealsH;
(i.e.,Hi+ H C H; andH; + H; C H;; forall i, j). Then we also denote the fil-
tration (H; K[H]);en Of K[H] by H. ObviouslyR (H, K[H]) is itself H-graded
in a natural way:

R(H, K[H]), = @ KX"T'.

(h,i): heH;
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Furthermore it is a semigroup rin@® (H, K[H]) = K[R(H, H)], where
R H) = J{(h.i) 1 heH;)

is theRees semigroupf H with respect to the filtratiof{.

As before, let(H, <) be a partially ordered semigroup with filtratiof;),;cn
and letR be a ring with an(H, <)-filtration F. We define a filtratior§ = (I;);en
on R by putting/; = P,y Rr. With these hypotheses, the following lemma
holds.

LemMa 3.3. gri=(R(G, R)) = R(G,dr R)) = R(H, K[H]) #4 (gr+ R).

Proof. The firstisomorphism is given by Lemma 3.2, and the second follows eas-
ily if one writes out the decomposition & (G, grx R) as the direct sum of its
(N x H)-graded components:

R(G.grr R) = @ @(grf Ry T';

ieN heH;

R(H, K[H]) #5 grr R has the same decomposition. O

We now return to the polynomial ring, its determinantal ideals, {N&, <)-
filtration S, and itsN-coarsening’ .

THEOREM 3.4. Suppose is a field of characteristip > 0, let H = (H;);en be

a filtration of N™, and define the filtratio = (I;) of K[X] by I; = Zweﬂ[ Jw.
Suppose thaR (H, K[N™]) is a finitely generated normat-algebra. Then the
Rees algebr& (G, K[ X]) is F-rational and therefore a normal Cohen—Macaulay
K-algebra.

Proof. Extending the filtrationss and7 to R (G, K[X]), we obtain isomorphic
K-algebras g¢ R (G, K[X]) and gi R (G, K[X]). This follows from the same
argument as Theorem 1.2. It is therefore enough to showFthationality of
ors R(G, K[X]). By virtue of Lemma 3.3 it is isomorphic to the Segre product
of § = R(H, K[N"]) with F(X). The Segre product is a direct summand of
S ®k F(X). By hypothesisS is a normal affine semigroup ring and therefore a di-
rect summand of a polynomial ring ovEr Altogether this shows th&t#y. F(X)

is a direct summand of a polynomial extensionf@lx ); it is thereforeF-regular

in view of Theorem 2.2. O

CorOLLARY 3.5. The symbolic Rees algebf’(l,) = @2, 1T’ of K[X]
with respect to the ided} is F-rational. The same holds for the “ordinary” Rees
algebraR (1) = @2, I/ T" if charK > min(t,m — 1).

Proof. LetAy, ..., A, be linear forms with nonnegative coefficients@ff. Then
the filtration = (H;)ien With H; = {z e N" 1 Xj(2) > i, i = 1,..., u} satis-
fies the hypothesis of Theorem 3.4. In fa®t(H, N™) is the subsemigrouﬁ of
N+ consisting of alk’ € N"+1 such that
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/ / ’ .
M@y Z) 2 2 =100

It is normal and finitely generated since it is the intersectio’sf! with finitely
many rational halfspaces (see [3, 6.1]).

For the symbolic Rees algebra we set 1 andi; = y,. Then the result fol-
lows sincel,(i) is spanned as H-vector space by all standard bitableatx | T)
with y,(Z | T) > i.

For the ordinary Rees algebra we set r andi; = y;/(t —i + 1) fori =
1,...,t. Theideald! have the primary decomposition

t
i __ (i(r=j+1)
=1
j=1

if chark = 0 or chark > min(z, m — t) (see [7] and [4]). In other wordg, is
spanned as &-vector space by all standard bitablegx| T) with y;(X | T) >
it—j+Dforj=1,...,¢. O

REMARKs 3.6. (@) One can replace the polynomial riki§X] by a residue class
ring K[X]/1I,,1 and modify all the data accordingly. The proof of Theorem 3.1
shows that no essential changes happen on the level of the associated graded rings,
and Theorem 3.4 and Corollary 3.5 remain true after this adaptation to the more
general situation. In particular, the (symbolic) Rees algebrg[af] /1,1 with re-
spect tol, /1,4 is F-rational. (Such a relative version is also available for Propo-
sition 3.7.)

(b) Itfollows easily from Corollary 3.5 that the associated graded ripgfrX ]
is Cohen—Macaulay if cha > min(z, m — t).

(c) The ideals/,, are stable under the Giz, K) x GL(n, K) action onK[X]
(see [4, Sec. 11]). Hence this action can be naturally extended to the Rees algebra
R(G, K[X]) of Theorem 3.4. One sees easily thatH, K[N"]) is isomorphic
to its ring of U-invariants, so we have deduced theationality of the Rees alge-
bra from theF-regularity of its ring ofU-invariants in a manner similar to the case
of characteristic O treated in [1]. (Heté must be chosen as the direct product of
the group of unipotent lower triangular x m matrices and that of the unipotent
upper triangulan x n matrices.)

(d) The assertions about therationality of the Rees rings can also be derived
from the structure of the initial algebras that we have investigated in [2].

Our final result concerns the algebra generated by-thanors.

ProrosiTION 3.7. Let K be a field of characteristip. > min(m, m — t). Then
the subalgebra, of K[X] generated by theminors isF-rational and therefore
a normal Cohen—Macaulay ring.

Proof. Let G andi/ denote the restrictions of and7 (respectively) ta4,. Then
one sees easily that,gd, = grg A, = K[H]# F(X), whereH is the subsemi-
group ofN™ consisting of the weight® such that a bitableau of weightbelongs
to A,. Itis not hard to show thal is a normal semigroup. O
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