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Introduction

It is well known that every Gleason part of the algebraH∞, of bounded analytic
functions on the unit disk, is a maximal analytic disk or a single point [7]. Fur-
thermore, there are very different behaviors within the class of nontrivial Gleason
parts. For example, it is known that some analytic disks are homeomorphic to the
unit diskD, while some others are not.

Although the Gleason parts have been studied by several authors (see e.g. [2;
5; 6]), the information at our disposal is partial and fragmented. In particular, our
knowledge of the closures of Gleason parts is very limited. Far from giving the
whole picture, which is probably unreachable, the present paper intends to throw
some light on the behavior of the closures of Gleason parts.

First we give a criterion to check whether a point in the maximal ideal space of
H∞ is or is not in the closure of a given Gleason part. This criterion is then used
to prove that if the closures of two Gleason parts have nonvoid intersection, then
one of them is contained in the closure of the other. This answers a question posed
by Gorkin in [5] and is the starting point of our study of maximal parts (not con-
tained into the closure of any other part except the diskD). We consider a class
of maximal parts that contains properly the thin parts (this generalizes a result of
Budde [2]) and we study the general properties of this class. Next we prove the
existence of maximal parts not belonging to this class. Finally, we pose three open
problems that we believe are fundamental to understanding the way in which the
Gleason parts relate to each other.

Acknowledgment. I am grateful to P. Gorkin for many valuable discussions
and for pointing out several misprints in the first sketch of this paper. Also, I
am indebted to the referee for improving the exposition with many thoughtful
suggestions.

1. Preliminaries

The maximal ideal space ofH∞ is defined by

M(H∞) = {ϕ : ϕ is linear, multiplicative andϕ 6= 0 }
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provided with the weak∗ topology induced by the dual space ofH∞. It is a com-
pact Hausdorff space. We can look at a functionf ∈ H∞ as a continuous func-
tion onM(H∞) via the Gelfand transform̂f(ϕ) = ϕ(f ) (ϕ ∈M(H∞)). Evalu-
ation at a point ofD is an element ofM(H∞), soD is naturally imbedded into
M(H∞), andf̂ is an extension to the whole maximal space of the functionf. In
what follows we avoid writing the hat for the Gelfand transform off.

The pseudohyperbolic and hyperbolic metrics on the open unit disk are defined
by

ρ(z, ω) =
∣∣∣∣ z− ω1− ω̄z

∣∣∣∣
and

h(z, ω) = log
1+ ρ(z, ω)
1− ρ(z, ω) , z, ω ∈D,

respectively. Forx, y ∈M(H∞), the formula

ρ(x, y) = sup{ |f(y)| : f ∈H∞, f(x) = 0, ‖f ‖ ≤ 1}
provides an extension ofρ toM(H∞). Therefore, the Schwarz–Pick (SP) inequal-
ity takes the formρ(f(x), f(y)) ≤ ρ(x, y) for x, y ∈ M(H∞), f ∈ H∞, and
‖f ‖ ≤ 1. It will be convenient to work with the metricρ when dealing with the SP
inequality and with the metrich in calculations involving the triangular inequal-
ity. Of course, we can go from one metric to the other so long as we keep in mind
thatρ(z, ω) → 1 if and only if h(z, ω) → ∞. We remark that the topology on
M(H∞) induced byρ does not coincide with the weak∗ topology. The Gleason
part ofx ∈M(H∞) is then defined asP(x) = { y ∈M(H∞) : ρ(x, y) < 1}. It is
well known that forx, y ∈M(H∞) we haveP(x) = P(y) or P(x) ∩ P(y) = ∅.

A first classification of Gleason parts (see [7]) shows that there are only two
cases: eitherP(x) = {x} (x ∈M(H∞)) or P(x) is an analytic disk. The former
case means that there is a continuous one-to-one and onto mapLx : D → P(x)

such thatf B Lx ∈H∞ for everyf ∈H∞. Reciprocally, any analytic disk is con-
tained in a Gleason part, and any maximal (not contained into another) analytic
disk is a Gleason part. Ifz∈D thenP(z) = D is dense inM(H∞) by the corona
theorem of Carleson [3]. This fact makes trivial all the statements of this paper for
this particular part, so from now on by a Gleason part wealwaysmean a Gleason
part other than the open disk.

Let S = {zn} ⊂ D be a sequence such thatzn = 0 occursm times inS. Then
the product

b(z) = zm
∏
zn6=0

−z̄n
|zn|

z− zn
1− z̄nz

converges onD if and only if ∑
(1− |zn|) <∞. (1.1)

The functionb is called aBlaschke product.If the sequenceS satisfiesδ(S) =
δ(b) = inf k

∏
n6=k ρ(zn, zk) > 0 then (1.1) is automatically fulfilled andS is
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called aninterpolating sequence(so,b is called an interpolating Blaschke prod-
uct). From the work of Hoffman [7] we know that ifx ∈M(H∞) \ D thenP(x)
is an analytic disk if and only ifx belongs to the set

G = { y ∈M(H∞) \ D : y is in the closure of some interpolating sequence}.
If x ∈ M(H∞) andf ∈ H∞ are such thatf(x) = 0, then the multiplicity of
x as a zero off is defined as the maximum integerN such thatf = f1 . . . fN
with fj(x) = 0 for 1≤ j ≤ N; the multiplicity is infinite if there is no suchN.
It is well known that the multiplicity is infinite if and only iff ≡ 0 onP(x).
One of the features of interpolating sequences that we will use frequently is that
disjoint subsequences of the same sequence have disjoint closures inM(H∞) [7,
Thm. 6.1].

2. Sequences and Parts

Let z ∈ D andS, T ⊂ D. We write ρ(z, S) = infω∈S ρ(z, ω) andρ(S, T ) =
inf z∈T, ω∈S ρ(z, ω), with similar conventions for the metrich.

Definition. Let x ∈ G andE ⊂ D. We say thatx avoidsE if, for every in-
terpolating sequenceS such thatx ∈ S̄ and any number 0< ρ0 < 1, there is a
subsequenceS1 ⊂ S such thatx ∈ S̄1 andρ(S1, E) ≥ ρ0.

Lemma 2.1. Let x ∈ G and y ∈ M(H∞) \ P(x). If U ⊂ M(H∞) is an open
neighborhood ofy such thatŪ ∩ P(x) = ∅, thenx avoidsU ∩ D.
Proof. Becausey /∈ P(x), there exists an open neighborhoodU of y such that
Ū ∩P(x) = ∅. LetS ⊂ D be a interpolating sequence withx ∈ S̄. For an arbitrary
number 0< ρ0 < 1, consider the following subsequence ofS :

S0 = {ωk ∈ S : ρ(ωk, U) < ρ0 }. (2.1)

We shall prove thatx /∈ S̄0.Clearly, this is the case ifS0 is either finite or the empty
set. Letzk ∈ U ∩ D such thatρ(ωk, zk) < ρ0. Thus,{zk} ⊂ Ū is disjoint from
P(x). Putε = (1− ρ0)/4. Combining the definition ofP(x) with the compact-
ness of{zk},we obtain finitely many functionsf1, . . . , fn ∈H∞ such that‖fj‖ ≤
1, fj(x) = 0 for 1≤ j ≤ n, and

max
1≤j≤n

|fj(ξ)| > 1− ε for all ξ ∈ {zk}. (2.2)

Suppose thatx ∈ S̄0. Sincefj(x) = 0 for all j, we also have

x ∈ {ωk ∈ S0 : |fj(ωk)| < ε ∀j } = {ωks }.
By the SP inequality, for 1≤ j ≤ n and everys,

ρ(fj(zks ), fj(ωks )) ≤ ρ(zks , ωks ) < ρ0.

An easy estimate shows that ifz, ω ∈ D and |ω| < ε then |z| < ε + ρ(z, ω).
Consequently,
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|fj(zks )| < ε + ρ0 for 1≤ j ≤ n and allzks .

On the other hand, (2.2) implies that for everys there exists 1≤ js ≤ n such that
|fjs (zks )| > 1− ε. Thus, 1− ε < ε+ ρ0, contradicting our choice ofε. Hence,x
must belong to the closure of

S1 = {ωk ∈ S : ρ(ωk, U) ≥ ρ0 },
and the lemma follows.

The next two lemmas are easy consequences of Lemmas 1.4 and 1.5 in [4, Ch. X],
respectively.

Lemma 2.2. Let 0 < α < 1. Then there existσ = σ(α) > 0 and δ = δ(α, σ) ∈
(0,1) such that ifb is any interpolating Blaschke product withδ(b) ≥ δ, then
|b(z)| > α for everyz in

Kσ(b) = { z∈D : h(z, zk) ≥ σ for all zeroeszk of b }.
Lemma 2.3. Let S be an interpolating sequence and0 < δ < 1. Suppose that
x ∈ S̄. Then there exists a subsequenceS1 ⊂ S such thatx ∈ S̄1 and δ(S1) > δ.

Now we are ready to prove the main theorem of this section. The idea of the proof
comes from Gorkin’s paper [5, Thm. 2.2]. LetS = {zn}n≥1 be a sequence inD.
By a tail of S we mean a sequence of the form{zn}n≥k for somek ≥ 1.

Theorem 2.4. LetS ⊂ D be an interpolating sequence and letx ∈ S̄ \ S. Sup-
pose thatT ⊂ D is a subset and let0< β < 1.

(I) If x avoidsT then there is a Blaschke productbx such thatbx ≡ 0 onP(x)
and |bx(z)| > β for all z∈ T .

(II) If, in addition to(I), T is also an interpolating sequence,y ∈ T̄, andy avoids
S, then there is a Blaschke productby such thatby ≡ 0 onP(y), |by(z)| >
β for all z∈ S, and

max{|bx(z)|, |by(z)|} > β for all z∈D.

Proof. (I) Fix α > β and takeσ1 = σ(α1/2) as in Lemma 2.2. Sincex avoidsT
there is a subsequenceR1 ⊂ S such thath(R1, T ) ≥ 4σ1 andx ∈ R̄1. By Lemma
2.3 there is a subsequenceS1 ⊂ R1 such thatx ∈ S̄1 andδ(S1) ≥ δ(α1/2, σ1). We
also can assume, by taking a tail ofS1 if necessary, that∑

ω∈S1

(1− |ω|) ≤ 1

2

∑
ω∈S
(1− |ω|).

By Lemma 2.2, the interpolating Blaschke productb1 associated toS1 satisfies
b1(x) = 0 and|b1(z)| ≥ α1/2 for all z∈A1 = { z∈D : h(z, S1) ≥ σ1 }.

We can repeat this process withσ1 replaced byσ2 = σ(α1/4), S replaced by
S1, and so forth. At theN th step we haveN interpolating sequencesS1 ⊃ S2 ⊃
· · · ⊃ SN and the corresponding Blaschke productsb1, . . . , bN , so that for any
1≤ n ≤ N :
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(i) bn(x) = 0 (i.e.,x ∈ S̄n);
(ii) h(Sn, T ) ≥ 4σn, whereσn = σ(α1/2n);

(iii) |bn(z)| ≥ α1/2n for everyz∈An = { z∈D : h(z, Sn) ≥ σn }; and
(iv)

∑
ω∈Sn(1− |ω|) ≤ (1/2n)

∑
ω∈S(1− |ω|).

The productb =∏∞n=1 bn converges because, by (iv),
∞∑
n=1

∑
ω∈Sn

(1− |ω|) ≤
∞∑
n=1

1

2n
∑
ω∈S
(1− |ω|) =

∑
ω∈S
(1− |ω|) <∞.

Condition (i) implies thatb has a zero of infinite multiplicity atx, sob ≡ 0 on
P(x). By (iii), for every z∈A =⋂n≥1An we have

|b(z)| ≥ α1/2+1/22+ ··· = α > β. (2.3)

Finally, (ii) implies thatT ⊂ A and then|b(z)| > β for z ∈ T . Thus,bx = b

satisfies the conclusion of the theorem.
(II) We keep thenotation of (I). Furthermore, we repeat the previous construc-

tion with the pairs(y, T ) and(x, S) interchanged, thereby obtaining a decreas-
ing sequence of interpolating sequencesT ⊃ T1 ⊃ · · · and the corresponding
Blaschke productby. PutBk = { z∈D : h(z, Tk) ≥ σk }. By (I) we have

(i′) by ≡ 0 onP(y);
(ii ′) h(S, Tk) ≥ 4σk for all k ≥ 1;

(iii ′) |by(z)| ≥ β for everyz∈B =⋂k≥1Bk; and
(iv ′) S ⊂ B.
In particular, (iii′) and (iv′) imply that|by(x)| ≥ β. By (2.3) and (iii′),

max{|bx(z)|, |by(z)|} ≥ β for all z∈A ∪ B.
Therefore(II) will follow if we show thatD = A∪B. The complement ofA∪B
is

D \ (A ∪ B) =
[⋃
n≥1

(D \ An)
]
∩
[⋃
k≥1

(D \ Bk)
]

=
⋃
n, k≥1

[(D \ An) ∩ (D \ Bk)].

Let z∈ (D\An)∩ (D\Bk) for somen, k ≥ 1. Thenh(z, Sn) < σn andh(z, Tk) <
σk. Consequently, there existωs ∈ Sn andωt ∈ Tk such thath(z, ωs) < σn and
h(z, ωt ) < σk. Hence,

h(Sn, Tk) ≤ h(ωs, ωt ) ≤ h(ωs, z)+ h(z, ωt ) < σn + σk.
On the other hand, (ii) and (ii′) imply that

h(Sn, Tk) ≥ max{h(Sn, T ), h(S, Tk)} ≥ 4 max{σn, σk}.
The last two inequalities imply that 4 max{σn, σk} < σn + σk, which is obviously
false. Thus,D \ (A ∪ B) = ∅ and we are done.

We are able now to give a converse of Lemma 2.1.



60 Daniel Suáre z

Corollary 2.5. Letx ∈G andy ∈M(H∞). Then the following conditions are
equivalent.

(1) y /∈P(x).
(2) There is an open neighborhoodU of y such thatx avoidsU ∩ D.
Additionally, ify ∈G then there are two more equivalent conditions.

(3) For every interpolating sequenceT such thaty ∈ T̄, there is a subsequence
T1 ⊂ T such thaty ∈ T̄1 andx avoidsT1.

(4) There is an interpolating sequenceT1 such thaty ∈ T̄1 andx avoidsT1.

Proof. (1) implies (2) is Lemma 2.1. Now assume that (2) holds, and letU be
an open neighborhood ofy such thatx avoidsU ∩ D. By Theorem 2.4(I), there
is a Blaschke productb such thatb ≡ 0 onP(x) and infz∈U∩D|b(z)| > 0. Thus,
every pointξ ∈ U ∩ D (in particulary) is not inP(x). Hence (2) implies (1). If
(2) holds andy ∈ T̄ with T an interpolating sequence, then it is clear thatT1 =
T ∩ U satisfies (3). Obviously (3) implies (4). Now suppose that (4) holds. As
before, Theorem 2.4 says that there is a Blaschke product separatingP(x) from
T̄1, so (1) holds.

For a setV ⊂ D, writeBh(V, σ) = { z∈D : h(z, V ) < σ }.
Corollary 2.6. Lety ∈M(H∞) \ D andx ∈G. Theny ∈ P(x) if and only if,
for every setV ⊂ D such thaty ∈ V̄, there existsσ = σ(V ) > 0 such thatx ∈
Bh(V, σ).

Proof. LetS ⊂ D be an interpolating sequence such thatx ∈ S̄.Suppose that there
is a setV ⊂ D such thaty ∈ V̄ andx /∈ Bh(V, σ) for anyσ > 0. Thenx ∈ S̄0 =
{ zn ∈ S : h(zn, V ) ≥ σ }, meaning thatx avoidsV. By Theorem 2.4(I) there is a
Blaschke product separatingP(x) from V̄.

Suppose now thaty /∈ P(x). By Corollary 2.5 there is an open neighborhood
U of y such thatx avoidsV = U ∩ D. We will see that for anyσ > 0, x also
avoidsBh(V, σ). Let S ⊂ D be an interpolating sequence, so thatx ∈ S̄. Sincex
avoidsV, for everyM > 1 there is a subsequenceS0 ⊂ S such thatx ∈ S̄0 and
h(S0, V ) ≥ Mσ. For zn ∈ S0 andω ∈Bh(V, σ) we have

h(zn, ω) ≥ |h(zn, V )− h(V, ω)| = h(zn, V )− h(ω, V ) ≥ (M − 1)σ.

That is,h(S0, Bh(V, σ)) ≥ (M − 1)σ. Then, by Theorem 2.4, there is a Blaschke
productb such thatb(x) = 0 and inf{ |b(ω)| : ω ∈Bh(V, σ) } > 0. Therefore,x /∈
Bh(V, σ).

Corollary 2.7. LetP1 andP2 be nontrivial Gleason parts so that̄P1∩ P̄2 6=
∅. Then one of them is contained into the closure of the other.

Proof. Suppose that the conclusion of the corollary does not hold. Then there are
x ∈P1\P̄2 andy ∈P2\P̄1.By Corollary 2.5 there are two interpolating sequences
S andT such thatx ∈ S̄, y ∈ T̄, x avoidsT, andy avoidsS. Hence, Theorem 2.4
asserts that there are two Blaschke productsbx andby such thatbx ≡ 0 on P̄1,
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by ≡ 0 onP̄2, and infz∈D|bx(z)|+|by(z)| > 0.So, by the corona theorem, the pair
(bx, by) never takes the value(0,0) onM(H∞). Consequently,̄P1∩ P̄2 = ∅.
Corollary 2.7 allows us to define an equivalence relation onM(H∞) \ D that is
weaker than Gleason’s relation. Forx, y ∈M(H∞) \ D we say thaty is equiva-
lent to x if there is a Gleason partP such thatx, y ∈ P̄ . The equivalence class of
x ∈M(H∞) \ D is

K(x) =⋃{ P̄ : P is a Gleason part andx ∈ P̄ }.
As is the case for Gleason parts, the classK(x) can be very big or a single point.
Let us illustrate this situation with two extreme cases. Ifx ∈ S(H∞), the Shilov
boundary ofH∞ (see [4, p. 188]), then it is known thatx does not belong to the
closure of any nontrivial Gleason partP. The reason is that there exists a Blaschke
productb such thatb ≡ 0 onP while |b| ≡ 1 onS(H∞),where the last condition
holds for every inner function (see [4, p. 194]). Hence,K(x) = {x} for everyx ∈
S(H∞). In the other extreme we have the closure of a thin part. An interpolating
sequenceS = {zk} is calledthin if∏

n :n 6=k

∣∣∣∣ zk − zn1− z̄nzk

∣∣∣∣→ 1 when k→∞.

If x ∈M(H∞) \D is in the closure of some thin sequence then so is every point in
P(x). This makes it consistent to say thatP(x) is a thin part. Thin sequences and
thin parts have many special features. In particular, I learned from P. Gorkin that
in Budde’s dissertation [2] it is proved that no thin part is contained in the closure
of another Gleason part. A part with this characteristic is calledmaximal.If P is
a Gleason part, we say thatP̄ is maximal if for every partQ such thatP̄ ⊂ Q̄ we
haveP̄ = Q̄. So, ifP is a maximal part then̄P is a maximal closure of part. The
converse would hold if two different parts have different closures, which seems
to be unknown. My guess is that this is not true. It is clear that ifx ∈ M(H∞)
thenP(x) is maximal if and only ifK(x) = P(x). In particular, ifP(x) is a thin
part thenK(x) = P(x) is homeomorphic toM(H∞) and thus, very big (see [7,
p. 107]).

Our next section is essentially devoted to study a particular class of maximal
parts that properly contains the class of thin parts.

3. Weakly Thin Sequences

Definition. An interpolating sequence{zk} ⊂ D satisfying

lim
n→∞ ρ(zn, {zk}k 6=n) = 1 (3.1)

will be called aweakly thin(w-thin) sequence. We say that a Gleason partP is
w-thin if it contains a pointx in the closure of some w-thin sequence. As was
the case for thin parts, this definition does not depend on the particular choice of
x ∈P.
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Lemma 3.1. LetS be a w-thin sequence. IfS is a finite union of thin sequences
thenS is a thin sequence.

Proof. By induction it is enough to assume thatS = S1 ∪ S2, where eachSj is
a thin sequence and they are disjoint. Letbj be the Blaschke product with zero
sequenceSj (j = 1,2). For an arbitrary 0< α < 1 consider the constantsσ =
σ(α) andδ = δ(α, σ) of Lemma 2.2. SinceS is w-thin there is a tailT1 of S1

such that the hyperbolic distance betweenT1 andS2 is bigger thanσ. Let a1 be a
Blaschke product with zero sequenceT1. SinceS1 is a thin sequence we can also
assume thatδ(a1) ≥ δ. Thus, Lemma 2.2 implies that|a1(zn)| ≥ α for all zn in S2.

Write b1 = a1c1, wherec1 is a finite Blaschke product with zeroesS1\ T1. Then,
for zn ∈ S2,

|b1(zn)| = |a1(zn)||c1(zn)| ≥ α|c1(zn)| → α when n→∞.
Because 0< α < 1 is arbitrary,|b1(zn)| tends to 1 whenn→ ∞. Analogously,
|b2(zn)| → 1 whenn→∞ for zn ∈ S1. ThenS is a thin sequence.

We now turn toH∞ of the complex half planeC+ = { z ∈C : Im z > 0 }. In this
case,

ρ(z, ω) =
∣∣∣∣z− ωz− ω̄

∣∣∣∣, z, ω ∈C+.
LetQ be a closed square ofC+ (closed in the topology ofC+) with base on the
real lineR.We writel(Q) for the side length ofQ. A (positive) measureµ onC+
is called aCarleson measureif there exists a constantC > 0 such thatµ(Q) ≤
Cl(Q) for every squareQ as before.

Suppose that{zn} ⊂ C+ is aboundedsequence and consider the measure

µ =
∑
n

ynδzn ,

whereδz denotes the probability measure with mass concentrated at the pointz

and whereyn is the imaginary part ofzn. The pointszn will be called thelocal-
izationsof µ. It is well known [4, Ch. VII] that{zn} is a Blaschke sequence if and
only if µ(C+) < ∞, and that it is an interpolating sequence if and only ifµ is a
Carleson measure andρ(zn, zk) > α > 0 for all n 6= k (i.e.,{zn} is separated).

Theorem 3.2. There exist:
(a) a non-Blaschke sequence satisfying(3.1);
(b) a separated Blaschke sequence satisfying(3.1) that is not interpolating; and
(c) a w-thin sequence that is not a finite union of thin sequences.

Proof of (a). We construct a family of closed intervals as follows:I1,1 = [0,1]
and for each integern ≥ 2, we divide I1,1 into n! intervals of length 1/n!,
In,1, . . . , In, n! . Denote byQn, j the closed square inC+ with baseIn, j . The fam-
ily F = {Qn, j : n ≥ 1,1≤ j ≤ n! } is a decomposition ofQ1,1 = [0,1]× (0,1].
For a square of the formQn,nk+1, with 0 ≤ k ≤ (n− 1)! − 1, let zn, nk+1 denote
the midpoint of the upper side. We will say thatQn,nk+1 is amarkedsquare (see
Figure 1). A straightforward calculation shows that the sequenceS = { zn, nk+1 :
n ≥ 1, 0 ≤ k ≤ (n− 1)! − 1} satisfies (3.1).
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Figure 1

Let yn, nk+1 be the imaginary part ofzn, nk+1. Then∑
n≥1

(n−1)!−1∑
k=0

yn, nk+1 =
∑
n≥1

(n−1)!−1∑
k=0

1

n!
=
∑
n≥1

1

n
= ∞.

Hence,S is not a Blaschke sequence.

We will construct the examples for (b) and (c) as suitable subsequences ofS. An
auxiliary result is needed. For two integers 1≤ p ≤ q, let νp, q be the measure

νp, q =
q∑
n=p

(n−1)!−1∑
k=0

yn, nk+1δzn, nk+1.

Lemma 3.3. LetR be an arbitrary square of the decompositionF with l(R) =
1/n!.

(i) If n > q thenνp, q(R) = 0.
(ii) If p ≤ n ≤ q then

νp, q(R) = 1

n!

[
1+

q∑
j=n+1

1

j

]
whenR is a marked square, and

νp, q(R) = 1

n!

q∑
j=n+1

1

j

whenR is not a marked square. The sum
∑q

j=n+1 1/j reduces to zero if
n+ 1> q.
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(iii) If n < p then

νp, q(R) = 1

n!

q∑
j=p

1

j
.

Proof. If n > q thenR lies below the localizations ofνp, q, so (i) follows.
If p ≤ n ≤ q andR is a marked square, then the middle point of its upper side

is a localization of the measureνp, q . The contribution of this point toνp, q(R) is
1/n! = l(R). Further,R containsn+ 1 squares ofF of length 1/(n+ 1)!, where
only one of them is marked. Each one of these squares containsn+ 2 squares of
F of length 1/(n + 2)!, where only one is marked, and so forth. Moreover, the
points that contribute toνp, q(R) are only those corresponding to squares inF of
length at least 1/q!. Therefore

νp, q(R) = 1

n!
+ 1

(n+ 1)!
+ n+ 1

(n+ 2)!

+ (n+ 1)(n+ 2)

(n+ 3)!
+ · · · + (n+ 1) . . . (q − 1)

q!

= 1

n!

[
1+

(
1

n+ 1
+ 1

n+ 2
+ · · · + 1

q

)]
,

as claimed. WhenR is not a marked square, the summand 1/n! does not appear
in the preceding expression.

Finally, if n < p then (ii) of the lemma says that

νp, q(R) = νn, q(R)− νn, p−1(R)

= 1

n!

(
1

n+ 1
+ 1

n+ 2
+ · · · + 1

q

)
− 1

n!

(
1

n+ 1
+ 1

n+ 2
+ · · · + 1

p − 1

)
= 1

n!

(
1

p
+ 1

p + 1
+ · · · + 1

q

)
,

whetherR is marked or not (whenR is marked we must add 1/n! to both quanti-
tiesνn, q(R) andνn, p−1(R), not affecting the difference).

The Constructions for(b) and (c). Let {aj } ⊂ R be an arbitrary sequence, where
aj ≥ 1 for all j. We define inductively two sequences of positive numbers as
follows,

p1 = 1 and q1 = min

{
q :

1

2
+ 1

3
+ · · · + 1

q
> a1

}
.

Supposing that the first numbersp1, . . . , pj−1, q1, . . . , qj−1 are given, we choose

pj = qj−1+ 1 and qj = min

{
q :

1

pj + 1
+ 1

pj + 2
+ · · · + 1

q
> aj

}
.
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Hence,

1= p1 < q1 < · · · < qj−1+ 1= pj < qj < qj + 1= · · · . (3.2)

Notice that since(pj +1)−1 ≤ 1/2 for all j ≥ 1, by the choice ofqj we also have

aj + 1>
1

pj + 1
+ 1

pj + 2
+ · · · + 1

qj
> aj ∀j. (3.3)

For j ≥ 1 letRj be the first (at the left) square inF such thatl(Rj ) = 1/pj!. We
consider the measuresµj = χRj νpj, qj for j ≥ 1 andµ =∑j≥1µj, whereχR de-
notes the characteristic function of the setR. BecauseRj is a marked square, by
Lemma 3.3 and (3.2) we have

µ(Rj ) = µj(Rj )+ µj+1(Rj )+ · · ·
= νpj, qj (Rj )+ νpj+1, qj+1(Rj+1)+ · · ·

=
∑
k≥j

νpk, qk (Rk) =
∑
k≥j

1

pk!

[
1+ 1

pk + 1
+ 1

pk + 2
+ · · · + 1

qk

]
.

Thus, by (3.3), ∑
k≥j

1

pk!
(1+ ak) < µ(Rj ) <

∑
k≥j

1

pk!
(2+ ak). (3.4)

Moreover, sincepk+1 = qk + 1 ≥ pk + 1, it follows thatpk+1! ≥ (pk + 1)! =
(pk + 1)pk! ≥ 2pk!. So, fork > j,

pj!

pk!
= pj!

pj+1!

pj+1!

pj+2!
· · · pk−1!

pk!
≤ 1

2k−j
.

Obviously, this also holds fork = j. Hence, by (3.4),

1

pj!
(1+ aj ) < µ(Rj ) <

1

pj!

∑
k≥j

1

2k−j
(2+ ak). (3.5)

The examples for (b) and (c) will be constructed by choosing different sequences
{aj }, and taking the localizations of the respective measuresµ.

Proof of (b). Takeaj = j for everyj ≥ 1, and letµ be the associated measure.
Then, by (3.5),

µ(C+) = µ(R1) ≤
∑
k≥1

1

2k−1
(2+ k) <∞.

Therefore, the localizations ofµ form a Blaschke sequence. By (3.5),

µ(Rj )

l(Rj )
= pj!µ(Rj ) > 1+ j →∞ when j →∞.
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Henceµ is not a Carleson measure, and consequently its localizations do not form
an interpolating sequence.

Proof of (c). Now takeaj = 1 for all j ≥ 1.We claim that the associated measure
µ is Carleson. LetQ ⊂ C+ be an arbitrary square with base onR.We can assume
without loss of generality thatQ ⊂ [0,1] × (0,1] and thatl(Q) < 1/q1!. Let j
be the integer that satisfies 1/qj−1! > l(Q) ≥ 1/qj!. Thenµ1(Q) = µ2(Q) =
· · · = µj−1(Q) = 0, because the localizations of all these measures lie aboveQ.

Thereforeµ(Q) = µj(Q)+
∑

k≥j+1µk(Q) where, by (3.5) and (3.2),∑
k≥j+1

µk(Q) ≤
∑
k≥j+1

µk(C+) = µ(Rj+1)

<
1

pj+1!

∑
k≥j+1

3

2k−j−1
= 6

pj+1!
= 6

(qj + 1)!
<

6

qj!
≤ 6l(Q).

Hence
µ(Q) ≤ µj(Q)+ 6l(Q). (3.6)

Let n be smallest integer such thatl(Q) ≥ 1/n!. Thus,

qj−1 < n ≤ qj . (3.7)

Clearly, no localization ofνpj, qj corresponding to a square of length bigger than
1/n! can lie inQ. Suppose thatQ meetss squares ofF of length 1/n!, say
Q1, . . . ,Qs. Then, eithers ≤ 2 or l(Q) ≥ (s − 2)/n!. By Lemma 3.3(ii), (3.7),
(3.2), and (3.3),

µj(Q) ≤ νpj, qj (Q) ≤ νpj, qj (Q1)+ · · · + νpj, qj (Qs)

≤ s

n!

[
1+

qj∑
k=n+1

1

k

]
≤ s

n!

[
1+

qj∑
k=qj−1+2

1

k

]

= s

n!

[
1+

qj∑
k=pj+1

1

k

]
≤ s

n!
(1+ 2) = 3s

n!
.

Now, if s ≤ 2 thenµj(Q) ≤ 6/n! ≤ 6l(Q), and if s ≥ 3 then

µj(Q) ≤ 3(s − 2)

n!
+ 6

n!
≤ 3l(Q)+ 6l(Q) = 9l(Q).

These estimates together with (3.6) show thatµ(Q) ≤ 15l(Q) for every squareQ
such thatl(Q) < 1/q1!. This proves our claim.

Finally, we will see that the sequence{zn} of localizations ofµ is not a thin
sequence, which together with Lemma 3.1 proves (c). By (3.5),

2l(Rj ) = 2

pj!
< µ(Rj ) for all j. (3.8)

Let znj be the middle point in the upper side ofRj . By construction this point be-
longs to the sequence{zn} of localizations ofµ. Let b be the Blaschke product
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with zeroes{zn}, and letb(j) be the same product with the pointznj deleted. As
before,yn denotes the imaginary part ofzn. Then, by [4, p. 288] and (3.8),

log|b(j)(znj )|−2 ≥ 4
∑
n :n 6=nj

ynj yn

|znj − z̄n|2
≥ 4

∑
n 6=nj
zn∈Rj

ynj yn

|znj − z̄n|2

≥ 4
∑
n6=nj
zn∈Rj

ynj yn

5y2
nj

= 4

5

∑
n6=nj
zn∈Rj

yn

ynj
= 4

5

1

l(Rj )
[µ(Rj )− l(Rj )]

>
4

5

1

l(Rj )
[2 l(Rj )− l(Rj )] = 4

5

for all j. That is,|b(j)(znj )| ≤ exp(−2/5) for everyj ≥ 1, and then{zn} is not a
thin sequence.

Proposition 3.4. LetT be an interpolating sequence and lety ∈ T̄ \ T . If P is
a Gleason part so thaty ∈ P̄ \P, theny is in the closure ofT̄ ∩P. In particular,
T̄ ∩ P is an infinite set.

Proof. First we show thatT̄ ∩ P 6= ∅. Let x ∈ G so thatP = P(x), and let
b be an interpolating Blaschke product whose zero sequence isT . Consider the
mapLx : D → P(x) mentioned in Section 1. By [6, Lemma 1.8],b B Lx(z) =
B(z)g(z), whereB is an interpolating Blaschke product (including constants of
modulus 1) andg is an invertible function inH∞. Thus, if T̄ ∩ P = ∅ thenB is
constant. Therefore

inf { |b(ξ)| : ξ ∈P } = inf { |g(z)| : z∈D } > 0,

and hence|b| > 0 onP̄ . This is not possible becausey ∈ P̄ andb(y) = 0.
Now suppose thaty ∈ P̄ \ P is not in the closureE of T̄ ∩ P. Then there is an

open neighborhoodVy of y such thatVy ∩ E = ∅. Therefore, the sequenceT1 =
T ∩ Vy contains the pointy in its closure butT̄1∩ P = ∅, contradicting the fact
just proved.

My original proof of Proposition 3.4 was more complicated than the one given
here. I learned independently and almost at the same time of two different easier
proofs from P. Gorkin and R. Mortini. The proof given here is a combination of
their arguments.

Corollary 3.5. LetS be an interpolating sequence. Then the following state-
ments are equivalent.

(1) S is a w-thin sequence.
(2) For every Gleason partP, P̄ ∩ S̄ has at most one point.
(3) For every Gleason partP, P ∩ S̄ has at most one point.

Proof. Suppose thatS is w-thin and letx, y ∈ S̄ \ S, x 6= y. Then there are dis-
joint subsequencesSx, Sy ⊂ S such thatx ∈ S̄x andy ∈ S̄y . SinceS is w-thin, for
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any 0< ρ0 < 1 there is a tail ofSx whose pseudohyperbolic distance toSy is big-
ger thanρ0. That is,x avoidsSy and, by Corollary 2.5,y /∈ P(x). Trivially, (2)
implies (3). IfS is not w-thin, then limρ(zn, S \{zn}) = ρ0 < 1. Hence there are
two disjoint subsequencesS1 = {ωn} andS2 = {ξn} of S such thatρ(ωn, ξn) <
ρ

1/2
0 for all n. If (ωα) is a subnet of{ωn} that converges to a pointx ∈M(H∞),

then there is a corresponding subnet(ξα) of {ξn} and we can assume thatξα →
y ∈M(H∞). Thusx 6= y becausex ∈ S̄1 andy ∈ S̄2. Sinceρ is lower semicon-
tinuous (see [7, Thm. 6.2]),ρ(x, y) ≤ lim α ρ(ωα, ξα) ≤ ρ1/2

0 . Thus (3) does not
hold.

Corollary 3.6. No w-thin part is in the closure of another Gleason part.

Proof. Let x ∈M(H∞) be such thatP(x) is a w-thin part, and letS ⊂ D be a
w-thin sequence such thatx ∈ S̄. If P(x) is contained properly in the closure of
another Gleason partQ, thenx ∈ Q̄ \Q. So, by Proposition 3.4,̄S ∩Q is an infi-
nite set, contradicting Corollary 3.5.

Let S, T ⊂ D be two sequences. Suppose that there areσ > 0 and an integerN
such thatS ∩Bh(zn, σ) has no more thanN points for everyzn ∈ T, and such that

S ⊂
⋃
zn∈T

Bh(zn, σ).

Then a routine argument (see [4, p. 310]) shows that wheneverT is a finite union
of interpolating, thin, or w-thin sequences, then so isS, respectively.

Proposition 3.7. Let S be an interpolating sequence andK ⊂ S̄ \ S a com-
pact set. If every point ofK lies in a thin (w-thin) part, then there is an open
neighborhoodV ofK such thatS ∩V is a finite union of thin(w-thin) sequences,
respectively.

Proof. By compactness we can assume thatK = {x}. Let T be a thin (w-thin)
sequence such thatx ∈ T̄, and letb be the corresponding Blaschke product. For
0 < α < 1, let σ = σ(α) as in Lemma 2.2. By Lemmas 2.2 and 2.3 we can also
assume thatδ(T ) is so close to 1 so that the ballsBh(zn, σ), zn ∈ T, are pairwise
disjoint, and|b(z)| > α for all z /∈ B = ⋃zn∈T Bh(zn, σ). SinceS is interpolat-
ing, there exists some positive numberN such thatS contains no more thanN
points in each of the ballsBh(zn, σ). By the comment preceding the proposition,
S ∩ B is a finite union of thin (w-thin) sequences, respectively. Thus,V = { y ∈
M(H∞) : |b(y)| < α } is an open neighborhood ofx andS ∩ V ⊂ S ∩B satisfies
the proposition.

Corollary 3.8. LetS ⊂ D be an interpolating sequence. IfP(x) is a thin(w-
thin) part for everyx ∈ S̄ \ S, thenS is a finite union of thin(w-thin) sequences,
respectively.
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Proof. The same argument works for thin and w-thin parts, so let us assume that
every point inS̄ \ S lies in a thin part. By Proposition 3.7, there is an open neigh-
borhoodV of S̄ \ S such thatS1 = V ∩ S is a finite union of thin sequences. The
corollary follows because the setS \ S1 has only finitely many points.

Corollary 3.9. There are w-thin parts(and hence maximal parts) that are not
thin parts.

Proof. Every w-thin part is maximal by Corollary 3.6. The other assertion is an
immediate consequence of Theorem 3.2(c) and Corollary 3.8.

4. Yet Another Kind of Maximal Parts

Although the next proposition is well known, I was unable to find it expressly
stated in the literature, so we give here a proof. The particular caseρ0 = 0 already
appeared in [7, Thm. 6.1].

Proposition 4.1. Let x, y ∈ G. Thenρ(x, y) ≤ ρ0 ∈ [0,1) if and only if, for
every pair of interpolating sequencesS, T such thatx ∈ S̄ andy ∈ T̄, we have

lim
zn∈Sρ(zn, T ) ≤ ρ0. (4.1)

Notice that condition(4.1) is symmetric inS andT .

Proof. If (4.1) does not hold there are interpolating sequencesS andT such that
x ∈ S̄, y ∈ T̄, and lim

zn∈S ρ(zn, T ) > ρ0. So, by taking tails ofS andT we can
assume thatρ(zn, ωk) ≥ ρ1 > ρ0 for all zn ∈ S andωk ∈ T . Let α ∈ (0,1) such
thatαρ1 > ρ0, and takeσ(α) andδ0 = δ(α, σ) as in Lemma 2.2. By Lemma 2.3
there is a subsequenceS1 = {zj } ⊂ S such thatx ∈ S̄1 andδ(S1) > δ0 is close
enough to 1 so that the hyperbolic ballsBh(zj, σ) are pairwise disjoint. Hence, if
ωk ∈ T then there is at most one pointzjk ∈ S1 such thatωk ∈Bh(zjk , σ). Let b be
the Blaschke product with zero sequenceS1. Suppose first that there exists a point
zjk as before and writebjk for the Blaschke productb with the zerozjk deleted. By
Lemma 2.2, we have

|b(ωk)| = |bjk(ωk)|ρ(zjk , ωk) > αρ1.

If there is no pointzjk then|b(ωk)| > α > αρ1. Sinceωk ∈ T is arbitrary, it fol-
lows that infω∈T |b(ω)| ≥ αρ1 > ρ0. Thusb(x) = 0 and|b(y)| > ρ0, implying
thatρ(x, y) > ρ0.

Now suppose thatρ(x, y) = ρ1 > ρ0 and take 0< ε < ρ1. Then there isf ∈
H∞, ‖f ‖ ≤ 1, such thatf(x) = 0 and|f(y)| > ρ1 − ε/4. Thus, ifS andT are
interpolating sequences whose closures contain the pointsx andy, respectively,
thenx is in the closure ofS(ε) = { zn ∈ S : |f(zn)| < ε/2 } andy is in the closure
of T(ε) = {ωk ∈ T : |f(ωk)| > ρ1− ε/2 }. The SP inequality then gives

ρ(zn, ωk) ≥ ρ(f(zn), f(ωk)) ≥ |f(ωk)| − |f(zn)|
1− |f(ωk)||f(zn)| > ρ1− ε

for all zn ∈ S(ε) andωk ∈ T(ε) (see [4, p. 4] for the second inequality). Hence,
(4.1) does not hold forS(ε) andT(ε) if ε is small enough.
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It seems natural to conjecture that every maximal part is a w-thin part. Our next
example inH∞ of C+ shows the existence of maximal parts that are not w-thin.
Forn ≥ 1 let

Sn =
{
zn, k = 1

2n
+ i

2nk
: k ≥ 2

}
,

TN =
⋃
n≥N Sn, andS = T1. The following list of properties can be verified by

direct (though tedious) computation.

(1) S is separated.
(2) µ =∑n, k yn, kδzn, k is a Carleson measure.
(3) Given 0< α < 1, there exists anN = N(α) such that

inf
z∈TN

ρ(z, TN \ {z}) > α.

(4) Given 0< β < 1, for everyN ≥ 2 there is ak0 = k0(β,N ) ≥ 2 such that
ρ(zn, k, TN) > β for all n ≤ N − 1 andk ≥ k0.

(5) ρ(zn, k, zn, k+1) = (2n − 1)/(2n + 1) for all k ≥ 2 and alln ≥ 1.

By (1) and (2),S is an interpolating sequence. PutKN = T̄N andK =⋂
N≥1KN. The property of finite intersection then implies thatK is a nonempty

compact set inM(H∞(C+)) \ C+.
Claim 1: If y ∈K thenP(y) is maximal.Otherwise there is some partQ such

thaty ∈ Q̄ \Q. By Proposition 3.4, the set̄S ∩Q has infinitely many points and
there arex1, x2 ∈ S̄ ∩Q such thatρ(x1, x2) = α for some 0< α < 1. If L ⊂ S is
an arbitrary subsequence whose closure containsx1 andx2, then Proposition 4.1
implies that lim

z∈L ρ(z, L \ {z}) ≤ α. Thus, takingN = N(α) as in (3), we have
that at least one of the pointsx1 or x2, sayx1, is not in T̄N .

On the other hand, by (4) every point in(S \ TN) \ (S \ TN) avoidsTN (it is
enough to take tails ofS \ TN). Sincey ∈ T̄N andx1 ∈ S \ TN, Corollary 2.5 says
thaty /∈P(x1) = Q̄.

Claim 2: There exists a pointy ∈K that is not in a w-thin part.If every point
of K belongs to a w-thin part, by Proposition 3.7 there exists some open neigh-
borhoodV of K such thatV ∩ S is a finite union of w-thin sequences. Because
K = ⋂

N≥1KN, where{KN } is a decreasing sequence of compact sets, there is
someN0 such thatKN0 ⊂ V. Therefore,TN0 ⊂ V ∩ S must be a finite union of
w-thin sequences. ButSN0 ⊂ TN0 is not a finite union of w-thin sequences, by
property (5).

5. Open Problems

Problem 1. We already saw thatK(x) = {x} for everyx in the Shilov bound-
aryS(H∞). IsK(x) 6= {x} for everyx ∈M(H∞) \ (D∪ S(H∞))? This question
is equivalent to a problem posed by Tolokonnikov [9, p. 139].

Problem 2. Is there a reasonable characterization of maximal Gleason parts?
What about maximal closures of parts?
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Problem 3. If x ∈ G, is K(x) the closure of a Gleason part? An affirmative
answer means that everyx ∈G is in some maximal closure of Gleason part.

In [1], Alling conjectured that every nontrivial, nonmaximal closed prime ideal
of H∞ is formed by the functions that vanish identically on a given nontrivial
Gleason part (see [8] for an English exposition and further information). This con-
jecture is related to our problem in the following way. Suppose thatb is an inter-
polating Blaschke product with zero sequenceS.We can take tails ofS, S ⊃ S1 ⊃
S2 ⊃ · · · such that

∑
1≤j

∑
zk∈Sj (1−|zk|) <∞. If bj denotes the Blaschke prod-

uct with zero sequenceSj, thenb0 =
∏

j≥1 bj converges andb0 ≡ 0 on every

Gleason partP such thatS̄ ∩ P 6= ∅. If x ∈ S̄ \ S then Proposition 3.4 says that
S̄ ∩P 6= ∅ for every partP such thatx ∈ P̄ . This means thatb0 ≡ 0 on the whole
classK(x). Let I be the ideal ofH∞ defined by

I = { f ∈H∞ : f ≡ 0 onK(x) }.
Sinceb0 ∈ I, the ideal is not trivial. Clearly, it is closed and nonmaximal. In addi-
tion, I is prime. In fact, iffg ∈ I andP is a Gleason part such thatx ∈ P̄ , thenf
or g vanishes identically onP (because functions inH∞ behave as analytic func-
tions onP). So, say thatf ≡ 0 andg 6≡ 0 onP. Then, for every partQ such
thatP ⊂ Q̄, we haveg 6≡ 0 onQ and consequentlyf ≡ 0 onQ; that is,f ∈ I.
Suppose that Alling’s conjecture is true. Then the set

hull I = { y ∈M(H∞) : f(y) = 0 for all f ∈ I }
has the formP̄ for some Gleason partP. Sincex ∈ K(x) ⊂ P̄ , we haveP̄ ⊂
K(x). HenceP̄ = K(x) and soP̄ is a maximal closure of part. Thus, an affir-
mative answer to Alling’s conjecture implies an affirmative answer to Problem 3.
Although we have no valid argument to support the converse of this implication,
it is very likely that Problem 3 (or a variant of it) is one of the main obstacles in
proving Alling’s conjecture. In addition, we see that if the conjecture holds then
I is the intersection of all the closed prime nonmaximal and nontrivial idealsJ

such thatx ∈ hull J. That is,I is the minimum of such ideals.

Added in proof.After I finished writing this paper I received the preprintTrivial
points in the maximal ideal space ofH∞ by T. Ishii and K. Izuchi, where they
show that Problem 1 has a negative answer.
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