Negatively Curved Graph and Planar Metrics
with Applications to Type

PHiLIP L. BOWERS

Introduction

Agraphis of parabolic or hyperbolic type if the simple random walk on the vertices
is, respectively, recurrent or transient. A plane triangulation graph is CP-parabolic
or CP-hyperbolic if the maximal circle packing determined by the graph packs,
respectively, the complex plarigor the Poincaré disk. We examine the impli-
cations that (Gromov) negative curvature carries for determining type, specifically
in these settings. Our main result is encased in the following theorem.

THEOREM. Every properGromoy negatively curved metric space whose bound-
ary contains a nontrivial continuum admits(g, C)-quasi-isometric embedding
of a uniform binary tree.

Corollaries of this theorem include:

(1) the simple random walk on every locally finite, negatively curved graph whose
boundary contains a nontrivial continuum is transient;

(2) the simple random walk on a locally finite, 1-ended negatively curved graph
whose boundary contains more than one point is transient;

(3) a negatively curved plane triangulation graph is CP-hyperbolic if and only if
it has a circle boundary (equivalently, CP-parabolic if and only if it has a point
boundary).

The classical “type problem” is that of determining whether a given noncom-
pact, simply connected Riemann surface is conformally equivalent to the@lane

or the diskD. The surface is said to be phrabolictype in the former case, and

of hyperbolictype in the latter. Our concern is with two related discretizations of

this classical problem, one via random walks on graphs, the other via planar circle

packings. Connections between probabilistic characteristics and the type prob-

lem are deep and intimate, and have been known for a long time. For instance, a

simply connected Riemann surface is hyperbolic if and only if a Brownian trav-

eler starting at any point has a positive escape probability. This generalizes to
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higher-dimensional Riemannian manifolds. A complete Riemannian manifold is
hyperbolic exactly when the Brownian motion generated by the Laplace—Beltrami
operator is transient. Kanai discretized this in [26; 27] where he characterized
hyperbolic Riemannian manifolds of bounded geometry as (roughly) those that
are quasi-isometric to certain graphs of hyperbolic type. Another discretization of
type has occurred more recently in the very geometric/combinatorial setting of cir-
cle packings, which is a purely 2-dimensional phenomenon. Here, a triangulation
of the plane determines a maximal circle packing of exactly one of the filame

the diskD, and there has been interest in finding conditions on the combinatorics
of the triangulation that determine type; see, for instance, [18; 23; 28].

Itis of no surprise that negative curvature of a graph has implications for the type
of the graph, but all work to date concerning these implications has assumed addi-
tional structure—either bounded degree or some sort of isoperimetric inequality.
These, especially the latter, are very strong uniformity conditions that forbid the
type of random asymptotic behavior that can easily occur in graphs and in circle
packings, even in the context of negative curvature.

Our proof of the theorem occupies Section 1 and involves primarily the very
fast divergence of geodesics in a negatively curved space, as well as the quasi-
denseness of geodesic rays. The theorem itself in weaker forms is hinted at in
Gromov’s work [21] and Bowditch’s exposition [8] of Gromov’s work. Actually,
we prove a result stronger than the theorem, namely, that every metric space sat-
isfying the hypotheses of the theorem admits, for any positiae(1 + ¢, C(¢))-
guasi-isometric embedding of a uniform binary tree, whéte) is small when
measured in the length scale of the binary tree. The applications of the theorem to
the determination of type are easy and appear in the subsequent sections. After re-
calling some standard facts about random walks in Section 2, we apply the theorem
to confirm the first two corollaries listed above. These are compared with previous
results of Ancona [4] and of Kaimanovich and Woess [25], both of which assume
bounded degree and strong isoperimetric conditions in the context of simple ran-
dom walks. Section 3 develops some of the basic topology of negatively curved
planar metrics. These metrics arise naturally from negatively curved plane trian-
gulation graphs as quasi-isometric images, and we prove that their boundaries are
either singletons or topological circles. The beautiful results of He and Schramm
[23] determining the CP-type of plane triangulation graphs using vertex extremal
length are reviewed in Section 4, after which the theorem, as well as results from
the section preceding, are applied to the determination of CP-type. In particular,
the third corollary listed above is proved. A final section, Section 5, concludes
with a short discussion of further applications of the theorem that are due to K.
Stephenson and the author, proofs of which will appear in [9]. Since many read-
ers whose background is in either random walks or circle packings may not be fa-
miliar with the recent developments on metric negative curvature, it seems fitting
to include all the results that we will use from this theory in one section. Thus
an appendix has been included that gives an overview of recent metric geometry
with references (or proofs when we could find no references) for all the results
stated. As there is no uniformity of terminology in this rather young field, we take
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this opportunity to fix the terminology and notation that we use in our proofs, and
we present some results in a nonstandard way that is particularly suited for our
purposes in the paper proper.

1. Proof of the Theorem

Throughout this sectiom, denotes a proper, negatively curved geodesic metric on
the setX with a fixed basepointy, andZ denotes a nontrivial continuum in the
Gromov boundargX (see the Appendix for definitions). Also, all geodesic rays
are assumed to be arclength parameterized. Sirisenegatively curved, there
exists a positive constastsuch that X, o) hasé-inscribed triangles.

LemMma 1.1. Leta be a geodesic ray based.gf that limits at a point ofZ, and
let s be any positive parameter value. If there exists a geodesig tagsed atcg
that limits at a point of Z for which thep-distance betweea(s) and B(s) is at
least4s, then there exists a geodesic raybased atxg that limits at a point ofZ
for which

286 < p(a(s),o0(s)) < 48.

Proof. Assuming that the boundaf¥ is parameterized from the basepoigtas
described in the Appendix, let

U={0(c0)edX :px(s),o(s)) <2§}
and
V ={o(c0) €dX : p(a(s),o(s)) >45}.

Observe thal/ contains the point (co) € Z and thatV contains the poing(oco)

Z. From the definition of the topology on the boundary, as described in the Ap-
pendix, the set&/ andV are closed in the boundary and, by Lemma A.4, they are
disjoint. If there is no geodesic ray with the desired property, then the union of
the two setd/ andV coversZ, and it follows thaty andV provide a separation

of the connected séf, a contradiction. O

We apply this lemma recursively to define a collection of arclength parameterized
geodesic rays;, indexed by binary sequenck®f finite length, that are based at
xo and limit at points ofZ. First, choose such rayg ando; based atg that limit
at respective distinct points &f. Sinceog(oco) andoi(oo) are distinct boundary
points, thep-distance betweesiz(t) andoi(t) is unbounded asincreases, and
we may choose a parameter vatyéor which thep-distance betweesy(7p) and
o1(tg) is at least 3. Let X1 = {09, 01}.

Fix a constantk > 5 and, for the positive integer, assume that we have
constructed the set

X, ={op:|b|=n}

of geodesic rays based &4 that limit at points ofZ such that thep-distance
between any two distinct points from the set

{op(to+ KS(n — 1)) 1 |b] =n}
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is at least 3. Here we are usingp| to denote the length of the binary sequence
Lemma A.4 implies that the-distance between any two points from the set

{op(to+ Kdn) @ |b| =n}

is at least(2K + 1)3, which is greater than& For eachv;, in Z,,, apply Lemma
1.1 withs of the lemma equal tey + Kén to find a geodesic ray;. based atcq
that limits at a point oZ and for which

28 < p(op(to + Kdn), 04 (tg + Kdn)) < 46. (1.2)

Fori = 0, 1, defines;,; aso,, if the last digit ofb equalsi; otherwise, define;,;
asoy.. This defines the seét, .1 = {0, : |b| = n + 1}, and our construction en-
sures, sinc€2K + 1)§ is at least 14, that thep-distance between any two points
from the set

{op(to+ Kdn) 1 |b| =n + 1}

is at least 3.

We now use the sefs, to construct a mapping ofuniform binary tre€7 into
X. The treeT is a nontrivial, rooted graph with intrinsic metrc(see Appendix)
wherein each vertex other than the root vertex has degree three and where each
edge is isometric to a Euclidean interval of some fixed length, which we take to be
of lengths. The root itself, denoted as; (whereg stands for the empty binary
sequence), has degree 2. There dregttices in the sphere of radiug about
the root vertex i/, and we assume that these have been labeled, aghereb
ranges over the binary sequences of lemgtthe childrenof vertexv, arev,o and
vp1. Define the mapping: 7 — X on vertices by

A(vp) = op(to + Ké(10] — 1)) 1.2)

if b £ @, with A(vy) equal to the midpoint of a geodesic segment fooy) =
oo(to) t0 A(v1) = o1(tp), and extend to edges by mapping the edge fignto
its child v,, convexly onto a geodesic segment frar,) to A(v,.), using the
segment that lies ity, whenevew, = oy,.

Our first task is to calculate upper and lower bounds foptitkstance between
the A-images of any two vertices ifi. Toward this end, first notice that the
distance betweeh(v,) andA(v,), wherev,, is a child ofv,, is at leastks if
b # @; moreover, this distance is at m@#f + 1)3. This upper bound on the dis-
tance follows from the definition of on vertices, Equation (1.2), along with the
fact thato,o(¢) andoyy(¢) ares-close at parameter value= tg + K§(|b| — 1).
This last fact follows from an examination of the internal points of a triangle with
verticesxg, A(vp0), anda(v,), and the fact thak > 5 along with (1.1). LebOx
andbly be binary sequences that agree in the firstligits and observe that the
upper bound of K + 1)$ for the p-distances between theimages of a vertex and
its children gives the upper bound

P (Vpox), Mvpry)) = (K +D)(Ix| + |yl +2) = (K + Dd(vpor, viy).  (1.3)
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A useful lower bound is a bit harder to come by. For thispleindc be dis-
tinct binary sequences for whigh| = |c|. Use Lemma A.4 and the fact that the
p-distance betweex(v,) andi(v,) is atleast 3, while that between the-images
of two sibling vertices is at most34 to obtain the inequality

2K8 + p(A(vp), AMue)) — 98 < p(A(Vps), A(vex)), (1.4)
wherev,, andv,, are respective children ef, andv,. If |x| = |y| for the binary

sequences0x andbly, then starting with the fact that(A(vjy0), A(vp1)) > 28,
successive applications of (1.4) imply that

(2K = 9)|x| +2)8 = p(A(vpox), A(Vp1y))- (1.5)

For the general lower bound, assume that> |y|. Let z be the binary sequence
of length|x| — |y|, all of whose digits are equal to the last digit of the binary
sequenceyl Thenoy, = op1,, and (1.2) implies that

P (A (vp1y), AMvpy:)) = Kéz| = K(|x] — |y]38. (1.6)

The triangle inequality applied to theimages of the verticeso,, vp1y, Vpiyz,
along with (1.5) and (1.6), gives the lower bound

(K =9)x| + Kyl +2)8 = p(A(vpox), A(Vp1y))- .7

After subtracting 9|y| from, and adding and subtractingR — 9)$ to, the left-
hand side of (1.7), recalling also that #hadistance between the vertices, and
vp1y IS (|x| + |y| + 2)8, we obtain the lower bound

(K —9)d(vpox, vp1y) — 2(K — 10)8 < p(A(Vpox), A(Vp1y)). (1.8)

THEOREM 1.2. For eache > 0, the spaceX admits a(1 + ¢, C(¢))-quasi-
isometric mapping of a uniform binary tree.

Proof. Let K > 10 and scale the metritby a factor of(lK — 9) to obtain a metric
dg onT in which each edge has lengtk — 9)§. Then, for every pair of nonroot
verticesu andv of 7, (1.3) and (1.8) imply that

K+1
K -9
It follows that the restriction of. to the setV of nonroot vertices off is a
(% 2(K — 10)8)-quasi-isometry, whefl” is given the scaled metrigx. An
application of Lemma A.2 witi! = (K — 9)§ andN = (K + 1)§ implies that
isa(u, C)-quasi-isometry, wherg = %1) andC = 2(3K —8)4. Setting 4+¢ =
w, and observing that monotonically decreases to zerokis= 9+ 10~ mono-
tonically increases, yields the desired result. O

dg(u,v) — 2(K —10)§ < p(A(u), L(v)) <

dg (u, v).

CoroLLARY 1.3. The(1+e¢, C(¢))-quasi-isometric mapping of the previous the-
orem extends continuously to a homeomorphism of the Cantor set bourfary
onto a Cantor set contained in the continuam
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REMARK. Let7, denote the binary treg with the scaled metridy . Notice from
the proof of Theorem 1.2 that the length of each edg&.a8 L(¢) = 105/¢. It
follows that

C(e) = 603/e + 385 = 6L(¢) + 385. (1.9)

The following corollary implies the theorem in the Introduction. It and its com-
panion corollary say that every negatively curved space whose boundary contains
a nontrivial continuum has embedded binary trees whose distortions from unifor-
mity are small in the scale of the lengths of the edges of the embedded trees.

CoroLLARY 1.4. For eache > 0, the spaceX admits a(1 + ¢, C(¢))-quasi-
isometric embedding of a uniform binary trég, where C(¢) is O(el(¢)) as
¢ | 0and£(e) denotes the length of each edge)f

Proof. First we use Theorem 1.2 and the remark following Corollary 1.3 to iden-
tify a (1+ ¢, C(g))-quasi-isometrienappingwith the desired properties, and then
we adjust the mapping to an embedding. Fix 0 so that 9%+ 10s~! = K is an
integer, and scale the meteg of 7, by a factor of(K — 9) to obtain the uniform
binary treel3, in which the length of each edge is

£(e) = (K —9)%6 = (K — 9)L(g) = 10L(g)/e. (1.10)

For each binary sequenéelet b denote the binary sequence obtained fiotyy
replacing each digit of b by a string of(K — 9) i’s. Let f: B, — 7T, be the
isometric embedding defined on the verticesfly,) = v;, and recall from the
proof of Theorem 1.2 that: 7, — X is a(1 + ¢, C(g))-quasi-isometric map-
ping, whereC(¢) is given by (1.9). It follows that the compositiono f is a
(1+¢, C(g))-quasi-isometric mapping. Notice th@te) increases without bound
ase | 0, but (1.9) and (1.10) imply that

C(e) 3 1%
gl(e) 5 50’
so thatC(¢) is O(el(¢)) ase |, 0.

We now adjush o f to an embedding by redefinidgonly near the vertices of
the formv;. We save ourselves an unnecessary technical headache by assuming
thate is no more than 2, so thak — 9) is at least 5. Leb # & be a binary se-
guence and, without loss of generality, assume that the last digito®. Then
the parent o in 7 is of the formu,q, for the appropriate binary sequence
since the sequendeends in a string of K — 9) zeros. Recall that is defined
on the edge;vj; as a convex map to a geodesic segment-tlength betweerks
and(K + 1)8 from A(v;), which lies on the ray; = 0,0, t0 A(v), which lies
on the rayoj;. Let ¢ be the geodesic segment contained in the inta@gvz,)
that meetw; at the single point, an endpoint ot that lies between (v,0) and
A(vzg), and meets the subsegmentogf betweem. (vz;) andA(vj,) at the sin-
gle pointy, the other endpoint of. DefineX'(v;) = x andA'(vg;) = y, and ex-
tend convexly to map the edagv;; onto¢. A further convex adjustment on the
edgesv,ov;, VU5, anduvjv;y, produces an embedding of the convex hull of
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the verticesv,0, v59, @anduvyy, that agrees withi at these three vertices, and that
is (K + 1)é-close toi. Repeating this construction at every vertexjofof the
form v;, as well as performing a similar construction negr, produces a map-
pingA': 7. — X thatis(K + 1)3-close tox and, as the reader may check, for
which A = )" o f is an embedding. An application of Lemma A.3 implies that
isa(l+e, C'(e))-quasi-isometric embedding, whefé&(e) = C(¢) + 2(K + 1)8.
Using (1.9) and (1.10),

ele) 5 50’
so thatC’(¢) is O(s£(¢)) ase | 0. O

C’ 4 29
() _4 29

The details of the constructions above imply the following corollary.

CoroLLARY 1.5. For eache > 0, the(1+ ¢, C(g))-quasi-isometric embedding
A, of the uniform binary treds, guaranteed by the previous corollary may be
chosen so that the-length of the image of every edgef 15, satisfies

m(e) < £,(Ac(e)) = M(e), (1.11)

where both bounda (g) and M (¢) are asymptotic td(s) = 1008/, the length
of each edge o85,, as¢ | 0.

2. Simple Random Walks and Type

For a good exposition of important results about random walks on graphs that in-
cludes a section on the type problem, see the survey article [34]. All graphs con-
sidered in this section are connected and locally finite, but we do not assume that
they have bounded degree nor that they satisfy any sort of isoperimetric inequal-
ity. The simple random walk (SRW) on the grafgh= (V(X), E(X)) is the ran-

dom walk for which the transition probability(x, y) from vertexx to vertexy is

given by

1/degx) if xy € E(X),

0 otherwise.

p(x,y) = {

Here V(X) and E(X) denote, respectively, the vertex and edge set¥.ofhe

SRW onX is recurrentif, with probability 1, the random walk starting at some

vertexx returns tax; otherwise, the SRW igansient.In the transient case, there

is a positive probability for the event that a random walker will escape to infinity.

The graphX is recurrent/transient whenever the SRW)bis recurrent/transient.
Theword metricon the graphX is an intrinsic metric in which each edge has

unit length, and the graph is said to begatively curvedr word hyperbolicif

its word metric is negatively curved. We often use the adjeat@binatorial

to refer to word-metric properties of a graph; for example, combinatorial length,

distance, and diameter are always with reference to the word metric.
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Let 7 be a tree with word metric. A vertex gf of degree at least 3, as well
as the root vertex if the tree is rooted, is calleldranchvertex. Two branch ver-
tices areconsecutivéf there is a simple edge path between them that traverses no
other branch vertices. We say thatis quasi-uniformif 7 is nontrivial, there are
no vertices of unit degree, and there is a finite upper bound on the combinatorial
length of any simple path of degree-2 vertices. Notice that every quasi-uniform
tree has uncountably many ends and there is a finite upper bound on the combi-
natorial distance between any two consecutive branch vertices. Alsdhinary
if 7 is rooted and the degree of each nonroot vertex is at most 3 while that of the
root vertex is at most 2. The following two lemmas are well known and imply,
with Corollary 1.5, items (1) and (2) of the Introduction.

LemmMma 2.1. Every quasi-uniform binary tree is transient.

Proof. Anargumentasin[17, Chap. 6] implies that the electrical resistence to in-
finity is finite, which implies that the tree is transient. O

LemMA 2.2. If the locally finite graphX contains a transient subgraph, theh
itself is transient.

Proof. See, for example, [34, Sec. 2]. O

ReEMARK. Note that these two lemmas together imply that every locally finite,
guasi-uniform tree is transient, since every such tree contains a quasi-uniform
binary subtree.

THeoreM 2.3. If X is a locally finite, negatively curved graph whose Gromov
boundary contains a nontrivial continuum, th&nis transient.

Proof. SinceX is locally finite, its word metric is proper. By Corollary 1.5, there
isa(2, C(1))-quasi-isometric embedding; of the uniform binary treé; into X.
BecauseA; is an embedding into a graph and the degree of each nonroot vertex
of By is 3, the image of each such vertex under the embedding must be a vertex of
X. It follows that X contains a binary subtrdg& = A1(8;) that is quasi-uniform.
Apply the two preceding lemmas. O

CoroLLARY 2.4. If X is a locally finite, one-ended, negatively curved graph
whose Gromov boundary contains more than one point, hentransient.

We review some of the previous work on the implications that Gromov negative
curvature holds for random walks on graphs. The terms from the general theory of
random walks on graphs that we use in this paragraph are defined in, for instance,
[34]. These previous results have been derived in more general contexts than that
of simple random walks, but have assumed hypotheses that imply stronger geo-
metric conditions on graphs than just mere negative curvature of the word metric.
We focus on two results, both derived in the context of a random walk given by a
stochastic transition matrix
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P = (P(X, y))x,yGV(X)

that descibes the one-step transition probabilities. The first is a result of Ancona
[4], who proves that if( is negatively curved an# is uniformly irreducible, has
bounded range, and has spectral radius less than unity, then the Martin bound-
ary dy X coincides with the Gromov boundafX, and the random walk con-
verges todX almost surely. The second is a result of Kaimanovich and Woess
[25], who replace the bounded range hypothesis of Ancona with the weaker hy-
pothesis thatP satisfy a uniform first moment condition, and conclude that the
random walk converges @X almost surely. The uniform irreducibility condition
implies that the graplX has bounded degree. In the context of a SRW, if a graph
has bounded degree, then the spectral radius is less than unity if and only if the
graph satisfies a strong isoperimetric inequality; [24] and [34, Thm. 3.3]. These
results imply, when the random walk is simple, not only tkias transient, but the
additional conclusion that the Martin boundary coincides with the Gromov bound-
ary, to which the random walk converges almost surely. The price that is paid,
though, for these stronger results are the very strong geometric limitations placed
on the graptX that it both have bounded degree and satisfy a strong isoperimetric
inequality, limitations absent from our results.

3. Negatively Curved Planar Metrics

Our attention now specializes to planar graphs, particularly those associated to cir-
cle packings of the Euclidean and hyperbolic planes. As a preliminary to deter-
mining CP-type in the next section, here we collect some basic topological results.
The setting throughout is that of a complete, negatively curved geodesic metric
on the complex plan€ that is compatible with (i.e., induces the same topology
as) the Euclidean one.

THEOREM 3.1. The Gromov boundarg,C is either a singleton or a topological
circle.

The theorem is a consequence of the next two lemmas.
Lemma 3.2. The Gromov boundarg,C is a metric continuum.

Proof. For any positive numbeg, let U, (R) denote the closure of the unbounded
complementary domain of the-ball of radiusR centered at the origin. For each
positive integer, let C,, be the uniorﬁp (n) U 9,C, a subspace of the compactifi-
cationC = C U d,C of the planeC. That eachC, is a metric continuum follows
quickly from the fact thaC has one end, the definition of the topology©nas
well as the basic facts th&t is compact and metrizable (see the Appendix). As
the boundary,C is the decreasing intersection of the metric conti@yait is it-
self a metric continuum. O

Lemma 3.3. Every pair of distinct points 08,C separates),C.
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Proof. Leta # b be points 0fd,C and choose a bi-infinite geodesicsuch that
y(00) = a andy(—oo) = b. The tracely| is a closed planar set homeomorphic
to aline, and hence separates the plane into exactly two components¥=seng
Y°. Note that the respective restrictions of the megril the sets¥ = X° U |y|
andY = Y° U |y| are proper, geodesic, and negatively curved. It follows as in the
proof of the preceding lemma, sindeandY each have one end, that the Gromov
boundarieX anddY are metric continua. The inclusions BfandY in C in-
duce embeddings of Gromov boundaries, sodxahndaY are naturally (closed)
subspaces af,C. An easy exercise establishes that the interseéom 9Y is
precisely the paiby = {a, b} and, asHX andaY are each connected and contain
the two pointsz andb, the setd/ = 90X — dy andV = dY — dy are nonempty.

It follows that the setd&/ andV form a separation of,C — {a, b}. O

Proof of Theorem 3.1With Lemmas 3.2 and 3.3, an old characterization theo-
rem of Moore [33, Thm. 28.14] applies to show thgC, if not a singleton, is a
topological circle. O

We next present a useful property of the metriwhen the Gromov boundagyC
is a singleton. We assume thatass-inscribed triangles for the fixed positive
constans.

Tueorem 3.4. If the Gromov boundary,C is a singleton, then there is a con-
stantL such that, for any compact subgétof C, there is a simple closed curve
of p-length at most that separateX from infinity.

Proof. Let y be a geodesic ray based at the pgifld) = zo. For any pointp not
ony, letwa, be a shortest geodesic segment connegiitgy. Let g, be a short-
est path connecting to y from the side ofy “opposite to” the side from which
«, approacheg. This is unambiguous as long as meetsy at a point other than
zo; whena, happens to meet atzg, 8, is chosen to equal,. The reader might
notice that our description ¢f,, even wherny, misses the basepoing, allows
for the possibility thaf,, hits the pointzo. Always in this casef, must meet
along an initial segment of. Let P be the set of points for which the length of the
pathsa, and g, coincide, in which case both are geodesic segments, each meet-
ing y in exactly one point. Continuity of the metric implies not only ti#ats not
empty, but, moreover, th& is an unbounded set in the plane.

In the next paragraph we verify that, for poingsof P far enough from the
basepointo, both companion segmentg andg, miss the basepoinb. For each
such point, letr, and 8, meety at the respective points, # zo andb, # zo,
and consider the triangle (or bigondf andb, coincide)pa,b, with sides|a,,|,
|8p|, and the subsegment pfbetweeru, andb,,. Let x, andy, be points on the
respective segmends, andg, of p-distance 3 from the respective points, and
b,. By LemmaA.1, since, andp, are shortest paths jofrom p, the p-distance
from x, to y, is at most. Let C, denote the piecewise geodesic path that starts
atx,, travels alongy, to a,, continues along to b,, then alongs,, to y,, and fi-
nally back tax, along a geodesic segment. Note thatdHength ofC,, is at most
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25 +48 +25+ 5 =98 = L (look at the internal points of the isosceles trian-
gle pa,b,). By the definition ofx,,, the segment from,, to y, alongC, cannot
touchy, from which it follows thatC,, meetsy only along the subsegment pf
betweeru, andb,, at which pointsC, approachey from opposite sides. This
implies that the curve€, is essential irC — {zo}. The metric ballB,(zo, n) misses
C, whenn < p(zo, a,) — 58, soC, separates, (zo, n) from infinity. By choos-
ing p with p(zo, a,) large enough, which is possible by an argument similar to
that of the next paragraph, we may separate any given compact set from infinity
by one of the path€’,, and the theorem follows.

Finally, if arbitrarily far from the basepoint there are points gP at least one
of whose companion shortest segmentg tmeetsy atzg, then a sequence(i)
of such points may be extracted for which either the sequence of segments
or the companion sequengg;, converges to a ray’ based ato. This limiting
ray vy’ cannot be asymptotic (see the Appendix) to theyafor this would vio-
late the fact that there is a shortest path fro() to y, for arbitrarily largei, that
travels all the way to the basepoitto meety. It follows that the pointsj)}] and
[v'] of the boundary,C are not the same, contradicting our assumption that the
boundary is a singleton. O

By choosing the points, andy, in the proof above to be slightly more thédn
units from the respective points, andb,, rather than 2 away, one may obtain
the value 5 for the constanL.

4. CP-Type

Two discrete graphical versions of classical extremal length have appeared, the
first in 1962 by Duffin [19], theedge extremal lengttand the second more re-
cently by Cannon [14], theertex extremal lengthEdge extremal length is useful
for determining the type of a SRW on a locally finite graph [19]. Vertex extremal
length is useful for constructing square tilings of rectangles with prescribed pat-
terns of contact [15; 32]. In a remarkable paper [23], He and Schramm use vertex
extremal length to give a complete combinatorial characterization of the CP-type
of a plane triangulation graph. For bounded degree graphs, the two discrete ver-
sions of extremal length agree [23, Thm. 8.1], and one of the impressive accom-
plishments of [23] is the realization that vertex extremal length is a fine enough
sieve with which to determine CP-type in the nonbounded degree setting, where
edge extremal length fails. The results to follow concerning the CP-type of nega-
tively curved plane triangulation graphs are verified by simple applications of the
work of He and Schramm in [23], along with our results in Sections 1 and 3. We
begin by recalling definitions and terminology.

For a graphg, we useV(G) and E(G) to denote, respectively, the vertex and
edge sets of/. A plane triangulation graphs the 1-skeleton of a triangulation of
the plane, and aircle packingfor the plane triangulation graghis a collection
C={C,:veV(G)}ofEuclidean circles in the plari@with pairwise disjoint in-
teriors such thaf, is tangent ta_,, whenevenw is an edge ofj. By connecting
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the Euclidean centers of tangent circles in the circle packiby line segments,

we obtain a geometric realization of the abstract grépds the 1-skeleton of a
geodesic triangulation of, necessarily, a simply-connected dobyinin C. This
domainD(C) is called thecarrier of C, though this termin the literature often refers
also to its geodesic triangulation described previously. Whenever there is a circle
packing forG with carrierD, we say thatj packsthe domainD. Notice that every

plane triangulation graph is locally finite. The following is the basic existence—
uniqueness result concerning infinite circle packings in the plane. In this form,
existence is due to He and Schramm [22] and uniqueness to Schramm [31]. Previ-
ously, Beardon and Stephenson [5] had proved the result in the setting of bounded
degree graphs, and subsequently, He and Schramm, in another impressive accom-
plishment of [23], have extended the existence result to include packings of more
general simply connected domains by sets of more general shapes than circles.

CircLE PAckiNG THEOREM. Every plane triangulation graph packs exactly one
of the planeC or the unit diskD. A circle packing for a plane triangulation graph
with carrier either C or D is unique up to Mébius transformations that fix the
carrier.

DerFINITION. The plane triangulation grapfi is CP-parabolicif it packs the
planeC andCP-hyperbolidf it packs the diskD. The circle packing theorem im-
plies that every plane triangulation graph is either CP-parabolic or CP-hyperbolic,
but never both. Anaximalcircle packing forG is one with carrier eithe€ or D.

DEerINITION.  The locally finite, connected graghis RW+yparabolic if the SRW
on g is recurrent andRWhyperbolic if it is transient.

For bounded degree plane triangulation graphs, these two notions of type coincide
[23], but—though every CP-hyperbolic graph is RW-hyperbolic—there are plane
triangulation graphs of unbounded degree that are CP-parabolic and, at the same
time, RW-hyperbolic [23, Thm. 8.2]. Duffin’s notion of edge extremal length cap-
tures the RW-type of a graph while Cannon’s notion of vertex extremal length,
as shown in [23], captures the CP-type. We refer the reader to Section 2 of [23]
for the general definitions of combinatorial extremal length, and are content with
quoting the results from [23] that meet our purposes.

DEerINITION. An infinite graphG is VEL parabolic if, for some (hence, any) ver-
tex v, the vertex extremal length of the family(v, co) of infinite, unbounded
paths of vertices based atfs infinite; otherwiseg is VEL-hyperbolic. Similarly,

G is EEL-parabolic if, for some (hence, any) vertexthe edge extremal length of
the family'(v, oo) is infinite; otherwiseg is EEL-hyperbolic.

We now quote [23, Thm. 7.2], He and Schramm’s combinatorial characterization
of CP-type in terms of vertex extremal length.

CHARACTERIZATION THEOREM. A plane triangulation graph is CP-parabolic if
and only if it is VEL-paraboli¢ equivalently, CP-hyperbolic if and only if VEL-
hyperbolic.
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Recall that a graph is negatively curved if its word metric is so. The main purpose
of this section is to verify the following theorem. Its proof consists of making sev-
eral observations that allow us to apply Corollary 1.5, Theorem 3.1, Theorem 3.4,
and the characterization theorem.

THEOREM 4.1. A negatively curved plane triangulation graph is CP-parabolic if
and only if its Gromov boundary is a singleton. A negatively curved plane triangu-
lation graph is CP-hyperbolic if and only if its Gromov boundary is a topological
circle.

Let K be a triangulation of the plari@ whose 1-skeleton is the graph and de-

fine|K |¢qto be the metric realization &f obtained by identifying each face &f

with a Euclidean unit equilateral triangle, and using the induced intrinsic metric.
Our claim is that the resulting geodesic metric spdtRqis quasi-isometric with

the graphg with word metric. This follows quickly from the next observation,
whose easy verification is left to the reader.

LeEmMMA 4.2. Let(X, p) be a metric space and a quasi-dense subset af. Sup-
pose that there is a constapt > 1 such that each pair of pointgy and y; of Y
are joined by go-rectifiable path inY of p-length at mosfipo (o, y1). Then(Y, d)

is quasi-isometric t@ X, p), whered is the intrinsic metric determined by the re-
striction of p to Y; indeed, the inclusion df in X is a (u, 0)-quasi-isometry with
guasi-dense image.

ExERrcISE. Obviously, the 1-skeleto@ of K is 1/+/3-dense iNK|eq. Moreover,
if x andy are points on two sides of a Euclidean unit equilateral triagtbat
share the vertey, then the path from to y throughv in dA has length at most
4/+/3 times the straight line distance i from x to y. Since the metric OfK |eq
is geodesic and equilateral on faces, Lemma 4.2 appliesawithd/+/3 to show
thatG with word metric is quasi-isometric & |eq.

LemMma 4.3. The Gromov boundar§G of the negatively curved plane triangu-
lation graphg is either a singleton or a topological circle.

Proof. As G is the 1-skeleton of the triangulatiaki, the previous exercise im-
plies that|K|¢q is quasi-isometric t@ with word metric. Because negative cur-
vature is a quasi-isometry invariant, the metrig Ki¢q is negatively curved and,
sinceg is locally finite, the metric ofK |¢q is proper and hence complete. Since
K triangulatesC, Theorem 3.1 implies that the Gromov boundafX |eq is ei-

ther a singleton or a topological circle. By the last paragraph of the Appendix and
Lemma 4.2, the inclusion @ into | K |eq induces a homeomorphism of Gromov
boundaries. O

Proof of Theorem 4.1The forward implications of the two statements of the the-
orem follow from Lemma 4.3, the circle packing theorem, and the reverse impli-
cations, which are proved next.
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According to the monotonicity property [23, 2.1],df contains a VEL-hyper-
bolic subgraph theg itself is VEL-hyperbolic. Assume that the Gromov bound-
ary ag is a topological circle. By Corollary 1.5, as in the proof of Theorem@.3,
contains a quasi-uniform binary tréeas a subgraph. It is a nice exercise in the
calculation of combinatorial extremal length to show that every quasi-uniform bi-
nary tree is VEL-hyperbolic. Alternately, &has bounded degree, the VEL-type
of B coincides with the EEL-type [23, Thm. 8.1], and since EEL-type coincides
with RW-type for locally finite graphs [23, Thm. 2.6], Lemma 2.1 implies that
B is VEL-hyperbolic. Thereforeg is VEL-hyperbolic and the characterization
theorem applies to show th@tis CP-hyperbolic.

Assume now that the Gromov boundaxy is a singleton and that the word met-
ric on G hass-inscribed triangles for a fixed positive constdnNotice that since
G is not a treeg is at least unity. Fix a basepoing, a vertex ofG. By Theorem
3.4, there is a positive constahtsuch that every compact subse &fl¢ is sepa-
rated from infinity by a path of length at mast By the exercise after Lemma 4.2,
each such separating path may be replaced by a separating path in the 1-skeleton
G of |K |eq Of length at most4/+/3) L. This allows us to construct inductively a
sequence of pairwise disjoint cycles each an edge path in the graglof com-
binatorial length at most4/+/3)L, and each separating, from infinity. It fol-
lows that every element df(vg, 00) meets everyc,|. Define a vertex label (or

v-metric in the terminology of [23]y:: V(G) — [0, o0) by
{ 1/n if vis avertex of the cycle,,
m(v) = .
0 otherwise,

which is well-defined since the cyclesare pairwise disjoint. Then the-length
of each pathy in I'(vg, 00),

Lu(y) =Y _ m(y (@),
i=1

is infinite while them-area)_ ., g, m(v)? is finite. It follows that the vertex
extremal length of the family’(vg, oo) is infinite (see [23, Sec. 2]) and, there-
fore, G is VEL-parabolic. The characterization theorem applies to showGlist
CP-parabolic. O

The calculation of vertex extremal length in case the boundary is a singleton in the
foregoing proof works in more general settings, and is easily modified to prove
the following corollary.

CoroLLARY 4.4. Letwvg be a vertex in the grapty and let{V,} be a sequence
of pairwise disjoint sets of vertices, each of which separagesom co. Suppose
there exist positive constantsand ¢ such that, for each,

CardV,) < Cn'®.

Then the graply is VEL-parabolic.
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Finally, we mention a result of Northshield [29; 30], who constructed a bound-
ary for bounded degree, planar graphs that satisfy a strong isoperimetric inequal-
ity and for which every circuit surrounds only finitely many vertices. He then
proved that his boundary, say G for the graphg, is either a topological circle

or a singleton, and that the SRW gnconverges almost surely todg G-valued
random variable. I is in addition negatively curved, the Northshield boundary
can be identified with the Poisson boundary, angd i also a plane triangulation
graph then the Northshield boundary is the Martin boundary. See [34, Sec. 7.E]
for definitions and further references.

5. Further Applications

We do not need that the embedded binary #egsed in the proof of Theorem

4.1 be quasi-uniform to conclude thais CP-hyperbolic, only the weaker condi-
tion that it be transient. Thas is in fact quasi-uniform gives more information
about the maximal circle packing f¢rthan merely that its carrier is the dik

For example, the quasi-uniform condition can be used to derive lower bounds on
the hyperbolic radii of certain circles in the maximal packing, as well as various
guasi-denseness results about circles that have uniformly large hyperbolic radii.
We quote two illustrative results that will appear later [9]. In both, we assume that
the unit diskD carries its Poincaré metric, making it a model for hyperbolic geom-
etry. Recall that there is a finite upper bound on the combinatorial length of any
simple path of degree-2 vertices in a quasi-uniform binary Be€he smallest
such upper bound is called tifiendamental lengtffor .

THEOREM 5.1. If G is a bounded-degree plane triangulation graph with max-
imal packingC that contains a quasi-uniform, binary subtr&e theng is CP-
hyperbolic and there is a uniform positive lower boundn the hyperbolic radii

of any circlesC, of C that correspond to vertices of the tree3. The boundx
depends only on the maximum degreg;aind the fundamental length &.

TueoreM 5.2. If G is a CP-hyperbolic, negatively curved plane triangulation
graph of bounded degree with maximal packihgthen there is a positive con-
stanta for which the union of the circles af of hyperbolic radii at leask forms

a quasi-dense subset of the disk in the Poincaré metric. The constiepends
only on the maximum degree ¢f and the thinness constastfor the triangles
of G.

Appendix: Negatively Curved Metrics—an Overview

References for recent metric geometry of negatively curved spaces are Gromov
[21], Cannon [13], and Alonso et al. [3], and, for the related topic of nonpositively
curved spaces, Bridson and Haefliger [10]. The older references Blumenthal [6],
Blumenthal and Menger [7], Busemann [11; 12], Aleksandrov et al. [1], and Alek-
sandrov and Zalgaller [2] are invaluble both for comprehensive treatments of met-
ric geometry and for expositions of the initial developments on metric curvature
by a previous generation of mathematicians.
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The metricp on the spac& is geodesidf, for each pair of points andy of X,
there is go-segmentvith endpointst andy. This means that there is an isometric
mapo into X defined on the interval [ (x, y)]with 0(0) = x ando(p(x, y)) =
y. The metricp is proper if closed metric ballsB, (x, R), for x in X andR > 0,
are compact.

ExXErcIsE. The geodesic metrig is proper if and only if it is complete and the
spaceX is locally compact.

The metricp isrectifiableif each pair of points ok are endpoints of a-rectifiable
path, a pathy of finite length

£ =sup{ - p(r @), e}

where the supremum is taken over all partitighef the domain interval of. The
intrinsic metricon X determined by a rectifiable metricis denoted ap, and
defined by

p«(x,y) =inf{£,(y) : y is a path containing andy }.
The rectifiable metrig isintrinsicif p = p,. All geodesic metrics are intrinsic.

ExEercise. If the metricp on the spac« is intrinsic, thenX is connected and
locally connected.

INSCRIBED TRIANGLES AND METRIC NEGATIVE CURVATURE. There are various
equivalent ways of formulating an asymptotic version of negative curvature for
geodesic metrics that captures the behavior that one expects from experience with
simply connected, negatively curved Riemannian manifolds. We prefer to work
with the geometrically appealing notions of thin and inscribed triangles, rather
than Gromov’s original approach of using hyperbolic inner products that, though
attimes offering cleaner proofs and constructions, is less intuitive to the uninitiated.
Let (X, p) be a geodesic metric space ahad nonnegative constant. Although
there may fail to be unique geodesics between poink§ d@fshould cause no con-
fusion to use the notationy to denote some geodesic segment with endpaints
andy. With this notationxyz denotes a set consisting of three geodesic segments
xy, yz, andxz. The trianglexyz is §-thin provided thep-distance from any point
on any side ofryz to the union of the other two sides is at mésiTheinternal
pointsof xyz are the pointg(x) on segmeniz, u(y) on segmentz, andu(z)
on segmenty for which

p(x, w(y) = p(x, n(@), py, nx)=ply, nz),
and p(z, u(x)) = p(z, n(y)).
If xyz is a Euclidean triangle i€, the internal points are the points of tangency

of the circle inscribed inryz. The trianglexyz is §-inscribedif the p-diameter of
the set{ u(x), u(y), u(z)} of internal points is at most
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ReEMARK. The reader should be cautious as the topic is young enough that ter-
minology has not solidified. In [3], for example, thin triangles are referred to as
“slim triangles”, whereas [13] conforms to our usage. A seemingly stronger no-
tion of inscribed triangles than ours is referred to in [3] as “thin triangles”, while
havings-inscribed triangles is rendered as “the insize is boundeti"by

DerFINITION.  We say that the geodesic metpion X hass-thin (-inscribed) trian-
glesif every geodesic triangle iX is §-thin (-inscribed), and hakin (-inscribed)
trianglesif it has §-thin (-inscribed) triangles for some nonnegative constaht
either case, the constahis called athinness constarfor p or X.

In this paper, we primarily use the propertyéinscribed triangles showcased in
the following lemma. It is for this reason that we have introduced the lesser-used
term “inscribed triangles” rather than only the more common “thin triangles”.

LemmA A.1l. If (X, p) haséd-inscribed triangles, then every geodesic triangle
xyz is §-uniform, meaning that if the poinis on segment.(z) andb on segment
xu(y) satisfyp(x, a) = p(x, b), then thep-distance betweem andb is at most

8, and similarly withx, y, andz permuted.

Proof. Sincep hass-inscribed triangles, it suffices to find pointson segmenty
andz’ on segmentz such that the pointg andb are two of the internal points of
the trianglexy’z’. Let 8, y : [0, 1] — X be unit-time parameterizations (i.e., pro-
portional to arclength) of the respective geodesic segmsrasdx z with 8(0) =
x = y(0)ands(1l) = y andy (1) = z. Defines: [0, 1] — R by

s(t) = 3Lp(x, B1)) + p(x, ¥ (1)) — p(B@), y ()],

so that the internal points of trianglg8(¢)y (t) opposites(¢) andy (¢), respec-

tively, are
u(ﬂ(t))=)/< 50 ) and M(J/(t))=/3< S0 )
o(x,2) p(x,y)

Because is continuous withy (0) = 0 and

s(D) =r=3(p(x,y)+px.2) = p(y.2) = px, w(y) = p(x, n),

s takes on every value between 0 antletrg = p(x, a) and observe thag is in
the interval [Q r]. It follows that there is a numbeg in [0, 1] such thats(rp) =
ro, anda andb are internal points opposite the respective vertices y (to) and
y’ = B(tp) in the trianglexy’z’. O

EXERcISE. Prove that every-thin triangle is 4-inscribed.

DEerINITION. The previous lemma and exercise show that the geodesic metric
has thin triangles if and only if it has inscribed triangles. Wiemas thin or in-
scribed triangles, we say thats asymptotically negatively curveat hyperbolic.

We shall usually delete the descriptively correct adjective “asymptotically” and
refer simply to anegatively curved metric.
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QuASI-ISOMETRIES. A not necessarily continuous functian 7 — X between
the metric spaced’, d) and(X, p) is a(u, C)-quasi-isometrywherey > 1 and
C > 0 are constants, if for all poinisandv of T,

ld(u, v) —C < p(AMu), A(v)) < pnd(u,v) + C.
w

A quasi-isometric mappinig a continuous quasi-isometry, and@asi-isometric
embeddings one thatis also a topological embedding. A sultsetT is M-dense
if every point of T is M-close to some point df, and isquasi-densén T if it is
M-dense for som&4 > 0. Both (7, d) and(X, p) arequasi-isometridf there is
a quasi-isometry” — X whose image is quasi-denseXnIn this case, there is a
quasi-isometnX — T whose image is quasi-denselinin fact, quasi-isometry
is an equivalence relation on the class of metric spaces.

LeEMMA A.2. For positive constantd/ and N, if V is an M-dense subspace of
T andif A: T — X is afunction for which the restrictioh|y is a (u, C)-quasi-
isometry such that, for evenyin V, thex-image of the closed metric ba|; (v, M)

is contained in the closed metric baﬂL (A(v), N),thenrisa(u, C+2uM-+2N)-
guasi-isometry.

Proof. The proof is an exercise in the use of the triangle inequality. O

LEmmA A.3. LetA,A: T — X be functions such that is a (u, C)-quasi-
isometry and\’ is N-close toir. Thend' is a(u, C + 2N)-quasi-isometry.

Proof. The proof is an even easier exercise in the use of the triangle inequality
than that of the previous lemma. O

EXERcCISE. Any geodesic metric quasi-isometric to a negatively curved metric is
itself negatively curved.

DIVERGENCE OF GEODESIC RAys. Throughout the remainder of this appendix,

(X, p) is anegatively curved geodesic metric space with,&#&yscribed triangles

for some fixed positivé, andx denotes a fixed basepoint} The next lemma
presents the key divergence property of geodesic rays in a negatively curved met-
ric space that is used several times in Section 1 to prove the theorem of the Intro-
duction. Since we use it so often in this paper, and since we could find no proof
of exactly the inequality presented in the lemma, we include a proof.

LEMMA A.4. Letog and oy be arclength parameterized geodesic régs seg-
ment$ in X based atxy and suppose that, for some parameter vaiyehe p-
distance betweesy(tg) and o1(tp) is at least2s. Then

poo(t), o1(t)) = 2(t — to) + p(oo(to), 01(f0)) — 8

for all t > tq (for whichog(¢) andoy(¢) are defined.
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Proof. Let 2r denote thep-distance betweetiy(rp) ando(tp). Sincer < tg,
§/2<to—r—+46/2

For anyz in the half-open intervalo—r +8/2, to], the triangle inequality implies
that

2r = 2(to — 1) + p(oo(1), 01(1)) < 2r — 8 + p(00(7), 01(7)),

implying that
8 < p(oo(7), 01(7)). (A.1)
Suppose there exists a parameter valgesater than or equal tg for which
p(oo(t), 01(1)) < 9. (A.2)

Let rmin be the least such value afBy continuity of the metric,
o (o0(tmin), 01(tmin)) = 9,

and the triangle inequality implies, since thalistance betweety(¢o) andoi(tp)
is at least 3, that
10 < fmin — 8/2. (A3)

Because the pointgy(tmin — §/2) ando1(tmin — 8/2) are internal points of a tri-
angle with verticescg, oo(tmin), ando1(tmin), the p-distance between them is at
mosts. By (A.3), tmin IS NOt the least parameter value greater than or equgl to
that satisfies (A.2), a contradiction. This with the previous calculation shows that
(A.1) holds for everyr larger tharrg — r + /2.

Now let r be any parameter value greater tharand set 2 equal to thep-
distance betweesy(r) andoy1(r). Thenog(r — s) andoy(r — s) are internal points
of a triangle with verticesg, oo(z), ando(7), and hence the-distance between
them is at mosé. From the previous paragraph it follows that

t—s<tg—r+34/2

Multiplication by 2 and rearrangement of this inequality yield the inequality that
we seek. O

CoroLLARY A.5. Under the hypotheses of the previous lemma,
p(oo(s), 01(t)) > (¢t —to) + (s — fo) + p(o0(to), 01(f0)) — &
for all s, t > 19 (for whichog(s) ando4(¢) are defined.

Proof. Use the triangle inequality and the previous lemma. O

The next theorem presents a characteristic property of geodesic rays in a nega-
tively curved space. Its proof is essentially that of [3, Thm. 2.19], except that the
proof there assumes (without so stating) that the constengreater thar%.
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THEOREM A.6 (Exponential Divergence of Geodesics).et og and o7 be arc-
length parameterized geodesic raysXnbased atxg and suppose that the-
distance betweeag(tg) and o1(tg) is greater thans for some parameter value
to. Then, for each nonnegative integerand each pathy from o (79 + n6) to
o1(to + nd) in the complement of the open b&|| (xo, 70 + né), the p-length of y
satisfies

L(y) = 2",

THE GrRoMOV BOUNDARY. There are two equivalent approaches to the Gromov
boundary and its topology in the literature—in terms of Gromov’s hyperbolic in-
ner product and equivalence classes of sequences that are convergent at infinity
(see [21]) and, alternately, in terms of equivalence classes of fellow-travelling
geodesic rays and Cannon’s combinatorial half-spaces (see [13]). The former has
the advantage of oftentimes providing very clean proofs of convergence results
whereas the latter has the advantage of providing good, accurate geometric intu-
ition. We present an approach here that has the advantages of both Gromov's and
Cannon’s and, at the same time, is very concise in its description and confirma-
tion that it defines a topology. This approach uses Cannon’s preference in [13] for
describing the boundary in terms of equivalence classes of fellow-travelling geo-
desic rays, but describes the topology by prescribing precisely when a sequence of
such classes converges. Any readers familiar with the two standard descriptions
of the boundary will see immediately that our description defines the same topol-
ogy as the former ones. We shall restrict our attention to the setting in which the
metric, in addition to being negatively curved, is also proper, in which case the
boundary provides a compactificatidh= X U 9X.

A geodesic rayis an isometric embedding of the interval ) into X, and
two geodesic rayso ando; areasymptotic,denoted asy ~ o3, if the Haus-
dorff distance between their images is finite, meaning that each is contained in the
n-neighborhood of the other, for some positive constari this case, it is easy
to see that in fact thefp + 2n)-fellow travel,wheregp is the p-distance between
00(0) ando1(0); this means that the-distance betweesy (1) ando (1) is at most
(0 + 2n) for every parameter value We say that the ray is basedat o (0) and
that itstraceis the imag€o| = o(]0, 00)). In our context in which(X, p) has
8-inscribed triangles, Lemma A.4 implies that when two asymptotic sgyend
o1 are both based at the common poigtthey 23-fellow travel. We use the nota-
tion [o] to denote the equivalence class of thesaynder the equivalence relation
of being asymptotic, andX to denote the set of such equivalence classes. For
each geodesic ray, extend its domain to the extended interval40] by defin-
ing o (oc0) to be the pointd] of the boundandX. We then say that is a geodesic
segmenfrom o (0) to o(c0) = [o].

For each point in the boundary, there is a geodesic saased akg such that
¢ = [o]. To see this, let be a ray for whiche = [7] and, for each positive inte-
gern, leto, be a geodesic segment frorpto 7(n). Use the fact thap is proper
in conjunction with a diagonal argument to show that a subsequence of the seg-
mentso, converges to a geodesic rayUse thin triangles to show thatandz
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are asymptotic. We use the phraséis parameterized fromg to indicate a con-
text in which all geodesic rays representing any point of the boundary are based
at xp. Notice that we may write

0X = {o(0) : o is based afkg }.

Let X denote the unioX U 3X, and define a sequence of pointsn X to con-
vergeto the pointc of X in the following way, depending on whether or nds a
boundary point. When is in X, ¢, — ¢ means that there exists a positive inte-
ger N such that the sequen¢e, : n > N } is contained inX and converges to
with respect to the metrip. Whenc is a boundary point;, — ¢ means that for
everyR > 0 there exists a positive integar such that

(i) the p-ball B,(xo, R) does not contain, wheneven > N, and
(i) foreachn > N, there exist segments from xq to ¢, ando from xg to ¢ that
65-fellow travel on the interval [OR].

Easily, limits of convergent sequences are unique and subsequences of a conver-
gent sequence converge to the limit of the sequence.

Exercise. Use Lemma A.4 to show that the convergent sequences and their lim-
its remain unchanged if item (ii) is replaced by the following statement: For each
n > N, all segments, from xg to ¢, ando from xq to ¢ 65-fellow travel on the
interval [O, R].

EXERCISE. Convergence of points of to a boundary point is defined with ref-
erence to a basepoing. Use thin triangles and a diagonal argument to verify that
the definition does not depend on the basepoint.

Define a subset of to beclosedif it contains all its limit points, where the point

c of X is alimit point of a setC if there is a sequence of points in C that con-

verges tae. It is an easy exercise to verify that this defines a topolog¥ othat

the union of two closed sets is closed uses the observation that limits are preserved

by subsequences. Throughout the paper praperarries this topology anélx

carries the subspace topology it inherits fradmObviously, the subspace topol-

ogy thatX inherits fromX is exactly thepo-metric topology, and it is easy to see

that X is open inX. Moreover, the diagonal argument (alluded to previously for

constructing rays from sequences of segments using the properness of the metric)

shows quickly thafX is sequentially compact. That is metrizable is proved in

[16; 20] and, coupled with the sequential compactness, shows thakbati its

closed subspadi are compact. Thus is a compactification ok and, for each

geodesic ray in X, the extended ray gives an embedding of the extended interval

[0, oo] into X—where, of course, [0x] has the usual topology, making it an arc.
One of the most important properties of the Gromov boundary is that quasi-

isometries between proper, negatively curved metric spaces extend continuously

to boundaries. This in turn follows from the fact thiatasi-geodesic rayshat

is, quasi-isometries of the half-line,[80) into X, fellow-travel actual geodesic

rays. This may be proved with the aid of [3, Prop. 3.3], and a consequence is
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that quasi-isometric, proper, negatively curved metric spaces have homeomorphic
boundaries.
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