Analytic Continuability of
Bergman Inner Functions

CARL SUNDBERG

0. Introduction and Preliminaries

For 0 < p < oo, the Bergman space L% consists of those functions f analytic in
the unit disk D = {z € C : |z| < 1} for which

dA
1712 = [[1r@r 2 < o0

T

If p>1then]| - | L? is a norm making L! a Banach space, and if 0 < p < 1then
dif,.e)=I1f—¢g IIZ » is a metric making L% a nonlocally convex complete metric
topological vector sﬁace.

Let {1, @3, ...} be an LY zero sequence—that is, the sequence of zeros, re-
peated according to multiplicity, of some nonidentically vanishing L% function—
and let M be the set of LY functions that vanish on the sequence {o,} to at least
the prescribed multiplicity. We let N denote the number of times that O appears in
the sequence {«,} and consider the following extremal problem:

sup{Re f™M©0): feM, |fl, <1} (0.1)

It is shown in [DKSS1; DKSS2] that there is a unique extremal function ¢ for this
problem, and that ¢ satisfies the following properties:

dA
/ / lo()|Pu(z) @ = u(0) if u is a bounded harmonic function in D;
D i 0.2)

if feM then f/p € LZ and || f/pli.z < |l fllz- 0.3)

In particular, (0.3) says that the function ¢ vanishes at each point of the sequence
to exactly the prescribed multiplicity; that is, it has no “extra zeros”.

In accordance with what has become common practice, we take (0.2) to be the
defining property of LY inner functions. The reason for the terminology lies in the
analogy to the case of the Hardy space H”. There has been much interest in these
functions in recent years, starting with Hedenmalm’s groundbreaking paper [Hed]
in which he established, among other facts, that (0.3) holds in the case p = 2. See
[DKSS1], [DKSS2], and [ARS] for further information.
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If p = 2 and the zero sequence {«,} is finite, then an easy argument shows that
the extremal function ¢ is a rational function with poles at the points 1/a,, and
hence it continues analytically across dID. A version of this fact holds also for infi-
nite zero sequences. Suppose I C 3D is an open arc that does not meet clos{a, }.
Then it is a consequence of a theorem of Akutowicz and Carleson (in [AC]; see
also [S1]) that the associated extremal function ¢ extends analytically across 1.

In [DKSS1] and [DKSS2] it is shown that, for general p, the extremal function
associated to a finite zero sequence extends analytically across dID. The authors
asked whether it were also true for general p that the extremal function associated
to a zero sequence extends analytically across any arc I C 9D not meeting the clo-
sure of the sequence. That this is indeed true is the main result of the present pa-
per. It had previously been shown to be true if the zero sequence were a Blaschke
sequence by Duren, Khavinson, and Shapiro in [DKS].

The paper is organized as follows. In Section 1 a formula yielding the analytic
continuation of extremal functions associated to finite zero sequences is derived.
As a consequence we obtain estimates on these analytic continuations. In Sec-
tion 2 these estimates are used to prove our main result. In Section 3 the formula
derived in Section 2 is used to give a different proof of a result of MacGregor and
Stessin [MS], and some related questions are discussed.

ACKNOWLEDGMENT. The author would like to thank Peter Duren for informing
him of the papers [MS] and [V].

1. The Finite Case

Let {o, . .., «,} be a finite sequence of points in D and denote by ¢ its associated
L? inner function.
Let g denote the Cauchy transform of |p|? Xp; that is,

P dA
o= [[ B datw), W

We will use the following facts about g:

dg = —||PXp in the sense of distributions; (1.2)
g is continuous in all of C; (1.3)
g(2)=-1/z for |z] = 1. (1.4)

2\ 9x iady

erator.) Of these, (1.2) is standard (see e.g. [C2, Chap. V, Thm. 3.3]); (1.3) follows
from the boundedness of ¢, which in turn is a consequence of the analytic con-
tinuability of ¢ across dlD [DKSS1; DKSS2]; and (1.4) follows for |z] > 1 from
(0.2) and for |z| = 1 from continuity.

We next cut out of I a set of nonintersecting curves y1, ..., ¥,, €ach y; con-
necting o; to a point g; € 9D (if a; = a; we assume that y; = y;). We denote
by €2 the resulting simply connected region. Because, as mentioned previously,

(Here 8 = l(ﬁ- -1 i) is the standard Cauchy—Riemann partial differential op-
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¢ has no “extra zeros”, ¢ does not vanish in © and we can define ¢?/2 in Q, for
definiteness choosing it so that ¢?/2(0) > 0. We can then define its integral

P(2) =/ eP2(w)dw for z € Q, (1.5)

where o, is some rectifiable path connecting 0 to z in Q.
We use all the functions just constructed to define

h(z) = g(@) + @ p?*(2). (1.6)

The following properties of h are important for us:

h is analytic in ; (L7
h is continuous in Q U (3D\{B1, ..., B:}); (1.3)
h(z) = —1/7+ @(@)pP%(z) for z € dD\{B1, ..., Bn). (1.9)

The first of these properties is a consequence of Weyl’s lemma (see e.g. [C2,
Chap. V, 2.12]), (1.2), and the definition of ®, which implies that 3(Pp?/?) =
@’pP/? = |p|P. The second property is a consequence of (1.3) and the analytic
continuability of ¢ across dID. Finally, (1.9) follows from (1.4) and the continuity
of ?/2 and & up to ID.

We can now state a formula giving an expression for the analytic continuation
of p. Let Q* = {1/7 : z € 2} and define

o) = EB/D o (1.10)

The continuity of & and ¢ up to dD\{B4, ..., Br}, together with the fact that
lp(z)| = 1 for z € dD [DKSS1; DKSS2], shows that we can extend (1.10) con-
tinuously to z € 0D\{By, - .., Ba}. By (1.9) this extension agrees with the original
definition of @ there, and so by (1.7) we see that (1.10) gives an analytic contin-
uation of ® to @ = Q U Q* U (8D\{B1, ..., Ba)). The nonvanishing of ¢ near
0D now shows that the formula ¢ = (®')?/P yields an analytic continuation of ¢
across each arc of dD\{B4, ..., B}

We will now derive some estimates on the functions we have constructed; these
estimates will be needed in the proof of our main result in the next section. The
estimate

1
If@)] = '(T—_—W"f”Lg’ felLf (1.11)

is well known and elementary; it follows from the subharmonicity of | f|? after
integration over {w : |lw —z| <1 —|z| }.

Suppose now that the curves y; have been chosen such that, for any z € 2, a
rectifiable path o, from O to z within €2 can be chosen along which |dw| < 2d|w]|.

Then, by (1.11),
d F4] d
O(2) = ]gop/z(w)dw's/ kel szf -
oy (7] 1 - le 0 l—r
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yielding
[@(z)] < 2log

1
e Q. 1.12
=1l z (1.12)
The estimate

lg(2)| < zeD (1.13)

T 1zl
follows from (1.11) and simple estimates on the defining integral (1.1) of g ob-
tained by dividing this integral into the integral over |w — z| < %(1 — |z]) and that
over |lw —z| > %(1 — |z]). Finally, we combine (1.11), (1.12), and (1.13) to obtain

lh(z)] < 1 z € 2. (1.14)

8
(1 =[z)?’

REMARK. These estimates can be improved somewhat. Vukoti¢ [V] shows that
(1.11) can be improved to

1
[ f(2)] = (TtW”f”Lf

and that this is best possible. Combining his ideas with some of Richter in [Ric]
yields the following estimate for L inner functions:

< —-—.
Dl = T
In particular, this shows that (1.12) can be replaced by
|®(2)] < 2sin~"z|

and hence ® has the universal bound of 7.

2, The Main Result
We are now ready to prove the analytic continuability of LY inner functions.

THEOREM 2.1.  Suppose {a,}52 ; is an LE zero sequence and that I C 3D is an
arc not meeting clos{o,}. Then the associated LY, inner function ¢ has an analytic
continuation across 1.

Proof. Since the property we wish to prove is local, it clearly suffices to prove the
following: If zy € 81D is not a limit point of {c,} then ¢ has an analytic continua-
tion to a neighborhood of z¢. Given such a zg, we construct nonintersecting curves
vn in D, each y, connecting o, to a point 8, € 0D (again, if o; = oy we set y; =
y¢) in such a way that if €2, is the simply connected open set D\{y, ..., y»}, then
the following properties hold:

the closure of | J ¥, does not contain zg, 2.1)
Q =), isopen, 2.2)

and
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each z € 2, can be connected to 0 by a rectifiable path o,
in €, along which |dw| < 2d]|w|. (2.3)

We now let ¢, denote the L% extremal function corresponding to the finite set
{og, ..., a,}, and use ¢, as in Section 1 to define functions g, in C and functions
d,, h, in 2,. The formula

u(e) = LD 2.4)
wh'*(1/2)
gives an analytic continuation of &, to Q, = Q,U QU @D\(B1,...,B:])-
Since ¢,(z) — ¢(z) for every z € D (see [DKSS1; DKSS2]), our theorem will be
proved if we can show that the functions {®,} form a normal family of functions
analytic in Q=QUQ*U (aD\clos{B,}).

Of course, the estimates we have do not give bounds on ®, at points of D,
and so we cannot immediately apply Montel’s theorem. The usual way around
this difficulty, and the way that is used at this point in the papers [AC] and [S1], is
to apply a famous theorem of Beurling (see [D]). Beurling’s theorem could also
be applied here, as will soon be evident, but the following much easier result will
suffice.

LEMMA 2.2. LetU C Cbe open and let F be a family of functions analytic in
U. Suppose there existsa p € LIOC(U ) such that log¥| f(2)| < p(2) forany f € F
and z € U. Then F is a normal family.

Proof. Let K C U be compact, and pick a § > 0 such that K; = {z € C :
dist(z, K) < 8} C U. Thenif f € F and z € K, the subharmonicity of log™| f|
implies that

1 1
log"1 /)] < — f [; gt @l aAw) < / [ pw) daw).
Thus -

| f@)] < expl:;;—z f/K o(w) dA(w)] forany feF,zeK,

so an application of Montel’s theorem [C1, Chap. VI, 2.9]; [Rud, Chap. 14, Thm.
14.6] proves the Lemma. O

We will now show that the family {®,} satisfies the hypothesis of Lemma 2.2 in
the open set 2. Write (2.4) in the form

—
®,(z) =[z+ hn(l/Z)](pp 14/2) ! z € Q. 2.5)

oP2(1/7) 9?2 (1/2)
By (0.3) and (1.11), |¢?/2(1/2)/¢?*(1/2)| < |z|/(lzl — 1). We combine this
estimate with (1.14) and use (2.5) and a little manipulation to derive the estimate
8|z[% 1
@@ < A
(Iz] — D* [p(1/2)|?

z € Q*. (2.6)
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This estimate, together with (1.12), shows that the function

log*(21og l—_ll—l), lz] <1,
log it + 108" Gy, 12l > 1,
dominates log™|®,(z)| for all n. It remains only to show that p € Lloc (©), and

this is trivial except for the term log*(1/|¢(1/z)[). To handle this we write

1
1 — —dA
//1<]z.<R og’ |<o(1/ y; 4@ = f/ S |w|4 log" 1y AW

1
R* f f loet ——— dA
SR ) 08 Ty MA@

— R* / fD log™ ¢ ()] dA(w)

_R* f fD loglo(w)] dAw)

3
< R*2Z — Rimloglp(0)),
2p

where the first term comes from (1.11) and an integration; the second term comes
from the inequality log|p(0)| < [}, logle(w)| dA(w)/m, which follows from the
subharmonicity of log|g]|.

This completes the proof of Theorem 2.1. W

3. Some Related Results

It was shown by Horowitz in [Hor] that the union of two L% zero sequences is
not necessarily an L% zero sequence. However, the following is an immediate
consequence of Theorem 2.1.

COROLLARY 3.1. Suppose {o,} and {B,} are two LE zero sequences such that
clos{a,} Nclos{B,} N D = @. Then {,} U {B,)} is an LE zero sequence.

Proof. Let ¢; and ¢, be the L% inner functions associated with {c,} and {8,},
respectively. Then, by Theorem 2.1 and an easy compactness argument, @;¢; €

LE. ]
In [MS], MacGregor and Stessin give the following formula for the L% inner func-
tion ¢ associated with a finite zero sequence {ay, ..., a,}:
b a7 3.1
=B — . .
0(2) (z)[ ; — &,-kz] 3.1
Here

lojl aj =z
B(z) =
(@) I—I o l—ajz
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is the Blaschke product associated with {«;} (where we adopt the convention
[0[/0 = —1), and {«;j,, ..., a;]} is a listing of the distinct nonzero elements of
{orq, . . ., o, ). We here give an alternate proof of this formula based on the ideas in
Section 1. Using the notation in that section, it is easy to see from (1.6) and (1.5)
that

h(z) = hj (@) + (@) 9" (2), (3.2)

where 4; is analytic in a neighborhood of ;. It follows from (3.2) and (1.10) that,
ifaj #0,

z+h;(1/2)
d(2) = O(a;) + ——2 (3.3
D= R - ) )
and hence
PP (2) = ¥'(z) = 5@ 3.4)

0P2(1/2)(1 — &z)

where H; is analytic in a neighborhood of 1/&;. Thus (¢/B)?/? is meromorphic
near 1/¢; with at worst a simple pole there. Similar reasoning shows that ¢/B is
analytic and nonvanishing in a neighborhood of co. Since ¢/ B does not vanish in
clos D, we can finally conclude that (¢/B)P/? is rational with simple poles or re-
movable singularities at those «; that are nonzero (in fact, it is not difficult to show
it must have poles at these points). The formula (3.1) follows. (|

It should be mentioned that our method does provide a little more information than
that of MacGregor and Stessin, namely that ¢?/2 possesses a primitive in 2. This
is of course equivalent to the statement that

/ e?*(2)dz =0
I‘.

if I'; is any rectifiable simple closed curve enclosing «;; and 1/&;, and not enclos-
ing o or 1/ay if ax # «;. In fact, it can be shown that this condition, together
with ||¢|l 7 1, determines the coefficients » and a.

Finally, we discuss an interpolation result of Akutowicz and Carleson. Suppose
{a,} is an Lg zero sequence of distinct points in D and that {w,} is a sequence
of points in C such that there exists an f € L2 such that f(e,) = w, for all n.
Let ¢ be the L? function of minimal norm accomplishing this interpolation. Then
Akutowicz and Carleson show in [AC] that  continues analytically across any
boundary arc not meeting clos{«,} (this is the result alluded to in our Section 0).
It is natural to ask if this result holds in L} for p # 2. The following example
shows that it does not, even in the case of two interpolation points.

LetO <r < 1 and set

1- r)?
(—r2)?

Since 1 and 1/(1 — rz)? are the reproducing kernels for the points O and r, we see
that v is the minimal L2 interpolating function taking 0 to 1 — (1 — r)? and 7 to

(@) =1
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1 — 1/(1 + r)2. The function v has a simple zero at z = 1 and no other zeros in
closD. Let B(z) = z[(r — z)/(1 — rz)]. By minimality,

dt

I +tFyBl ;2 =0 VF €L,
t=0

which leads to A
f/hpPBF—— =0 VFelLl (3.5)
D T

For p > 1 we now argue as in the proof of Theorem 4.2.1 of [S2, p. 55]: if Fisa
polynomial, then

IW*PIg, = 117

2 dA
= [[re+vrren BEZ Gy ey

/p
< [fflwﬂp + Iﬁz’lpFBlpééjl
D /2

dA (p—D/p
y [ f f Wl(z—zfpxp/(p—n)__]
D T

= W27 + $>PFBll g 1927115

Dividing by ||w2/P||7,", we see that

Lz
1W?Plie < WP + $>/PFB|p

for any polynomial F. Since the functions of the form 2/?F (F a polynomial)
are clearly dense in L}, this shows that 1/ 2/7 is the L% minimal interpolating func-
tion taking 0 to [1 — (1 —r)?]%/? and r to [1 — 1/(1 +r)?}?/?. Of course, ¥2/P has
a zero of order 2 /p at 1 and hence does not extend analytically around 1 if p > 1
and p # 2.
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