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1. Introduction

Let A(DV) denote the algebra of functions analytic in the polydisk D¥ that ex-
tend continuously to its closure, and let 7 be the category of all Hilbert A(DY)-
modules. Briefly, an object in H is a Hilbert space H, together with a continuous
bilinear multiplication A(DY) x H — H. Douglas and Paulsen [5] were the first
to approach the category H as a natural setting for certain questions of operator
theory. For example, considering the operator variables, the operators of multipli-
cation by zi, ..., zy in H, the transition from 1 to N commuting operators can be
viewed as a natural one. In the present note, we deal with several questions about
Hilbert modules over A(ID?) that have been previously answered for N = 1.

One of the problems left open by Douglas and Paulsen [5] was that of finding
projective objects in the cateogry H = H(A) for any function algebra A. An an-
swer in the case that A = A(ID) was given in [2], where it was proved that unitary
Hilbert modules (Hilbert modules where the operator variable is unitary) are al-
ways projective. One purpose of the present note is to obtain an extension of the
result to modules over A(DV) (see Theorem 3.1).

A second question of importance is whether the category H has enough projec-
tives, in the sense that every object in H is a quotient of some projective module.
Another result of [2] shows that the category C of cramped Hilbert modules—that
is, Hilbert modules similar to contractive ones—has enough projectives. Specif-
ically, it was proved that isometric Hilbert modules are projective in C and that
the Sz.-Nagy—Foias model for a completely nonunitary contractive Hilbert mod-
ule over A(ID) gives a projective resolution. On the other hand, Pisier’s recent
example ([7], see also [4]) demonstrates that the isometric Hilbert modules are
not in general projective in H(A(ID)). In particular, the vector-valued Hardy space
H2(H) is not projective, though it remains unknown whether non—vector-valued
H? is projective in . The examples make it seem doubtful that H(A(D)) has
enough projectives, though there is not yet any proof.

For A(D¥)-modules, the situation is worse. Inthe cramped category C(A(D?)),
the best that can be proved is that, if one of the operator variables is an isom-
etry and all of the others are unitary, then the object is projective (Theorem
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3.2). On the other hand, a result of Cotlar and Sadosky can be used to prove
that Extl, (H2(D?), H2(D?)) # 0 and hence H?(D?) is not projective (see Sec-
tion 6).

Much of our paper [1] was devoted to characterizations of ExtIH (K, H*(D)). In
Sections 4 and 5, we give several criteria for the vanishing of Extl, (K, H?(D¥))
for N > 2. This happens, for example, when K is finite-dimensional, in sharp
contrast to the case in which N = 1.

2. Lemmas on Vanishing of Cocycles

Our principal tool is Lemma 2.1 of this section. Recall from [1] that ExtlH (K, H)
is the quotient A/B, where A is the set of all continuous bilinear functions
0:A x K — H that satisfy o(ab, k) = ao(b, k) + o(a, bk) for a,b € A and
k € K, and where B is the set of all 0 € A of the form o(a, k) = aL(k) — L{ak),
wherea € A, k € K, and L: K — H is a bounded operator.

LEMMA 2.1. Let H and K be Hilbert modules over A(DY), let b lie in the unit
ball of A(DY), and suppose that the operator Uf = bf on K is a co-isometry.
Ifo: A(DY) x K — H represents a cocycle, then o is equivalent to a bounded
bilinear map o* that satisfies the following conditions:

(i) o*(b,g) =0 forall g € K such that U*Ug = g; and

(ii) ifc € A(DY) is such that multiplication by c on K doubly commutes with U,
andif Ko C {h € K | o(c, h) = 0} is U*-invariant, then o*(c, h) = 0 for
he Ko.

Proof. As |lo®", U*f)]|isbounded (n =0, 1, ...), we can define a translation-
invariant Banach limit LIM,, on H such that

Lf =LIMa(®", U*"f)

exists in the weak operator topology on L(K, H). Set

o*(a, f)=o0(@a, f)+aLf — Laf

fora € A(DY) and f € K. Then o* is equivalent to o.
(i) For g as in Lemma 2.1(i), we have

o*(b,g)=0(b,g) — LEM[a(b", U*"Ug) — bo (", U*"g)]
=0 (b, g) — LIM[o (", U*""'g) — ba (", U*"g)]
= o(b, 8) — LIM[bo ("™, U™"'g) + o(b, g) — bo (b", U*"g)]
= bLIM[o(b", U™"g) — o, U 1g)] =0

by translation-invariance.
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(i1) Let & € Ko. We have
o*(c,h) = cLh — Lch = LInM[ccr(b", U**h) — o (b", U*"ch)]
= L£M[cr(cb", U*h) — o(c, h) — o(cb", U*™h) + b"o(c, U h)]
= LInM[b"a(c, U*h) —o(c,h)] =0
by U*-invariance of Kj. ]
Lemma 2.1 will be used in the following form.

LEMMA 2.2. Let H and K be Hilbert modules over A(DY) and suppose that:
@) by, by, ..., b, lie in the unit ball of A(DV) for some n < N;
(b) U;: K — K, defined by U; f = b; f, are doubly commuting and are coisom-
etries, i =1,...,n;
(c) K; are subspaces of K with U}U; f = f for f € K; and with K; invariant
underUJf" (j=i+1,i+2,...,n); and
(d) o represents a cocycle in Ext%i (K, H).
Then o is equivalent to o* satisfying

o* (i, /)=0 (2.3)
for feK;andfori =1,...,n.
Proof. We use induction on n. If n = 1, apply Lemma 2.1 with b = b;,.

If we have obtained o satisfying (2.3), fori =1, ..., k, we then apply Lemma
2.1 with b = bg4; to obtain o* with

o*(b;,g) =0 for g € K; 2.4
for i = k 4 1. By part (ii) of Lemma 2.1 with ¢ = b; and Ky = K;, we see that
o* also satisfies (2.4) for eachi < k. [l

3. Projectivity

In this section, we use Lemma 2.2 to obtain generalizations of the projectivity
results of [2].

THEOREM 3.1. If K is a Hilbert module over A(DV) such that Uy, Us, ..., Uy:
K — K defined by U; f = z; f are unitary, then K is projective in the category
of Hilbert modules over A(DV).

Proof. The hypotheses of Lemma 2.2 are satisfied withb; = z; (i = 1,...,N)
and with K| = K = --- = K,, = H?(D"). Thus any o representing a cocycle in
Ext} (K, H) is equivalent to 0 for any H. O

The other projectivity result of [2] assumes that multiplication by z on K is isomet-
ric and yields projectivity in the category C of Hilbert modules similar to contrac-
tive ones, the so-called cramped Hilbert modules. The generalization that follows
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is disappointing in that N — 1 of the U; must be assumed to be unitary. However,
it appears to be the best possible resulit.

THEOREM 3.2. IfK is a Hilbert module over A(DY), if U;: K — K are given by
Uf=zif(i=1,...,N),andif U is anisometry and U,, . .., Uy are unitary,
then K is projective in the category C of cramped Hilbert modules over A(DV).

Proof. Let H be a cramped Hilbert module over A(D¥) and let o represent a cocy-
clein Ext}; (K, H). View H and K as cramped Hilbert modules over A(ID) by re-
stricting the action of A(ID¥) to the first variable. By the projectivity of isometric
Hilbert modules in the one-variable cramped category, there exists L € L(K, H)
with
o(z1, f) =Lz f —zlf, feK.
Let
o'(a, f) =0, f)+aLf — Laf for f e K, a € A(DV).

Then o’ represents a cocycle in Exte(K, H) equivalent to o, and satisfying
o'(z1, f) =0for f € K.

Now apply Lemma 2.2 with ¢’ replacing o, with b; = z;43,i = 1,...N — 1
(= n), and with K; = H2(DY),i = 1,..., N —1. The proof of Lemma 2.2 shows
that the resulting o* satisfies 6*(z;, f) = 0 for f € K. Indeed, at each step in the
induction, o satisfies o(z;, f) = 0 for f € K = Kjp, and Lemma 2.1 implies that

0*(z1, f) =0for f e K. O
If the hypothesis of Theorem 3.2 is replaced by the assumption that Uy, . . ., Uy are
isometries and Ugy1, ..., Uy are unitary for some k (1 < k£ < N), then K need

not be projective in the cramped category over A(ID?). Indeed, for the case k = N,
we shall show in Section 6 that Exth (H2(D"), H2(D¥)) # 0 for N > 1. Hence
a counterexample to a generalization of the last theorem is obtained as follows.

For 1 < k < N, let K = H?(D%), as a Hilbert module over A(DV), where
we define multiplication by the first k coordinate functions according to the usual
action of A(DV) on H?(D*):

U1f=Zlf,...,ka=Zkf, fEK.

For j = k + 1, ..., N, multiplication by the remaining coordinate functions is
defined by
Uif=f Jj=k+1,...,N.

Then Uy, ..., Uy are isometric, Uiy, - . ., U, are unitary, and
Extl (K, K) = ExtL(H*(D¥), H*(D¥)) # 0
by Theorem 6.1 below.

4. Vanishing of Ext}, (K, H2(DY))

The main topic of [1] was the group Ext}, (K, H*(DV)), for N = 1 and for a
Hilbert module K over A(ID). In the present paper, we obtain versions of some of
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the theorems of [1] for HZ(D¥), N > 1. Some theorems are less precise than in
[1]. For example, we have not obtained a characterization of coboundaries analo-
gous to [1, Prop. 3.3.1]. Other theorems are radically different in the polydisk.

The main tool in [1] was that, if o represents a cocycle in Ext}, (K, H2(D')),
then o can be taken to have the form

U(Z’ f) = (fa kO)

for some kg € K. The analog to this in several variables is the following.

THEOREM 4.1.  If o represents a cocycle in Extl, (K, H?(DV)), then o is equiv-
alent to

a* A x K — H2(DY),
with the property that

o*(zj, f) e H* (DY) © z/H*(DY) for feK
withj=1,2,...,N.
Proof. For convenience we consider adjoints. Suppose that H2(D¥) denotes the
Hilbert space H?(D") with the actions
zi- f=T)f, feHDY),
where T, is the usual multiplication by z;.

Let o represent a cocycle in ExtIH (H2(D¥), H). We claim that o is equivalent
to a (bounded, bilinear) ¢* such that

kero*(zj, ) D Z;HZ(DY), j=1,...,N. (4.2)

Choose n = N and b; = z; in Lemma 2.2. Then Uj; is the adjoint of T;;, and so
U} is an isometry and U}U; f = f forall f € z;H?(D"). From Lemma 2.2, we

conclude that o is equivalent to o* satisfying (4.2). ]
COROLLARY 4.3. Suppose that {1, ...,{n € D, ny,...,ny € Zy,and f € K
such that

(Zj*fj)njf=0, j=1,...,N.
If o is the bilinear function o * obtained in Theorem 4.1, then o(a, f) = 0 forall
a € A(DM).

Proof. We compute

o((z1 — )" (z2 — §2)"%, f)
= (21 — {D)Mo((z2 — &2)"%, f) +o((z1 — &)™, (22 — §£2)™2 f)
= (22 — £2)"?0((z1 — &)™, f) +0((z2 — &)™, (z1 — &)™ )
so that

(z1 = )" o ((z2 — )", ) = (22 — )Mo (z1 — )™, ). (44)
Using
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' nl—l s .
o(@1— )™, )= Y @1 — &)o@ — &, @ — e)™ )
j=0

np—1
=Y @1 — &)o, @ — )" ) (4.5)
=0

we conclude that o((z; — &)™, f) is a polynomial in z; (with coefficients which
are H? (DY ~1!)-functions of z, . .., zy) of degree at most n; — 1. Therefore, the
right side of (4.4) is a polynomial in z; of degree at mostn; — 1. Fixing z, ..., Zn
in D in (4.4) we get that o ((z2 — &2)™2, f) is a rational function (of z;) of the form

o((z2 — )", f) = plz)(z1 — &)™,

where p is a polynomial of degree at most #; — 1. Since o((z2 — £2)" 2, f) lies
in H?(D), for 23, . .., zy fixed in D we must have

o((z2 — )", f) =0z — &)™, f) =0.

This implies that the coefficient of each power of z; — ¢; must vanish in (4.5); in
particular, o(zq, f) = 0.
Similarly, o(z2, f) = 0(z3, f) =---=0o(zw, f) =0. O

For Hilbert modules over A(ID), we proved in [1] that if (multiplication by z on)

K is isometric, then
Extl (K, H?*) =0

and that, in several cases (including dim K < o0), we have
Ext}, (K, H?) = {ko € K : z"ko — O}.

Three more corollaries of Theorem 4.1 show that the situation is quite different in
more than one variable.

CoOROLLARY 4.6. Ifthe linear span of the joint (generalized) eigenvectors of mul-
tiplication by zi, . . ., zy is dense in K, then Ext} (K, H*(DV)) = 0 for N > 2.

CoroOLLARY 4.7. If K is finite-dimensional, then Ext!H(K, H2(DY)) = 0 for
N > 2.

COROLLARY 4.8. Ext}, (H2(DV), H2(D¥)) = 0 for N > 2.

5. More on Vanishing of Ext}, (K, H)

In this section we develop a different criterion for the vanishing of ExtIH (K, H).
The condition depends upon the action of just one element of A(DV) on K.

LEMMA 5.1. Let H and K be Hilbert modules over A(DY) (N > 1), and suppose
that

(i) b lies in the unit ball of A(DY),

(ii) U: K — K, defined by Uf = bf, is unitary, and



Projectivity and Extensions of Hilbert Modules over A(DY) 371

(iii) the only operator T € L(K, H) satisfying

bTf —Tbf =0
is the zero operator.
Then Ext}, (K, H) = 0.

Proof. Leto: A x K — H represent a cocycle in ExtlH(K , H). Since ||b]|co < 1,
we have that

lo®@™, U”NI <cllfl, feK.

Let LIM,, be a translation-invariant Banach limit, and define L as the limit
Lf = LEMa(b”, Uu*f), fek
in the weak operator topology on L(K, H). We claim that
o(a, f)=Laf —aLf, feK 5.2)

for every a € A(DV).
First of all, (5.2) holds for a = b. Indeed,

(Lb—-bL)f = L{lM[ar(b”, U 1fy —bo (", U* )]
=LIM{a (b, U""'U™'f) + blo@" 7", U1 f) — o (", U™ )]}
=a(b, ). ‘
Now, in order to verify (5.2) for general a € A(DY), we set
Tf =Laf —aLf —o(a, f)
and prove that T is the zero operator by (iii). We have
Tbf —bTf = (La —alL)bf —o(a,bf) —b(La —al)f + bo(a, f)
= Labf —aLbf — bLaf +abLf + bo(a, f) —o(a, bf)
= (Lb—-bL)af —a(Lb—bL)f + bo(a, f) —o(a, bf)
=o(b,af) —ao(, f)+bo(a, f) —o(a, bf),
since (5.2) holds with a replaced by b. This yields
Tbf —bTf =o(b,af)+ba(a, f) —lo(a, bf) +aoc(b, f)]
=o(ab, f) —o(ab, f) =0,

which proves the lemma. O
The following three corollaries demonstrate uses of Lemma 5.1

COROLLARY 5.3. LetUf = z;f on K and Vf = zy f on H satisfy

D U=1Iand
2) ker(V —1) =0.

Then Extlﬂ(K, H)=0.
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COROLLARY 5.4. Suppose that Uf = z; f is unitary on K and that Vf = z; f on
H is a unilateral shift. Then ExﬂH (K, H) = 0. In particular,

Exty, (K, H* (D)) = 0.

Proof. In this case, VT = TU implies V*TU*" = T and V*TU™*" tends to O in
the weak operator topology. O

COROLLARY 5.5. IfUf = bf is unitary on K for some nonconstant b in the unit
ball of A(DY), then
Ext}, (K, H3,(DY)) = 0.

6. On Ext!(H2(D¥), H2(DY))

A recent result of Cotlar and Sadosky [3] can be used to prove the following the-
orem.

THEOREM 6.1. Let N > 1. Then

Ext, (H2(DY), H*(DY)) #0 and Extl, (H>(DV), H2(DY)) £0. (6.2)
In particular, H? (DY) is not projective or injective, even in the cramped category.
This theorem is in contrast to the case where N = 1. In [1], the vanishing of
Ext,(H? (D), H2(ID)) was proved; indeed, it was shown that

Ext), (K, H*(D)) =0
for any isometric Hilbert module K ; see also [6, Cor. 2]. Projectivity of H?(D) in
the cramped category was proved in [2, Thm. 3.1].
Proof of Theorem 6.1. The exact sequence
0 — H*(DY) — LA(TV) - L2(TY)/H2(DV) — 0,
where the first map is inclusion and the second is the quotient map, gives rise to
the long exact sequence
Hom(H?, H?) — Hom(H?, L?) — Hom(H?, ]L2/ H?) — Ext'(H?, H?)
— Ext!(H?, L?) — Ext'(H?, L%/ H?).

(The proof in [2, Prop. 2.1.5] using pushouts works for modules over the poly-
disc algebra.) We have Hom(H?, .2) = L°; that is, every Hilbert-module map

of H? into 1.2 is multiplication by an L function. In addition, Hom(H?Z, L2/ H?)
is isomorphic to the space of Hankel operators

H, f - (- P)of, feH~. (6.3)

The precise set of Hankel operators intended here is those with symbol ¢ such that
(6.3) defines, for polynomials f € H?, an operator H, with a bounded extension
from H? to L2 © H2.
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Now suppose Extlc (H?, H?) = 0. The long exact sequence shows that the map
from Hom(H?, 1.?) to Hom(H?, I.?/ H?) must be onto. That is, every bounded
H, must be expressible in the form Hy, for some ¥ € L. But by [3, Thm. 2.1]
there exist bounded H,, that are not of this form, for any ¢ € L*, if N > 1. This
contradicts the assumption that

Exth (H*(DY), H*(DY)) = 0.

The nonvanishing of Ext}, (H?(DV), H?(D")) follows from the fact that a short
exact sequence which fails to split in C will also not split in 7.
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