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Suppose that D C C” is a smoothly bounded domain, that is, suppose D is
bounded and 9D is C*°-smooth. We assume that the group Aut(D) of holomor-
phic automorphisms of D is noncompact; this means (thanks to a classical result
of H. Cartan) that there is a point g € 3D such that, for some p € D and a se-
quence { f;} C Aut(D), one has fj(p) — g as j — oo. Such a point g is called
a boundary accumulation point for Aut(D) (see [GK1] for a discussion of this
matter).

Let S(D) denote the set of all boundary accumulation points for Aut(D). Exist-
ing examples of domains with noncompact automorphism groups (see [FIK] for a
discussion of the case of Reinhardt domains), for which the set S(D) can be found
explicitly, indicate that this set should enjoy some explicit regularity properties.

For instance, let us for the moment restrict attention to smoothly bounded Rein-
hardt domains. It follows from [FIK] that, for such a domain D, S(D) is always a
compact, connected, smooth submanifold of dD. For such domains one can also
observe other interesting properties of S(D) such as the constancy and minimal-
ity of the rank of the Levi form of D along S(D) (see [H] for the genesis of these
ideas); there is also a certain relation between this rank and the dimensions of the
orbits of the action of Aut(D) on D. Similarly, the type in the sense of D’Angelo
[D1] is constant and maximal along S(D). Many of these properties, when con-
sidered for general domains, appear to be related to the conjecture of Greene and
Krantz [GK2] which states that every boundary accumulation point for a smoothly
bounded domain must be of finite type.

In the present paper we begin a systematic study of the set S(D) for a fairly
general class of domains, and obtain foundational results on its topology and the
relation of S(D) to other invariant subsets of 3 D. We thank H. Boas, R. Remmert,
J. Wolf, and S. Fu for stimulating remarks and suggestions concerning this work.
We are also grateful to K. Diederich for a very valuable discussion of the results
of this paper.

We say that 9D is variety-free at ¢ € oD if there are no nontrivial germs of
complex varieties lying in dD and passing through q.
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PROPOSITION 1. Let D be a bounded domain in C". Suppose that dD is variety-
free at each point of S(D). Then S(D) is compact.

Proof. We need only prove that S(D) is closed. Let {gx} be a sequence of points
from S(D) such that g — g € 3D as k — oo. Since 9D is variety-free at each

point g, it follows that for every g; there is a sequence { fkj } from Aut(D) such

that £/ converges to the constant map g in all of D as j — oo (see [GK1]).
Fix now a sequence {&}, &x > 0, & — 0 as k — oo. Next, fix a point p € D
and for every k find an index j (k) such that | fk’ (k)( P) — qx| < &¢. It is now obvi-

ous that £/®(p) — g as k — oco. Hence g € S(D) and S(D) is closed. O

REMARKS. (1) For smoothly bounded domains, the variety-free assumption in
Proposition 1 would follow from the conjecture of Greene and Krantz.

(2) By Proposition 1, if D is smoothly bounded, pseudoconvex, and of finite
type then the set S(D) is nowhere dense in dD unless D is biholomorphically
equivalent to the unit ball. Indeed, since S(D) is closed, it would have interior
points if it was not nowhere dense. For pseudoconvex domains of finite type,
strictly pseudoconvex points are dense in dD (see [K1]), so S(D) would contain
a strictly pseudoconvex point and by [R] D would be holomorphically equivalent
to the unit ball.

THEOREM 2. Suppose that D C C" is a smoothly bounded pseudoconvex do-
main of finite type. Then, if S(D) contains at least three points, it is a perfect set
and thus has the power of the continuum. Moreover, S(D) is in this case either
connected or the number of its connected components is uncountable.

Proof. We note that any automorphism of D extends to a C*°-automorphism of
D (see e.g. [D2)).

Assume that S(D) contains at least three points. We will first show that S(D)
cannot have isolated points. Indeed, let ¢ € S(D) be an isolated point. Let { f;}
be a sequence in Aut(D) such that f; — g in all of D as j — co. By passing to
a subsequence we can also assume that f}.‘l — rin all of D where r € S(D).

Suppose first that r = g. Since S(D) contains at least three points, one can find
two distinct points s, ¢ € S(D), s,t # q. Then, by Theorem 1 of [B], fj(s) —»
g and f;j(t) - g as j — oo. Since ¢q is an isolated point of S(D) and each f;
preserves S(D), we conclude that, for all sufficiently large j, one has fj(s) =
fi(t) = q. This is impossible since every f; is a one-to-one mapping on D.

Suppose now that r % g. Then there is an s € S(D) such that s £ g, r. Then,
by [B]l, fi(g) — q and fj(s) — g as j — oo, which implies as before that for
all sufficiently large j, f;j(q) = fj(s) = g; this is again impossible since the f;
are one-to-one on D. Thus, if S(D) has at least three elements then S(D) does not
have isolated points and hence is a perfect set.

Assume now that S(D) is disconnected and that the number of its connected
components is not uncountable. Let S(D) = | J, Sx(D) be the decomposition of
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S(D) into the disjoint union of its connected components. We will show that, for
every ko, every g € S,(D), and every neighborhood U of ¢, there exists k; #
ko such that U N Sk, # @. This implies that the number of connected components
of S(D) is infinite and that each of the sets X,, = S(D) \ U}Z’zl Sy (D) is open
and dense in S(D). Then, since S(D) is compact (by Proposition 1) and since
Noo_; Xm = @, the Baire category theorem gives a contradiction.

Let Sk, (D) be a component of S(D) and let g € S, be such that there exists a
neighborhood U of ¢ that does not contain points from S (D) with k # k¢. Since
S(D) does not have isolated points, S,(D) is not a one-point set. Therefore, by
decreasing U if necessary, we can assume that Sg,(D)\U # @.Let {f;} C Aut(D)
be such that f; — ¢ and fj_1 — rinall of D, withr € S(D) as j — co.

Suppose first that r € S, (D). Then, for any other connected component Si, (D)
of S(D) with k; # ko, by [B] one has f;(S, (D)) C U for all sufficiently large
j; this is impossible since U does not contain an entire component of S(D). If
r & Sk, (D), then fj(Sx, (D)) C U for all sufficiently large j, which is again
impossible.

Thus, S(D) either is connected or has uncountably many components. O

ReEMARK. It follows from [Z] that, if D is a bounded pseudoconvex domain that
is also algebraic (i.e., given in the form D = {z € C" : P(2) < 0}, where P(z)
is a polynomial such that grad P # 0 on dD), then the set S(D) has only finitely
many connected components. Hence, for such domains Theorem 2 implies either
that S(D) contains only one or two points or that S(D) is connected and has the
power of the continuum.

As noted in the proof of Theorem 2, for a smoothly bounded pseudoconvex do-
main of finite type, the set S(D) is invariant under the extension of an automor-
phism of D to the boundary. In the following proposition we show that S(D) is
generically the smallest invariant subset of dD.

PROPOSITION 3. Let D C C" be a smoothly bounded pseudoconvex domain
of finite type with noncompact automorphism group. Suppose that A C 0D is
nonempty, compact, and invariant under Aut(D). Assume further that A is not a
one-point subset of S(D). Then S(D) C A.

In particular, if Aut(D) does not have fixed points in dD, then S(D) is the
smallest compact subset of dD invariant under Aut(D).

Proof. Since A is closed, it is sufficient to show that every point of S(D) belongs
to A. Letg € S(D) and { f;} C Aut(D) be such that f; — g and fj‘1 — rinall
of D as j — oo, for some r € S(D). Since A is not a one-point subset of S(D),
there is a pointa € A, a # r. Then, by [B], fj(a) — q as j — oo. Since A is
invariant under any f;, we see that fj(a) € A for all j and thus g is either an ac-
cumulation point for A, or, if fj(a) = g for some index j, theng € A. O

We now derive from the preceding proposition several corollaries regarding par-
ticular sets A.
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Fix 0 < k < n—1 and denote by L; (D) the set of all points from 3D where the
rank of the Levi form of dD does not exceed k. Clearly, each set Ly (D) is a com-
pact subset of 3D and is invariant under any automorphism of D. Let /; denote the
minimal rank of the Levi form on 3D, and /, the minimal rank of the Levi form
on aD \ L;, (D). For these sets, Proposition 3 gives the following corollary (first
proved in [H]). Note that the proof in [H] was also based on the results of [B].

COROLLARY 4. Let D be as in Proposition 3. Then either

(i) S(D) Cc Ly, (D) or
(ii) Ly, (D) is a one-point subset of S(D) and S(D) C Ly, (D).

Proof. 1If L; (D) is not a one-point subset of S(D) then, by Proposition 3, S(D) C
L;, (D). Suppose now that L; (D) is a one-point subset of S(D). Then, since
L, (D) is strictly contained in L;, (D), one has S(D) C L, (D). ]

By a similar argument one can endeavor to prove an analogous property of the
type t(q), g € 0D, in the sense of D’Angelo. Indeed, denote by 7} (D) the set of
all points ¢ € 9D where 7(g) is at least k. We choose ¢ and ¢, such that T;, (D) #
@, to < t1, and there exists a point of type ¢, in D \ T;, (D). Since t is invari-
ant under automorphisms of D, so is every set T; (D). However, the sets 7 (D) do
not have to be closed, as the type function T may not be upper-semicontinuous on
0D (see e.g. an example in [D2, p. 136]). Therefore, for the type we have only a
somewhat weaker result.

COROLLARY 5. Let D be as in Proposition 3. Then either

i) S(D) C T;,(D) or
(ii) T;,(D) is a one-point subset of S(D) and S(D) C T;,(D).

In place of the type function t, one can consider the multiplicity function @ on D
(see [D2, p. 145] for the definition), which is also invariant under the extensions
of automorphisms to dD. It should be noted that, for g € 3D, the number t(g)
is finite if and only if @(q) is finite. In contrast with t, however, the function u
is upper-semicontinuous on dD. Analogously to what we have done above for the
function t, denote by M, (D) the set of all points g € 9D where p(q) is at leastk,
and choose m; and mj such that m; = maxgzeap (g), ma < my, and there exists
a point of multiplicity m» in 0D \ M, (D). Due to the upper-semicontinuity and
invariance of u, each set M (D) is a compact subset of 3D that is invariant under
Aut(D). This observation gives the following analog of Corollary 6 for My, M,,.

COROLLARY 6. Let D be as in Proposition 3. Then either

i) S(b) c M,,,(D) or
(i1) M,,,(D) is a one-point subset of S(D) and S(D) C M,,(D).

The proofs of Corollaries 5 and 6 are completely analogous to that of Corollary 4.
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REMARKS. (1) It is plausible that Theorem 2 and Corollaries 4—-6 hold without
the assumptions of pseudoconvexity and finite type.

(2) We note that, in complex dimension 2, the type 7 is upper-semicontinuous.
As a result, Corollary 5 can be stated in this case without passing to the closures
of the 7};. Also, in complex dimension 2, Corollary 5 is a consequence of the
explicit classification of smoothly bounded pseudoconvex domains of finite type
with noncompact automorphism groups [BP1].

(3) For a smoothly bounded circular domain, the set S(D) clearly cannot be a
one- or two-point set. Thus, Theorem 2 gives that, for smoothly bounded pseudo-
convex circular domains of finite type, S(D) is always a perfect set. Next, since
for such domains the automorphism group cannnot have fixed points on the bound-
ary, Corollary 4 implies that in this case the Levi form of 8D has constant rank
along S(D) and minimizes its rank over 3D on S(D) (see also [H]). It also should
be noted here that, by the results of [BP2], every smoothly bounded convex do-
main of finite type with noncompact automorphism group is biholomorphically
equivalent to a certain polynomially defined domain that admits an action of the
2-dimensional torus T?2. Therefore, for any such a domain, S(D) also is a perfect
set, and the rank of the Levi form is constant and minimal on S(D).

(4) The results of [FIK] imply that, for a smoothly bounded Reinhardt domain
D, the type is constant along S(D) and maximizes on S(D) the type over dD. It
is an interesting question whether there exists an analog of this fact for more gen-
eral domains (cf. Cor. 5, Cor. 6). Note that one can make a statement analogous
to Corollary 6 for the multitype introduced in [C], since the multitype function is
upper-semicontinuous with respect to lexicographic ordering.

(5) It also follows from [FIK] that, for a smoothly bounded Reinhardt domain
D, the real dimension of any orbit of the action of Aut(D) on D is atleast2(k+ 1),
where k is the rank of the Levi form of dD along S(D). Moreover, there is pre-
cisely one orbit of minimal dimension 2(k + 1) (see [K2] for a discussion of this
phenomenon). Also, the orbit of minimal dimension approaches every point of
S(D) nontangentially, whereas any other orbit approaches every point of S(D)
only along tangential directions. It would be interesting to know if similar state-
ments hold for more general (e.g. circular) domains. The existence of an orbit
that approaches S(D) nontangentially would be very important for a proof of the
Greene—Krantz conjecture. It also could be used to show that S(D) is a smooth
submanifold of aD.

We conclude this paper with a list of immediate open problems arising from our
discussion that complement some of the preceding remarks.

OPEN PrROBLEMS. (1) For a smoothly (C°°) bounded domain D C C”, can the
set S(D) be a one- or two-point set? Note that the reference [GK3] gives an ex-
ample of a domain with C!~¢ boundary for which S(D) has only two points. It
appears that this example can be modified, using a parabolic group of automor-
phisms, so that S(D) has just one point. We shall explore this matter further, and
investigate increasing the boundary smoothness, in a future paper. Indications
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are that the case of finite boundary smoothness will be different from the case of
infinite boundary smoothness.

(2) For a smoothly bounded domain D, can the set S(D) have uncountably
many components? For example, can it be a Cantor-type set?

(3) For a smoothly bounded domain D, is the set S(D) always a smooth sub-
manifold of 3D? Note that the results of [ FIK] imply that, for a smoothly bounded
Reinhardt domain, S(D) is always a smooth submanifold of 9D that is diffeomor-
phic to a sphere of odd dimension.

(4) Is it always true that the rank of the Levi form is in fact constant and minimal
along S(D) and that the type is constant and maximal along S(D)?
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