Banach Spaces of Hypercyclic Vectors

ALFONSO MONTES-RODRIGUEZ

1. Introduction

Beauzamy [Bel; Be2; Be3] constructed examples of linear operators on Hilbert
space having dense, invariant linear manifolds all of whose nonzero elements are
hypercyclic. Recently, Bourdon [Bo] has shown that any hypercyclic operator on
Hilbert space has a dense invariant linear manifold consisting, except for zero,
entirely of hypercyclic vectors. Special cases of Bourdon’s result were proved by
Godefroy and Shapiro [GoS]. Interest in constructing linear spaces of hypercyclic
vectors arises from the invariant subset problem.

Let us denote by H(C) the space of the entire functions with the topology of
uniform convergence on compact subsets. A Euclidean translation ¢(z) =z +a
(a # 0) defines a continuous linear operator C, on H(C) that assigns to each
function f € H(C) the function C,(f) = f o ¢. If we apply Theorem 1.2 in
[BM] to the sequence {z + rna} we obtain that there is an infinite closed vector
space consisting, except for zero, of hypercyclic vectors for the operator C,. A
similar result can be obtained from Theorem 1.2 in [BM] for the space of the holo-
morphic functions on the unit disk with the Euclidean translation replaced by a
non-Euclidean one. The space of entire functions is a Fréchet space, so this result
only complements partially the result of Bourdon. The proof of Theorem 1.2 in
{BM] did not appear to adapt easily to other situations. The result suggests many
questions. J. H. Shapiro has proposed to the author in private communication the
following problems: What are the analogs of this result for:

(a) sequences of powers of a single bounded operator on a Banach space?
(b) sequences of powers of a composition operator on Hardy spaces?

It seems that nothing is known about any of these problems, and research into
them may lead to interesting relations between function theory and operator the-
ory. The main result of this paper isolates sufficient conditions for an operator to
have an infinite-dimensional Banach subspace of hypercyclic vectors. Of course,
results of this kind are primarily of interest in regard to Hilbert spaces. Section 3
contains an application of the theorem to composition operators on Hardy spaces.
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In this section we also prove that there are operators that do have hypercyclic vec-
tors, but not an infinite-dimensional Banach space of them—namely, certain scalar
multiples of the backward shift defined on the sequence spaces I’ (1 < p < o0)
and cg.

2. Main Result

In all that follows, B will be a separable Banach space and T a bounded linear
operator on B. We recall that a vector z in a Banach space is hypercyclic for the
bounded linear operator 7: B — B if the orbit {T"z},>; is dense in B. A bounded
linear operator T on a Banach space is hypercyclic if it has a hypercyclic vector.
Separability of the underlying space is clearly a necessary condition for hyper-
cyclicity. There is a sufficient condition for an operator T on a Banach space B to
have hypercyclic vectors. This condition has come to be called the hypercyclicity
criterion. It reads as follows (see [GS, Thm. 2.2]).

THEOREM 2.1. Suppose T is a bounded linear operator on a separable Banach
space B. Suppose there is a dense subset X C B and a right inverse S for T (TS =
identity on X) such that ||T"x|| — 0 and ||S"x|| — O for every x € X. Then T
has hypercyclic vectors.

The first result of this type was discovered by Kitai [Ki] in her 1982 dissertation,
which was never published. This result was rediscovered by Gethner and Shapiro
[GS] with a simpler proof, who used it to unify the proofs of theorems of Birkhoff
[Bi], McLane [Mc], Rolewicz [Ro], Seidel and Walsh [SW], and many others.
Since then, the theorem has been used to discover hypercyclic behavior in sub-
sequent studies of hypercyclicity [BS1; BS2; GoS; CS; He; HW; Sh]. We have
stated Theorem 2.1 here because its hypotheses are part of the hypotheses of the
following theorem.

THEOREM 2.2. Let B be a separable Banach space, and let T:B — B be a
bounded linear operator that satisfies the following conditions.

(@) There is adense subset X of B and a right inverse S (possibly discontinuous)
for T (T'S = identity on X) such that ||T"x|| — 0and ||S"x|| — O for every
x eX.

(b) There is aninfinite-dimensional Banach subspace By C B suchthat ||T"e|| —
0 for every e € By.

Then there is an infinite-dimensional Banach space By such that each z € By \ [0}
is hypercyclic for T.

Proof. By atheorem of Mazur (see e.g. [Di, p. 39]), we can find a basic sequence
{em}m>1 C By that we may suppose to be normalized. Let K > 0 be the basis con-
stant for this basic sequence and let {,,},,>1 be a decreasing sequence of positive
numbers such that ) >°_ £, < 1/2K. Finally, we also consider a denumerable
subset {x,},>1 C X thatis dense in B.
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By setting i(m,n) = (m +n — 1)(m + n)/2 — n + 1, the positive integers are
distributed as the entries of an infinite matrix.

n 1 2 3 ... m

1 1 3 6 i(m, 1)
2 2 5 :

.?: 4

n i(L,n) ............ i(n@,n)

The following comments on i (m, n) will be useful later. First, observe that the
function i m, n) is strictly increasing with respect to both m and n. Second, if an
element i (k, l) is on the diagonal that goes from i(1,n) toi(n, 1), thenk +1 =
n-+1. Infact, the elements of this diagonal are i (j, n+1—j), j = 1, ..., n, which
form a strictly increasing finite sequence of positive integers. Finally, observe that
i (k, n) belongs to the diagonal that goes from i(1,n +k — 1) toi(n + &k — 1, 1).

The idea of the proof is to contruct a basic sequence {z,,},>1 of hypercyclic
vectors that is a perturbation of the sequence {e;;}>1. Once this has been done,
it will be proved that the hypercylicity of the elements of the sequence {z,;}m>1
is inherited by the elements of its closed linear span. Our proof is based on the
following crucial claim, whose proof is postponed.

CLAIM. There exist infinitely many strictly increasing sequences of positive inte-
gers {r(i(m,n))},>1 (m > 1), and for each of them there exists a corresponding
vector z,, such that the following conditions hold.

(i) Each z,, is a hypercyclic vector for T. In fact, we have
N7z, — xull < £0/2" (02 1).
(i1) For k # m we have
177%™ (7, — el < em/2" (1 > 1).

(iii) The sequence {Z,;,}m>1 is close to {em}m>1; that is, |2, — em|| < &m for every
m> 1.

Now we prove that {z,,},,>1 is a basic sequence. Let {e},},,>1 be the coefficient
functionals corresponding to the basic sequence {e,,},,>1. Because the sequence
is normalized, we know that ||e}, || < 2K for every m > 1. So, using (iii), we find
that

o0 [e o]
> leglllen — zmll < 2K Y em < 1.
m=1 m=1

Since {e, }m>1 1 a basic sequence, we have that {z,, },,>1 is a basic sequence equiv-
alent to {e,}m>1 (see [Di, Thm. 9, p. 46]). This means that the closed linear
span generated by {e,, },»>1 is isomorphic to the closed linear span generated by
{zm}m>1- The Banach space B; we are looking for will be the latter. Clearly,
B, is an infinite-dimensional Banach space. Hence we need only prove that each
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vector z € By is hypercyclic for T. Taking account of the fact that {z,,},,>1 is
a basic sequence equivalent to {e,,},,>1, we find that each element z € B; hasa
unique representation as a series z = Y ., @mZm. Let us see that each vector
Z = ). oo | OmZn that is not the null vector is a hypercyclic vector for T. Since
Y o | @mZm is not the null vector, there is an a; # 0. Since every nonzero scalar
multiple of a hypercyclic vector is again hypercyclic, we may suppose that o, =
1. We consider the sequence {T7¢*}, ., and compute

o0

TrCED N " 6 2m — X (1)
m=1
By the triangle inequality, (1) is less than
IT"CED g, — xall + || T7CED S e,
m#k

+ ) el T4 (2, — e @)

m#k

We set 7o = Zm# anen. Clearly, zg belongs to Bg. By applying (i) to the first
term in (2) and (ii) to the third term, we find that (2) is less than

1 & .
+ Z ] ml'—‘ + ”Tr(l(k n))ZOII = on Z |am|8m + ”Tr(l(k,n))z()"
m=1

IIZH ,
o +HIT “EMzoll. 3)

Since zg € By and {r (i (k, n))},>1 is a strictly increasing sequence of positive in-
tegers, we may apply hypothesis (b) to obtain that (3) tends to O when »n tends to
oo. Therefore, we have

lim =0.

n—>00

r(it,n)) Z CmZm —

m=1

Since the sequence {T7¢®™)z} .| is near enough to {x,},>1 and we can extract
from the latter a subsequence converging to any x’ € BB, we have that we can ex-
tract from the former a subsequence converging to any x’ € B; this proves the hy-
percyclicity of z. Therefore, the proof of the theorem will be concluded once we
have proved the claim.

Proof of the Claim. The proof of (i1)—(iii) will be by induction on i = i(m, n). In
order to save some notation we set r(0) = 0, T° = identity on B, and x,,.; = e,
for every m > 1. In addition, we will sometimes denote r (i (m, n)) by r(i). For
i(1,1) = 1, by applying hypotheses (a) and (b) we may find a positive integer
r{i(1, 1)) such that
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. ] 81
IT7EAD 1 < and [ S7CEDIx | < 5

€y
2i(1,1)+1 i(1,D+1"

We define z1; = x1,1 + S"¢0:Dyx;. Now suppose that we have already chosen

Zm' n and X,y for all i(m’,n’) < i(m,n). Then z,, , and x,,, are chosen as
follows.

Case 1. If n = 1, then by hypothesis again we may find a positive integer
r(i(m, 1)) such that

. €
177 Dl < Sy for L=m’ <m, )

im0y, Em_
”T -xm ,n " < 2"(’”’1)_'_2

for i(1,m) <i(m’,n'y <i(m,1), (5)
Em
2 i(m,n)+2

for i(1,m) <i(m',n’) <i(m, 1), (6)

| TrEemD=rGen' Ny 1 o

and

for 0 < j <i(m,1). 7

r(i(m, 1))=r(j) _ Em
IS Xl < 9 i(m,)+1

Hence, we define z,,1 = x,5,1 + S7E Dy,

Case 2. If n > 1, then we have already constructed z,, ,—;. Since X is a dense
subset and {T";0 < j < i(m, n)} is equicontinuous, we may find an element
Xm,n € X such that

. &
”Tr(j)(Xm,n — Zmn-DIl < ~————= for 0 = J <i(m,n). ®)
21(m,n)+l

By applying the hypothesis again, we find a positive integer r (i (in, n)) such that
IIT’("(’"’"))xm,,I]I < 8;?:_;1 for l<m' <m+n-—1, )]
Em
2i(m,n)+2
for i(m,n—1) <i(m’,n’) <i(m,n), (10)
Em
2i(m,n)+2

" Tr(l(m,n))xm’,n’” <

” Tr(i(m,n))—r(i(m',n’))x Wy " <

for igm,n—1) <i(@m’,n’) <i(m,n), (11)
and

| SN =Dy I < 5 for 0 < j < i(m,n). (12)

m
i(m,n)+1
Again, we define 2, = Xmn + STCNx, . From (10), (11), and the triangle
inequality, and recalling that 7S = identity on X, forn > 1 we have

”Tr(i(m,n))zm, 2l = ”Tr(i(m,n))xm, o+ Tr(l'(m,n))—r(i(m',n'))xn,"
< ”Tr(i(m,n))xm’ o+ “Tr(i(m.n))—r(i(m’,n’))xnl I

E€m

. . V4 4 .
<W for im,n—1) <i(m',n’) <i(m,n). (13)
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Similarly, from (5) and (6), for n = 1 we have

for i(1,m) <i@m',n) <i(m,1). (14)

r@i(m,1)) _ Em
Ir Zm |l < 2 i(m,m)+1

From (8), (12), and the triangle inequality, we have the following estimation:

"Tr(j) (Zm,n - Zm,n—l)" = “Tr(j) (xm,n — Zm,n—l) + Sr(i(m,n))—r(j)xn”
- =S NTPXmn = 2= |+ | ST Ty
Em . . .
< o) for 0 < j <i(m,n). (15)

By using (15) (for r(0) = 0), we find that for each m > 1 the sequence {z, ,}n>1
is convergent to a vector z,, € B. These vectors can be written, for any n > 1, as

00
Zm = Zmn + Z(Zm,k+l - Zm,k)~ (16)

k=n
Hence, by using (16), (7) (for r (0) = 0), and (15) (for r(0) = 0), we have

00
"Zm - em" = ||1Zm,1 — em T+ Z(Zm,k+1 - Zm,k)

k=1

[e.e]
< IS Dxy |+ 3 " Nzmess — Zmll

k=1
oo
gm Sm
< Simna T kz; D iGm kD)
_Em
< 2imD
< &nm

for every m > 1; thus we have (iii).

Now, let us see that z,, is hypercyclic for 7. Recalling that 7S = identity
on X, we have the equality below. The second inequality is obtained from (15)
(i(m,n) <i(m, j+ 1) forevery j > n) and (10) (or (5), if n = 1):

00
Tr(l(m,n))xm’n + Z Tr(t(M,n)) (Zm,k+1 — Zm,k)

k=n

"Tr(i(m,n))zm —Xall =

o @)
S "Tl"(l(m,n))xm,n ” + Z “Tr(l(m,n))(zm'k-*-l _ Zm,k)"

k=n
o0
Em Em
< Sttt T k§: 2 iGm k1)
=H
Em
21'(m,n)
Em
n

Therefore, for every m > 1, we have
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lim |T7¢™™z,, — x,|| = 0.

n—>0oo

For every m > 1, T"¢m) 7 is near enough to {x,},>1, S0 we may conclude as
before that z,, is hypercyclic for T for every m > 1. This is (i).

It remains to prove (ii). Toward this end, we fix any two positive integers k >
landn > 1. If m > 1 (m # k) is given, theneitherm > n4+k—1lorl <m <
n+k—1.1fm>n+k—1andm # k, then i(m, j) > i(m, 1) > i(k, n) for
every j > 1, so we have

o0

”Tr(i(k,n))(zm _ em)" — Sr(i(m,l))—f(i(k,n))xl + Z Tr(i(k,n))(Zm,j-l-l —_— zm,])
=1
00
< "Sr(i(m,l))—-r(i(k,n))x1 | + Z "Tr(i(k'n))(Zm,j-i-l — Zm,j)“
j=1
Em ad Em
= i, D+ + Zl i(m,j+1)
J=
€m
2i(m,1)
Em
2n

We have used (7) and (15) in the second inequality above.
If1 <m < n+k — 1, then the number defined as

<= n+k—m if 1 <m<k,
" n+k—-m—-1 ifk<m<n+4+k-—1,

is the unique positive integer such that i(m, s) < i(k,n) < i(m,s + 1). Since ¢
satisfiesi(k,n — 1) < i(m,s) < i(k,n)ifn > 1 (ori(1,k) <i(m,s) <i(k,1)
if n = 1), we may apply (13) (or (14)) and (15) (i(m, j + 1) > i(k, n) for every
J = ) in the second inequality below. Thus we have

(17)

%)
"Tr(t(k,n))zm ” — Tr(z(k,n)_)zm’s + Z Tlf'(t(k.n))(anj_*_1 _ zm,j)

J=s

o
“ “
< N7 %Dzl + Y T ED (2 541 — 2, )]

j=s

Em N Em
< Simor T Z 5 im,j+)
j=s

Em
< 2i(m,s)
< Em

2n+l1"

In the last inequality we have applied the fact that if n > 3 then, for s defined as
in (17), we have i(m,s) > i(k+1,n—2) > i(2,n —2) > n+ 1. Itis easy to see
that this inequality is true for n = 1, 2 and for n = 3 it is also true, except if k =
1 and m = 2 (but this is unimportant). Therefore, by using (9) or (4),



426 ALFONSO MONTES-RODRIGUEZ

i (k, i (k, i (%, Em Ek4+n—1 Em
IT"CED (2 — em)ll S NT7CECD 2| + I Denll < 55 + 05 < S0

So, in any case we have proved (ii). Hence (i)—(iii) are fulfilled and the proof of
the claim is completed. Therefore, the theorem is proved. B
In a similar way as in [GS], we have the following remarks.

REMARK 1. One can generalize the concept of hypercyclicity by using sequences
of operators more general than the positive powers of a fixed operator. The re-
sulting concept is generally called universality. In fact, the proof of Theorem 2.2
also works for this more general situation. More precisely, suppose {7}, }>1 is a se-
quence of continuous linear operators for which 7,, — 0 pointwise in a dense sub-
set X of B such that, for each n, the operator 7, has a right inverse S, and S, —
0 pointwise on X. Suppose also there is an infinite-dimensional Banach space By
such that 7, — 0 on Bg. Then there is an infinite-dimensional Banach space B;
such that each of its elements, except for zero, is universal; thatis, { T,z : n > 1}
is dense for every z € B; \ {0}

REMARK 2. Theorem 2.2 and Remark 1 continue to hold if we replace condition
(a) by the following two conditions.

(al) There is a dense subset X C B such that ||T"x|| — O for every x € X.
(a2) ThereisadensesubsetY C Bandamap S: Y — Y (possibly discontinuous)
such that 7S = identity on Y and ||S"y|| — Oforeveryy € Y.

The proof would involve much more notation. However, the applications in the
next section do not require this generality.

3. Composition Operators and Backward Shifts

Throughout this section, ID will stand for the open unit disk of the complex plane.
We denote by L?(3D) (1 < p < oo) the Banach space of the complex functions
on the boundary of the unit disk 3> = {z € C : |z| = 1} for which the norm

. 1/p
N fll, = ( If(e’g)l"du)
oD

is finite. Here, du = -il];de is the normalized Lebesgue measure. The Hardy space
HP (D) will be the space of the analytic functions on ) whose boundary values are
in L?(0D). The Hardy space will be regarded as a closed subspace of the latter.

If p:D — D is an automorphism of the unit disk, then the Littlewood subor-
dination theorem (see [Zh, Thm. 10.4.2 p. 220]) asserts that the corresponding
composition operator C, which assigns to each function f € H” (D) the function
Co(f) = f o ¢ takes H?(ID) boundedly into itself. We denote by ¢ the iden-
tity on D by ¢, = ¢ o ¢, the subsequent iterates of ¢; finally, their correspond-
ing inverses (¢,)~! = ¢! will be denoted by ¢_,. The connection between the
iterates and composition operators is the equation C,,, = Cj;.

Recall that a non-Euclidean rotation is an automorphism of the unit disk ) that
has a fixed pointin ID. Itis known that if ¢ is not a non-Euclidean rotation then there
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is a hypercyclic vector for the corresponding composition operator (see [BS2] or
[Sh]). We will prove that in fact there is an infinite-dimensional Banach space of
them. More precisely, we will prove the following theorem.

THEOREM 3.1. Let ¢: D — D be an automorphism of the unit disk that is not a
non-Euclidean rotation. Then there is an infinite-dimensional Banach subspace
B\ such that each f € B; \ {0} is hypercyclic for C,.

We will show this theorem by seeing that the hypotheses of Theorem 2.2 are sat-
isfied. It is known that composition operators under the hypothesis of Theorem
3.1 satisfy the hypercyclicity criterion (condition (a) of Theorem 2.2) and can be
found in [BS2] or [Sh]. In fact, this is what proves that these composition opera-
tors have hypercyclic vectors. We reproduce the proof here, not only for the sake
of completeness but also because it sheds light on where to look for the space B,
which is required by condition (b) of Theorem 2.2.

To verify (a) of Theorem 2.2, we follow the lines of [Sh, pp. 110-111]. An
automorphism of the unit disk that is not a non-Euclidean rotation either fixes a
point on the boundary of the unit disk (in which case it is called a non-Euclidean
limit rotation) or it fixes two points on the boundary of the unit disk (in which
case it is called a non-Euclidean translation). If it is a non-Euclidean translation
then there is a unique attractive fixed point @ € 0D, known as the Denjoy—Wolif
point. The other fixed point 8 € 9D is the attractive fixed point of the inverse of
¢~ ! (see [Bu] for details). For every £ € 9D \ {8} we have ¢,(§) — «, and for
every £ € D\ {«} we have ¢ _,(§) — B. Let X denote the set of functions which
are continuous on the closed unit disc, analytic on the interior, and which vanish
at o and B. We claim that C}, — Oon X. If f € X, then f(¢,) - f(a) =0.
An application of the Lebesgue bounded convergence theorem yields the desired
result:

ICn AL = [a 1f e dp =0 (1> o).

Now C, is invertible in H?(dD): its inverse is C,-1. The same argument gives
that C;_l — 0 on X. It remains to see that X is a dense subset of H”(ID). This
follows from the fact that X contains the subspace generated by z"(z — a)(z — B)
and Beurling’s approximation theorem (see [Du, Cor. 1, p. 114]). The case where
¢ has just one fixed point @ on 0D is easier. Take X to be the set of continuous
functions on the closed unit disk, analytic in the interior, and which vanish at a.
In this case ¢,(§) — « as well as ¢_,(¢) — « for every £ € 0D, and again the
same arguments apply.

It remains to see that composition operators under the hypothesis of Theorem

3.1 satisfy condition (b) of Theorem 2.2. This will be a consequence of Lemma
3.2 and Lemma 3.3.

LEMMA 3.2. Let f € HP(D) be a function that is continuous at a point o €
oD with f(x) = 0, and let ¢ be an automorphism of the unit disk such that its
Denjoy—Wolff point is a. Then lim,_, o || f(¢n)|lp = 0.



428 ALFONSO MONTES-RODRIGUEZ

Proof. Without loss of generality, we may suppose that « = 1. Since ¢ is an au-
tomorphism that fixes a point on the unit circle, ¢ is either a non-Euclidean limit
rotation or a non-Euclidean translation. First, we consider the case where ¢ is a
limit rotation. To obtain a clear image of the action of the iterates {¢,} on the unit
circle, we write w = @(z) as follows:

11
w—1 z-—1

+ bi, b # 0 and real. (D

That is, the limit rotation may be viewed as the sequence of transformations start-
ing with an inversion taking 1 — oo and |z| < 1 into a half plane iz < —%. Then
comes a translation through b parallel to the imaginary axis, and finally an inver-
sion taking back the half plane to the unit disk with co — 1. From now on, we
assume that b > 0 (the case b < 0 can be handled analogously).

Equation (1) allows us compute ¢, (z) for every integer n € Z:

(1 4+ nbi)z — nbi

nbiz+1—nbi

Now, for each integer k € Z, we consider the intervals on the boundary of Rz <
—7 defined by Iy = {z : z = —5 + ibt witht € [—o0,k)} and Jy = {z : z =
—% +ibt witht € [k, 00)}; let {Ur}rez and { Vi }rez denote their preimages on the

unit circle by the linear transformation 1/(w — 1) > z. The final (initial) point of
Ur (Vi) is

Pn () =

4K -1 4kb

T 144k 1+ ak2e2

which tends to 1 in the counterclockwise sense. Observe that that U, and V are
semineighborhoods of the point 1 for every k£ € Z (see Figure 1).

Wi

Figure 1. U and V;

By means of equation (1) it is easy to see the following properties:
(@ U, UV, =0Dforeveryk € Z;
(b) ©n(Ur) = Upyn and ¢, (Vy) = Vi, forevery k, n € Z.
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Now, we start properly to prove the lemma. Since f is continuous at the point
1, for all ¢ > O there is a Vj such that | f(e”®)|? < £ for every e’ € V;. From
now on, this k will be fixed. Since ¢, (Vi_n) = Vi we have | f (¢, (e?))|? < % for
every e € Vi_,. Therefore, we have

/ |f (@n(e®)P dp < %u(vk_n) < —; 2)
Vi-n

So, by property (a) we need only prove
YT € :
| 1renerdn < ®
Uk—n
for n large enough. The change of variables e’ = ¢, (%) gives

fU f (@n(e®) 1P du(6) = / 1f @) Plgl, )] dutr)

@n(Uk—n)

= | 1Pl )] du). @

An elementary computation shows that, for each n > 1, the function

1 1

/ ity =
O O = e £ T nbif 1+ n262(1 —cost) T 2nbsins

attains its maximum and its minimum at the points
nb i : nb i
— and €' =— + ,
1+ n2b% /14 n2b? V140202 /1 + n2b?

which tend to 1 and —1 (respectively) as n — +o0o. Hence, |¢’,(e")] is strictly
decreasing on the unit circle interval (e''?, e'’!) in the counterclockwise sense for
every n > 1 (see Figure 2).

it
e’ =

Figure 2. Graph of |¢’ | for some positive values of n
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Since |¢’, (1)] = 1, we may find an integer jo such that |¢’ ()] < 1 for every
t € Uj, for every integer j < jo, and for every n > 1. On the other hand, since
1(U;) tends to 0 as j tends to —oo, we may find an integer / < jp such that

|F ()P du(e) < 2
U

We also observe that |¢! (e'")| tends to 0 uniformly on the interval U \ U; asn —
+00. We can therefore find a positive integer ng such that j¢’ e < /4l fIP
for every n > ng and for every t € U \ U;. So, for n large enough, we have

, | fe)IP1pl, (™) dp = . | £)IPlgl, (™)l du

+ f £ Plel, (")) dus
U\U;

. £ .
< | 1f(Ee)IPdu+ / [fE)P du
U, / 41 U7 Juav !
<E4° f £ @I dps
4 41 fII” Jop
_¢
==

With this, (3) is proved.

From a geometrical viewpoint, the properties of the sequence {|¢”, |} are due
to the fact that any compact interval on the unit circle that does not contain 1 is
contracted by ¢_, forlarge n. A similar observation can be made in the case below.

The case in which ¢ is a non-Euclidean translation is easier. In addition, we
suppose that the other fixed point of ¢ is —1. Thus we may write w = ¢(z) as

w—l_ z—1
w+1 “z+41°

0<X<l. (5)

This has the effect of mapping |z| < 1 onto a half plane iz < 0 with 1 — 0 and
—1 — oo, shrinking by a factor A, and then mapping back to the unit disk with
0 — 1 and oo — —1. Equation (5) allows us to compute ¢, (z) for every integer
n € Z, giving

(I+A)z+1—A"

(1 —Az+1+4an

on(2) =

Now, for each k € Z, we consider the subsets on the boundary of iz < 0 defined
by Ir = {z :z =tAki, |t} > 1}and Jp = {z : z = tAki, |t] < 1}; let {Urlrez
and { V. }r<z denote their preimages on the unit circle by the linear transformation
w—1)/(w+ 1) — z. Observe that that U; and V; are neighborhoods of the
points —1 and 1 (respectively) for every k € Z (see Figure 3).
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Figure3. U and V;

By means of equation (5), it is easy to see the properties (a) and (b) above.
Analogously as before we may find an integer k € Z such that (2) is satisfied, so
we need only prove (3) for n large enough. The same change of variables e’ =
¢ (e'?) gives (4). Again, an elementary computation shows that, for each n > 1,
the function

4" _ 20"
|(A" — Deit + A7 + 112 A2 414+ (A2" — 1) cost

., (") =

attains its maximum and its minimum at the points 1 and —1, whose values are
A" and A", respectively (see Figure 4). This time the situation is easier because
l¢_n(e')| tends uniformly to 0 on Uy, and we may again conclude the assertion
of the lemma. O

Figure 4. Graph of |’ | for some positive values of n
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To prove the following lemma we need the de la Vallée Poussin kernel (see [Ka,
pp. 9-15] for details). We summarize here those properties that will be needed.
- The de la Vallée Poussin kernel is defined as V,,(t) = 2K3,+1 — K,,, where

5 ¥l i
K,(t) = _Z (1 — n—+—1) elit
J=—hn

is Fejer’s kernel. Hence V,, is a trigonometrical polynomial of degree 2n + 1.
For each n > 0, the de la Vallée Poussin kernel defines a bounded linear operator
on H?(D) (and on L?(9DD)) which is also represented by V,,. This operator as-
signs to each function f € H? (D) the function V,(f) = V, x f € HP(D), that
is, the convolution of V,, and f. The norm of this operator is ||V,| < [|[V.ll1 <
2||K2,+1ll1 + 1K, ]l; = 3. The following properties are easily verified:

(i) V,x P = P if P is a trigonometrical polynomial of degree less or equal than
n+1;
(ii)) V,*xP =0if P = Z,’:f:_kl anme’™ (ki, ky > 0) is a trigonometrical polyno-
mial such that a,, = O for every integer m with |m| < 2n 4+ 1.
Finally, we say that two trigonometrical polynomials )_ a,,e™ and ) b,,e’™
have disjoint supports if, for each integer j, either a; = 0 or b; = 0.

LEMMA 3.3. Let a be a point on the unit circle. Then, forall 1 < p < 00, there
is an infinite-dimensional Banach subspace By C H? (D) such that each f € By
is continuous at o and f(a) = 0.

Proof. Without loss of generality we suppose that « = 1. We consider, for each
n > 1, the function (1 — z)" € HP (D) satisfying, for every p (1 < p < 00),

1A —2)"ll, = 1A = Dy, = 11 =D} = @/7)* > 1.

We also observe that if we select any positive number a with 0 < a < %, then
|1 —e'| < b =b(a) = |1—e“| < 1for|t| < a. Therefore, if we define for every
n > 1 the function f,(z) = (1 — 2)"/li(1 — 2)*||», we find that | ,,(e'")| < b" for
lt] < a. Of course, each f, is a trigonometrical polynomial and || ||, = 1 for
every n > 1. From these polynomials we may construct by induction a sequence
of trigonometrical polynomials { P, },>; and a subsequence V, of the de la Vallée
Poussin kernel such that:

(a) each P, isin H?(D) with || P,]|, = 1 forevery n > 1;
(b) the supports of these polynomials are pairwise disjoint; and
(© V,,xPj=Piforj<nandV, xR; =0forj>n.

Toward this end, we construct subsequences of positive integers {m,},>; and
{rn}n>1 in the following way: m; = 1 and r; + 1 = 2. Then, forn > 1, we de-
fine m, = max(m,—1 +n,2r,—1 +2) and r, + 1 = m, + n. (In fact, it is easy
to check by induction that m, = 2"*! 4+ 2"~1 — 25 — 2.) By defining P,(z) =
z™=» f,(z), properties (a)—(c) are easily verified. Properties (b) and (c) imply that,
for any positive integers m < n and for any choice of scalars {a, },>1,
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m m n n
E aij Vrm * E aij me * Zaij E aij
j=1 P =1 P j=1 j=1 p

Therefore, { P,},>1 is a normalized basic sequence in H? (D) (see [Di, Thm. 1,
p. 36]). Precisely, V,, is the nth projection operator and the basis constant is less
than 3. It should be observed that in the Hilbert case (p = 2) it would not have
been necessary to use the de la Vallée Poussin kernel since in this case P,(z) =
z"@+D/2=1 £ (7) form an orthonormal system in H2 (D) and (consequently) a basic
sequence.

Let By be the closed linear span generated by { P, },>1. Let us see that each f €
By is continuous on A = {e* : |t] < 3 }. If a is any positive number with 0 <
a < %, thenfor |t] < a wehave |P,(e")| = | fu(e')| < b",whereb = |1—e"| <
1. Thus,if f =) >  %m Py € By and recalling that { P,} is a normalized basis,

m=

for every [t| < a we have

<3

o0

|fEe™| =

aum(e“)
1

<D loml [Pu(e)] <6I£ll, ) _b" = 11 fllp
m= m=1 m=1
So the convergence is uniform on every compact subset X C A and, consequently,
f is continuous on A. On the other hand, it is obvious that f(1) = O forevery f €
By. Therefore, the proof of the lemma, and of Theorem 3.1, is now complete. [

REMARK 1. We have used the de la Vallée Poussin kernel to give explicitly the
space Bg. An alternative proof can be given by using functional analysis. First,
observe that in order to prove Lemma 3.3 it suffices to extract from { f,,},>1 a ba-
sic sequence. For 1 < p < oo we have that the sequence { f,,},> defined in the
proof of Lemma 3.3 is bounded and tends uniformly to zero on compact subsets
of the unit disk; hence this sequence tends weakly to zero in H? (D). Therefore,
by means of the Bessaga—Pelczinsky selection principle (see [Di, p. 42]), we may
extract a basic sequence from { f,,},>,. For the case p = 1 there is no subsequence
of { fu}»>1 converging weakly to zero. Since H (D) is a weakly sequentially com-
plete space, we thus have that there is no weakly Cauchy subsequence of { f,},>1.
The Rosenthal-Dor [; theorem (see [Di, p. 201]) therefore allows us to extract
from { f,}.>0 a subsequence equivalent to the unit vector basis of /;. Of course,
one can avoid the use of these tools by proving directly that foreach p (1 < p <
oo) a basic sequence can be extracted from {f,},>1 equivalent to the unit vector
basis of the sequence space [”. This may be done by taking out a nearly disjointly
supported subsequence from { f;,},>1.

REMARK 2. It would also be possible to prove a theorem analogous to Theorem
3.1 for those linear fractional transformations that take the unit disk into itself,
have no fixed point in ID, and are hyperbolic (see [Sh, pp. 5, 114]).

One might think that, given a hypercyclic operator, there is always a whole infinite-
dimensional Banach space that consists (except for zero) entirely of hypercyclic
vectors. This is not true, as we will see in the next theorem. We denote by 7 the
Banach space of sequences of complex numbers for which the norm
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oo 1/p
Han}ll, = (Z |an|1’)

n=1

is finite and with ¢y the Banach space of sequences of complex numbers whose
limit is zero, endowed with the norm ||a,|l.c = sup, |a.|. We recall that the se-
quence of unit vectors e, = (0,...,0,1,0,...), where 1 is in the nth place, isa
basis for [” and cp. In fact, it is an unconditional basis. The backward shift op-
erator on /” and cy relative to this basis is the bounded linear operator B defined
by B(e,) = e,—;1 if n > 1 and B(e;) = 0. Rolewicz [Ro] proved that if A is any
complex number of modulus greater than 1, then the operator A B is hypercyclic.
Gethner and Shapiro [GS] proved that this operator satisfies the hypercyclicity cri-
terion (hypothesis (a) of Theorem 2.2) by taking X = span(e,). However, we
have the following theorem in which the underlying space is I? or cg.

THEOREM 3.4. Let A be a complex number of modulus greater than 1; then all
Banach spaces of hypercyclic vectors for AB are finite-dimensional.

Proof. Let us suppose that there is an infinite-dimensional Banach space B of
hypercyclic vectors. We will construct a vector x of B; such that

lim [|(AB) x| = oo. ®)
j—o0
Hence x cannot be hypercyclic—a contradiction. By induction we may always

choose a strictly increasing sequence of nonnegative integers {k,},>; and a se-
quence {u,},>1 C B satisfying

llun |l =1, (7
o0
Up = Z Qn,i€i, ®)
i=ky+1
i A i€ <3 ! for m =1 n )]
i=kny1+1 e 272 (n + 1)? T
where k; = 0 and u; is any vector of B such that ||u;|] = 1. To obtain (8) we

consider the mapping I, : B; — C*», which sends each vector to its first k,, co-
ordinates with respect to the basis {e;};>;. Since B; is infinite-dimensional, this
map cannot be one-to-one. Therefore, there must be vectors of B; that are sent to
the zero vector, so we have vectors satisfying (8). If we normalize we also get (7).
Finally, (9) is obtained by choosing &, large enough.

Now, from (7), (8), (9), and the reverse triangle inequality, for every n > 1 we
have

ani€i|| = ||Un — apieil| >1— ————= > —. (10
i=kp+1 i=kn4+1+1 2”2(’1 + 1)2 2

By applying (8) and (9) again, we have



Banach Spaces of Hypercyclic Vectors 435

n—1 1 kpy knt1
E — E Am,i€j <Z Z am,i€;
m=1 " i=kp+1 i=kp+1
3 =l 1
2w4n —m 4n

In the second inequality, the fact that || ) _; f,'(‘ t1amiéill < || Z?ik,, +1@m,iei|l has
been used. We define x = Zm:l (1/m?)u,,, which clearly is in B;. Now, for each

positive integer j, k,—1 < j < kp,

1B/ x| = Z Zam,e,

m—-l —}+1
knt o0
= E E am.ie; + E amiei + E Qi€
m=1 """ \iZjr1 i=ky+1 i=kpy1+1

v
N
%l
E?

n 1 kn+l
=112 -5 D amie
s |
1 kn+l n+l
> - E ani€if|l — E - E A i Ci
s 1M T
1 1 1
> — = .
2n2  4n?2  4n?
We have applied the fact that || 3272, aieijll = [| 2272, @ieill, the uncondi-

tionality of the basis {¢;}, the reverse triangle inequality, and the inequalities (10)
and (11). Therefore, for every positive integer j, k,—1 < j < k,, we obtain

. J
10.8yx) > 2L
4n?

Since |A] > 1, we have (6) and so are finished. O

It should be observed that the same argument of Theorem 3.4 shows that the op-
erator A B does not satisfy condition (b) of Theorem 2.2.
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