The Backward Shift on
Weighted Bergman Spaces

ALEXANDRU ALEMAN & WIiILLIAM T. Ross

1. Introduction

Let H?(D) = H? denote the Hardy space of analytic functions f=3a,z"
on the open unit disk D = {|z| < 1} for which

sup |f(r§’)|2 | fl Ia,,l2 < +oo,
o<r<ivii|=1 n—
It is known that the backward shift operator
—f(0
L=t Z‘( )

is continuous on H? and the subspaces (closed linear manifolds) 9N C H?
for which

LaMCM

(such M will be called L-invariant or backward shift-invariant subspaces)
were completely characterized in [8] by means of duality.

NoTATION. We pause here to set some important notation that will be used
throughout the paper. If B is a Banach space and 7 is a bounded linear
operator on B, we let Lat(7,®) denote the subspaces M C @B for which
TN C M. For a set SC @, we let [S]r, @) denote the smallest T-invariant
subspace of @ that contains the set S. In this case, we will say [S]r, @) is the
T-invariant subspace “generated” by S.

The dual of H? can be identified with H? by means of the pairing

o) = lim f(rs*)g(ri’)l 1y

r—+17Y[¢|=1

(1.1)

and a simple computation with power series reveals

(Lf,g>=(f,z8) V[f,geH"
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Thus, if M e Lat(L, H?) then M =1XK, where X e Lat(M,, H?) (here M,:
H?— H? M, f =zf) and *X is the preannihilator of X. Beurling’s famous
characterization of Lat(M,, H?) identifies & as IH?, where [ is the greatest
common inner divisor of X [4]. The L-invariant subspace 9 = *(IH?) was
then described using the concept of pseudocontinuation, which was intro-
duced by Shapiro [24], as follows.

Let D, = C\D denote the complement of the unit disk in the extended
complex plane C, = CU{}, and let N(D) and N(D,) denote the Nevan-
linna class of D (resp. D,) (i.e., the quotient of two bounded analytic func-
tions on D (resp. 0,)). We also let

NH(D) = (f/g: f, g e H*(D), g outer)
NHD,) = (f/g: f,ge H*(D,), g outer}

denote the Smirnov class of D (resp. D,).

REMARK. ge H™(D,) is “outer” if g(1/z) is outer (in the usual sense) in
H>*(D).

DeriNITION. If Ge N(D,) and g e N(ID), then by Fatou’s theorem [9, Thm.
1.3] the nontangential limits of G and g exist a.e. on the unit circle T =
{|¢| = 1}. We say that G is a pseudocontinuation of g if these limits are equal
a.e.

For example, if 7 is an inner function, then

I(z) = {z:|z]| > 1, 1(1/Z) # 0} (1.2)

1
I(1/%)’
is a pseudocontinuation of 7, while e* (even though it has an analytic con-
tinuation to C) does not have a pseudocontinuation since it has an essential
singularity at infinity. By a theorem of Privalov, pseudocontinuations are
unique when they exist [16].

THEOREM 1.1 ([8]). A function f € H? belongs to *(IH?) if and only if f/1
has a pseudocontinuation to N+ (D,) that vanishes at infinity.

Moreover, one can easily prove that *(IH?) is cyclic and generated by the
single vector f = LI, that is,
YUH?) = [f L, 13-

Furthermore, if f € *(ZH?) then, using Morera’s theorem [11, p. 95], f has
an analytic continuation to C\{z:1/Z€ Z(I)}, where Z(]) is the “lim-inf
zero set of I”’; that is,

Z) = {z eD: liminf |I(\)| = 0}.
A=z, eD

If S is a set of analytic functions on D, we set

Z(S)=(Z(g).

ges
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We remark that the analog of Theorem 1.1 is true for the Hardy space H?,
1 < p < 4o [8]. The description of the L-invariant subspaces of H?, 0 <
p <1, is more complicated (see Aleksandrov [1]). Here, for 0 < p < oo, H?
denotes the analytic functions on [ with

d
sup |f(rO|? —I-—ﬂ < 0o,
0<r<1Yit)=1 27

When p = 4+, H® denotes the bounded analytic functions on .

In this paper we plan to invoke duality again to examine the backward
shift-invariant subspaces of the weighted Bergman spaces AL. Here, for
o> —1and 1 < p < +o0, an analytic function f on D belongs to A% if

fmlf(z)l"(l —|2])*dA(z) < +,

where dA represents area measure on the disk. (The condition a > —1 en-
sures that A2 is nonzero.) It is known [10; 14] that the dual of A% can be
identified with a space of “smooth” functions X, , on the unit disk (see Sec-
tion 3) by means of the pairing

- |d
(f,& = lim f(rf)g(r§)¥, feAL, geX, p.

r-1"Y|¢|=1 ®

More precisely, for fixed « > —1 and 1 < p < 4, let
g=p/(p—1), n,=min{neNU{0}: n > a}.
Define X, , to be
X, p=the Hol(D): h*"=*D(1—|z|)"="*e LU(1—(2[)*}, 1< p< +oo;

1
X, 1={heHol(D): h"=*1(z) = o( — )}
s 1 { ( (1 — |z| )na [+
These classes are the well-known Besov, Lipschitz, and Zygmund classes
(see Section 3), which all belong to H'.
Thus, using the identity

(Lf,&)=(f28) VfeAL, geX,

we conclude that if 9 C A2 is L-invariant then M =1X for some X e
Lat(M,;, X, ). The description of Lat(M,, X, ,) can be quite complicated
[5; 22; 23; 25] (see Section 3) and depends not only on the greatest common
inner divisor I, as in the H? case, but on the zeros of functions in X (and
possibly their derivatives) on the unit circle. Thus our description of M =
1% will be reminiscent of the H? case in that it will involve the pseudo-
continuation of f/I, but will be different in that it will also involve the growth
of f near the zero set of X (and possibly their derivatives) on the circle.

In the case « = 0 and p = 2, one can use a result of Richter and Sundberg
[19] to derive the following theorem (see Section 2). We first note that if
IM e Lat(L, A3) then M+ = (&)(m,, x, ,) for some g € X, , (see Section 2).
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THeEOREM 1.2 ([19]). Let M eLat(L, A3), M = A3, and g€ Xy, be such
that SIZ'L = [g](Mz-XO,Z)' Then:

(1) M CR(D). In fact, if fe€ M then fge HP(D) forall 0< p<1.
(ii) If I, is the inner divisor of g, then f/I, has a pseudocontinuation to
N*(D,) that vanishes at infinity.

Moreover, every fe N has an analytic continuation to C. \{z: 1/7 € Z(M1)}.

REMARKS. (1) Condition (i) says that O C N([D), which is important since,
in general, A% is not contained in the Nevanlinna class (see Section 3).

(2) In general, the word “pseudocontinuation” in Theorem 1.2 cannot al-
ways be replaced by the stronger “analytic continuation”. Using a construc-
tion of [19] (see Section 2), it is possible to create an N e Lat(L, A3), M =
A3, such that T C Z(9M*) as well as an fe M that does not have an analytic
continuation across any arc of T. However, by Theorem 1.2, f has a pseudo-
continuation across T.

(3) Using a result of Richter [17, p. 215], one can prove, as in the H? case,
that 9N is cyclic (see Section 2).

The main result of this paper gives a complete description of 9 in the case
where M is generated by slightly “smoother” functions. We now state our
main theorem.

THEOREM 1.3. Let 1< p <+ and o> —1 be fixed. Let M € Lat(L, A?),
M # AL, such that M+ = [S], M, X, ,)» Where S is a set of functions ge X, ,
with

14

e LY((1-|z[»)*dA), gq= T (1.3)

(na+D 1 Z 2y —a g
g+ (1—|z[%) BT T

Then N consists precisely of the functions f € AL with the properties

(i) feeH' (D) forallges, and
(ii) f/I has a pseudocontinuation to N(D,) that vanishes at infinity
(where I is the greatest common inner divisor of S).

Moreover, every fe M has an analytic continuation to C\{z:1/Z € Z(S)}.

ReMARKs. (1) Since X, ,C H'C R*(D) [14, pp. 66-67], S indeed has a
greatest common inner divisor 7 [12, p. 85].

(2) The main theorem continues to hold if we replace MMt by 9N, the pre-
annihilator of M in the predual of A2. Of course this is of interest only in
the case p = 1, when the predual of A4, is different from X, p (see Section 4).

(3) For certain « and p, we will show (see Theorem 5.1) that condition
(1.3) is always satisfied and that in fact the set S will consist of a single func-
tion ge Hol(D)NC=(D). Thus the conditions (i) and (ii) of Theorem 1.3
can be replaced by the conditions

(a) fgee H*(D), and

(b) f has an analytic continuation to C,\{z:1/Z € Z(g)} such that f/I, €

N*(D,) and vanishes at infinity,
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where I, is the inner factor of g. (Note that /I is defined on D, by (1.2).) Thus
in this case, we will have a complete characterization of the L-invariant sub-
spaces of A%, In general, though, the z-invariant subspaces of ){9, p are more
complicated and are not always generated by Hol(D) NC®([D) functions
(see [5, pp. 293-296]).

(4) For these same « and p, we will show, as in the H? and A3 cases, that
every nontrivial L-invariant subspace 9 is cyclic (see Theorem 5.4); that is,
there is a single vector fe A§ such that M = [f],, 47). Moreover, we can
give a specific formula for this vector.

(5) Comparing Theorem 1.3 with Theorem 1.2, one might be tempted to
conjecture that conditions (i) and (ii) of Theorem 1.3 completely charac-
terize all the L-invariant subspaces of A%. For certain o and p this is indeed
the case, but for other @ and p (e.g. « =0 and p =2) it is not (see Section 2).

We also mention that if the weight (1 —|z|)®is replaced by w(|z|), where w is
a positive, continuous, integrable function on {0, 1), then every nontrivial
L-invariant subspace M is contained in N([D) and every f € M has a pseudo-
continuation to N(D,) [3]. For general Banach spaces, though, the (non-
trivial) backward shift-invariant subspaces need not have pseudocontinua-
tions, even if the space is contained in 2([D). For example, if one considers
the classical Dirichlet space {fe Hol(D): f|f ’(2:)|2 dxdy < +o0}, [3] shows
that there are nontrivial L-invariant subspaces for which pseudocontinua-
tions need not exist across any portion of T.

In Section 5, we will use Theorem 1.3 to examine the invariant subspaces
(under the shift f— zf) of the weighted Bergman space of an annulus, as
well as the adjoint of the weighted Dirichlet shift, and the backward shift
on A™%,

ACKNOWLEDGMENT. The authors wish to thank the referee for some useful
suggestions.

2. Motivation

Our results for the weighted Bergman spaces A2 were motivated by several
papers of Richter and Sundberg dealing with the adjoint of the Dirichlet
shift. In this section, we review some of those ideas and explain how this
gives us information about the backward shift on A3.

As mentioned in the introduction, the space 43 is the space of analytic
functions f = X a,z" such that
= Janf

1
FIRGCIEZIORS>

n=0 n+1

< 400, (2.1)

The Bergman space A3 is a Hilbert space with the pairing
S @nby,
=g N +1 )

(8=~ fD f(2)E(z)dA =
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The Dirichlet space D is the space of analytic functions g = 3 a,z" with
finite Dirichlet integral

D(g) = _11}. fD|g’(z)|2dA = 3 nla, (2.2)

By (2.2), D C H? and so we can define a norm on D by

ds
lells = fl " le@I* =~ 1] —+D(g) = 2 (1+n)|a,)
=] =0
This norm induces the inner product

(/,8)p = E(1+n)f(n)§(—- 2.3)

where { f(n)} are the Fourier coeﬂiments of f (resp. g).

REMARK. A power series computation shows that ge O if and only if
g"(1—|z|*) € L*(dA) and so0 D = X , (as defined in the introduction).

A computation with power series shows that the operator
U:D - A3 Usg=(zg)

is unitary. Also notice that, for fe D,

WUf)(2) =( 1—1—wz)$

W N (a1 ) = o
1— wz)s) - (sz, 1— Wf)fg = (UM, f)(2), (2.4)

where M, denotes the adjoint (under the pairing (2.3)) of the Dirichlet shift
M,:D - D, M, f = zf. Thus, if M e Lat(L, A3) then U*IM € Lat(M}, D).

and so

(LUS)(z) = (f,

THEOREM 2.1. Let § € Lat(M,, D), § #(0). Then:
(1) FOzF =FN(zF)* is 1-dimensional [18, Thm. 2];
2) IfpeFOzF, ¢ #0, then F = [¢]ar,, 0 [17, p. 215]; and
(3) F* =[M;¢)r:, ) [17, p. 215].

COROLLARY 2.2. If 9 e Lat(L, A§), N # A§, then there is an fe M with
M =[S, 42

Proof. Notice that U*I e Lat(M;, D) and so, by Theorem 2.1(3), there is
an he UM with U*M = [A] s ). Using (2.4), we have M = [Uh], 42
and so M is cyclic. O

As a consequence of our main results we will show that, for certain o and p,
every M e Lat(L, A%) is cyclic (see Theorem 5.4).

Richter and Sundberg also proved the following pseudocontinuation result
about the adjoint of the Dirichlet shift. Recall that if X e Lat(M_;, D) then
X* e Lat(M,, D), and by choosing ¢ as in Theorem 2.1(2), X" = [¢](r,, 0)-
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THEOREM 2.3 ([19]). Let X € Lat(M;,D), X # D. Then:
(1) UX CR(D) and, forall 0< p<1,
oUhe HP(D) vheX.

(2) Forevery he X, Uh/I4 has a pseudocontinuation to N*(D,) that van-
ishes at infinity.

(3) Z(¢) = Z(X*); moreover, for every he X, the function Uh is analytic
across the set C\{1/7: z € Z(¢)}.

REMARKS. I denotes the inner factor of ¢. For 0 < p < +o, we say a func-
tion f belongs to H?(D,) if f(1/z) e H*(D).

We will very briefly outline a proof of this result since in [19] it is not stated
quite in this form.

Proof. The proof of (1) is found in [19, Thm. 2.2}. For the proof of (2), we
note that by a construction in [19, p. 869] there is a finite (complex) measure
p on T such that the Cauchy transform

dp({)
v = |
=t §—A
is contained in H?(D) Cc NT(D) for all 0 < p <1, and 4(0) = 0.
Since i, Uh, and ¢ belong to N(D) (note that Uhe N(D) by (1)), by
Fatou’s theorem it follows that the nontangential limits of these three func-
tions exist a.e. on T. They also show [19, p. 869, eq. 2.2] that

B(§) = o()UR)(E) ace. {eT. (2.5)

The function ¢ can be factored as ¢ = 1,0,, where I, is inner and O, is
outer.
For |A| > 1, define the function

A(1/2A)

0,(1/A)

Notice that 4(1/A)e H?(D,) C R*(D,) and that O,(1/A)e H*(D,) C N*(D,)
is outer. Thus G e N (ID,) and, since (0) =0, G vanishes at infinity. Using
(2.5), the nontangential limits of G are equal to Uh/I, a.e. on T. Thus we

have shown (2).
Conclusion (3) was shown in [19, Thm. 3.2]. O

G(A) =

REMARKS. (1) By [19, Thm. 3.2], C.\{1/Z: z€ Z(¢)} is the largest set with the
property that whenever he X, Uh extends to be analyticin C\ {1/Z: z€ Z(¢)}.

(2) Although ¢Uhe H? for all 0< p<1 and all he X, we cannot im-
prove this to H'. One sees this as follows: By [19, Thm. 4.3] there is a (0) #
¥ € Lat(M,, D) such that Z(F) = Z(¢$) (where ¢ is chosen as in Theorem
2.1(2)) contains T. Notice that § = [¢]r,, p) # (0). Letting X = (z& )%, note
that X € Lat(M;,D) and X # D. Notice, by the way ¢ was chosen (i.e.



208 ALEXANDRU ALEMAN & WILLIAM T. Ross

¢ L zF), that ¢ € K. Also notice that z¢ € &F. If it were the case that pUh e
H' for all #e X, then setting & = ¢ we would have

zpUpe H' = (z¢)(z¢)'€ H'.

This would mean that ((z$)*)’e H' which would mean that (z¢)? is con-
tinuous on [ [9, Thm. 3.11]. But since Z(¢) contains T, ¢ =0 on T and so
¢ = 0 on D, which is impossible.

We can now state the Richter-Sundberg theorems in terms of the backward
shift on A3 as follows: It is well known that the dual of A3 is D via the pairing

. _ d L=
(f, &= lim f(lfs“)g(rs“)l—iI = lim X a,b,r*",

r-17 Y¢l=1 27 r—1"n=0
where f=3a,z"€ A3 and g =3 b,z"€ D. Hence if M € Lat(L, A3) then,
by (2.4), U*IM € Lat(M;, D). A simple computation shows that for f e A}
and ge D,

(f,&)=U, 8)yp.
Thus, if X = U*9N,

M ={geD:(f,8)=0vVfeM}
={geD: (U, g)p =0VfeNY
= J¢is,

Now apply Theorem 2.3 to obtain Theorem 1.2. We also remark that in
statement (i) of Theorem 1.2 we say that fge H? for all 0 < p < 1. By re-
mark (2) above, this cannot always be improved to H'.

3. Preliminaries

We first review some basic facts about the weighted Bergman spaces A£. We
refer the reader to [7] for further details. By [7, Thm. 1.1}, for f € A2 we have

1
| f(2)| = O((l —lzl)(““)/p)’ zeD.

Moreover, if y < (a+1)/p and fe Hol(D) with

1

|f(z)] O(““lzl)”’)’ zeD, (3.1
then a simple estimate says that fe AZ. It is a result of [9, Thm. 5.10] that
for every v > 0 there is a function f € Hol(ID) satisfying (3.1) and such that
the nontangential limits of f do not exist on any set of positive measure.
Thus, by Fatou’s theorem, such an f does not belong to (D). From this
we conclude that 42 is not contained in (D). We make this remark be-
cause (see [3] and Theorem 1.3) the nontrivial M € Lat(L, A%) are contained

in (D).
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We now focus our attention on the dual space of A%, mainly X, ,. For
fixeda>—-land 1 < p < 4+, let

q=p/(p—1), n, =min{ne NU{[0}, n > a}.
Let Hol(D) denote the analytic functions on the unit disk [D, and let
X, ,={heHol(D): h"*D(1—|z|)""*e LI(1—|z|)*dA)}, p>1;

— . pn,+1) — 1 )}
Xo1 {heHol([[D).h (2) O((l—lzl)"a“" 5

Xo 1 = [}1 e Hol(D): h"e*D(z) = 0((1 —Izll)”“'“) when |z| - 1}.

These are well-known classes of functions:
Xop= Bg,q, p>1, s=a+l—(ax+1)/q (the Besov classes);
X1 =A% (n—a) Xe,1 =A% (n,—ay) if € &Z (the Lipschitz classes);
Xy =AMl (x, 1 =AY if «eZ (the Zygmund classes).

We refer the reader to [10] and [14] for the definitions of these classes and
their basic properties. Note that X, ,C H !'for all « and p ([14, pp. 66-67];
further references are found on p. 68).

NotaTtioN. Throughout this paper, the following notation will be in force.
For fixed a > ~1and 1 < p < 4o,

n, =min{ne NU{0}, n > o} (3.2)
s=(a+1)—(a+1)(p-1)/p (3.3)
m =[s], where [s] denotes the integer part of s. (3.4)

It is also known [10; 14] that the dual of A% can be identified with X p bY
means of the pairing

(f,g)=lim ¥ aybr** = lim fro)e(rd) I—dil (3.5)
r-1" k=0 r—17Y|¢|=1 27
where f =Y a,z¥€ A2 and g =3 b, z* € X, p- Similarly, with the pairing
above, the predual of A}, can be identified with Xq,1- A computation with
power series and using the identity

1 1 k! n!
1— 2\n 2k+ld —
fo( A = S k)]
shows that
gy =mnt [ F@ TP ~|zPy e dA. (3.6)
i}

REMARK. We pause for a moment for a word about topology. When p > 1,
Xq, p 1s endowed with the norm topology. When p =1, X,, , will be endowed
with the weak-star topology that stems from the pairing (3.5).
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If « > p—2+ pm, then (see [14, p. 110] for the appropriate references)

ci"cx, ,ccy”, (3.7)
where
c{" = {feHol(D): f*eC(D)v0 =<k < m).

Moreover, when o > p—2+ pm, one also can prove that X, , is a Banach
algebra (see [14, p. 110] for the appropriate references).
As mentioned in the introduction, if 9 € Lat(L, A2) then

IM* e Lat(M,, X, ).

For general « and p, the description of Lat(M,, X, ;) is quite complicated
[5], but when o > p—2+ pm a complete characterization is known. We first
review these results for p > 1 and treat the case p = 1 separately.

For p > 1 one uses the pairing (3.5) and the Hahn-Banach theorem to show
that the polynomials are norm dense in X, ,. Thus, if X € Lat(M,, X, )
then X is a norm closed ideal of X, ,. These ideals have been characterized
by [22; 23; 25] as follows.

A function fe H' can be factored as

where O is the outer factor and I, is the inner factor. An inner function 7 can
be factored as I = cBS,, where c is a constant with |c| =1, B is a Blaschke

product (with zeros repeated according to multiplicity), and S,, is a singular
inner function with positive singular measure . Define

spec(I) = clos B~Y(0) Usupp p.

Fixing p>1 and « > —1 such that « > p—2+ pm and fixing an inner
function I, we let Ey, E, ..., E,, be closed subsets of T with the following
properties:

EyDE D---DE, Dspec(I)NT; (3.8)
ENE;, (k=0,1,...,m) are isolated points. 3.9)
For fe X,,, (resp. x,,1)) and 0 < k < m, let
E((f)=(eT: fV()=0,0=<j=<k). (3.10)
Finally, let
K(ULEy, ... Ep) ={f€Xy p(X0, 1) Ex(f) DE,0<k=m,I;/Ie H}.
THEOREM 3.1 (Shirokov). Fix p>1 and o> —1 that satisfy a« > p—2+ pm.

Then X(I,E,, ..., E,) is a (norm) closed ideal of X, ,; moreover, every
(norm closed) ideal of X, , is of this form.

REMARKS. (1) In order for the ideal X(1, E,, ..., E,,) to be nonzero, it is
necessary and sufficient that
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27
f log dist({, EoUspec(l))|d¢| > —oo. (3.11)
0

See [26] and [27] for further information.
(2) It is a result of Khrushchev [13] that given E,, ..., E,, and [ as in (3.8)
and (3.9), thereis a

ge A = Hol(D)NC=(D)
with
I,=I and E(g)=EVv0<k=m. (3.12)
Thus, every ideal of X, , is principal; that is,

‘,K:(I’ EO’ cesy Em) = [g](MZ,Xa_p)'
(3) For this generator g, we note that
Z(g) = ExUspec(ly).

(4) If p =1then, for every o > —1, x,, is a Banach algebra. Using the fact
that the dual of A}, is x,, ; along with the Hahn-Banach theorem, we get that
the polynomials are norm dense in x,, . Thus, as before, if X e Lat(M,, x, ;)
then X is a norm closed ideal and, by [22; 23], X = X(], E,, ..., E,,). More-
over, letting g be chosen as above, we get

CK:([’ EO) '--,Em) = [g](Mz,xa_l)~

We record this information about x, ; here since it will be used in what
follows.

For X, ; the description of Lat(M,, X, ,) is essentially known but not found
in the literature, so we briefly review it here. First note that, for all o« > —1,
X,,11s a Banach algebra. The description of Lat(M,, X, ;) is as follows.

THEOREM 3.2. Let o> —1. Then:

(1) For I and E, (0 <k <m) as in (3.8) and (3.9), X(I,E,, ..., E,) isa
weak-star closed ideal of X, ;.

(2) Given any X € Lat(M,, X, 1), X is a weak-star closed ideal of X, ,
and

X =X(,E, ..., E,)

forsome land E;, 0 < k < m.
(3) If g€ A® satisfies (3.12) then

K(I, Eo, ..., En) = (&l x,, -

To prove this theorem we first need some further information. Note that for
zel and ge X, |,

1
g(z)—<1_wz, >
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From this we conclude that for fixed z e D the functional g — g(z) is weak-
star continuous on X, ;. We now appeal to [5, Prop. 2] to get the following
lemma.

LemMA 3.3. Let {g,} be a sequence in X, ,. Then g,— 0 weak-star if and
only if the following two conditions hold:

(1) g,— 0 uniformly on compact subsets of ; and
) llgnllx, , =M<+ forall n.

CorOLLARY 3.4. Let {f,} be asequence in X, | that converges to zero weak-
star. Then, for each 0 < k <m and each €T, f,¥({)—0.

Proof. Fix0<k<m and {eT. By Lemma 3.3,

M= sup,|fillx, , < +oo.

Notice also that, by our earlier discussion, X, ;C C,f{") with the inclusion

being continuous. Thus, for w,, w, € T we have
|0 0w0) = £ (wp)| < MCw —w, 7, (3.13)
where C > 0 is independent of w;, w,, and n. For0<r<1,
law]|
27’

where P,(w) is the Poisson kernel. For § > 0 the above is bounded by

Jomt S
w—tl<s  Jw—t|>s

which by (3.13) is bounded by

=10 [ 100 =50 Br )

d
CMsP+CM [ Pyiw) law],
w—g|> 27

Given € > 0, choose é, so that CMBg < /2. With this choice of 64, choose
0 < rop<1so that

(see [12, p. 32]). Thus we have
I Bree) =00 <€ vn.

From this we conclude that
| AR = e+|fLEred)]  va. (3.14)
Since f,, — 0 weak-star we have (Lemma 3.3) that ¥ (ro¢) — 0 and so, by

(3.14),
liminf| ()| <€

n— oo

and hence f,{X({) — 0. O
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Proof of Theorem 3.2. (1) By the Krein-Smulian theorem, to show that
X, E,,...,E,) is weak-star closed it suffices to show that it is weak-star
sequentially closed. To prove this we use Corollary 3.4.

(2) and (3) Recall that (x, ;)* = A% and so (x, ;)** = X, ;. Hence if X €
Lat(M,, X, ;) then *(*X) € Lat(M,, x,, ), and so by the remark (4) above
there is a g e A with

KR = (&), x, )
By the Hahn-Banach theorem,

X =[glwm,, x, -

Letting I be the inner factor of g and E; = E;(g) (recall the definition of
E,(g) from (3.10)), we use the fact that X(/, E,, ..., E,,,) is weak-star closed
(1) to conclude that

X =[g](MZ,Xm])C3C(I,El, ...,Em). (315)
Applying the same argument to X(Z, E, ..., E,;), yields the existence of a

ge A% so that X(I,E,, ..., E,) = [&),, x,, - Using Corollary 3.4, it must
be that

From the ideal theory for x,, , (remark (4) above) we must have [g], Myxe ) =
[&](m,, x,, » and so, by the Hahn-Banach theorem, [g]ay,, x, ,) = (&, x, -
Combining this with (3.15), we are done.

4. Proof of the Main Result

Lemma 4.1. Let 3>0and ue L'((1~)z|)? dA) such that |u| is subharmonic
in D. Then the function F defined for |A| # 1 by

[ u(—|z]?)f
POy = [ A
satisfies
lim F(r{) —F(£)||d§'| =0.
r—1-9Y|¢|=1 r

If ue L'((1—|z|)* log(1/(1—|z|)) dA), then F belongs to H\(D,). If ue
LY(1—|z|)®~'dA), then F belongs to H*(D,).

Proof. From the properties of # and since, for all [A|#1, 1/(z—A)e
LY(ID, dA), it follows easily that F is well-defined for |A] # 1. For |¢| =1and
0 <r<1we have

AT S U u _1I2\8
Fo) F(r) f(r ’)fn =) @—n I A

From this we have

f)l (1 ) 2\8 |d¢]|
Forey—F (2 jae) < (L - 1—|z?)? dA :
jlvg']zl (I'_;-) (I‘ ' g‘l - r f@lul( IZI ) leﬂ:l lz—ri'llz—i'/l‘l
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By the Cauchy-Schwartz inequality we get

|d¢]| ( |d¢| )1/2( |d¢]| >1/2
= P — ] . 4.1
fm=1 |z—r¢l||z—5/r] = f;ﬂ:: |z—r? f,ﬂ:, |z—¢/r|? (4.1

Notice that, for all ze D,
| l n=0

=1 |z—¢/rf? B =1 |1—rz/¢|? 1-r2|z|?
27
<
1—-r|z|

Also notice that for |z| < r we have

iy [ |ds | 3 e p2
Toerel2 I ——— =27r =9
flfi=* lz=re? D= 1=2/rf? ,Eo pan T

For |z| > r we have

-2 ) 2n -2
[ s e
| |

=1 [2=rEP T Jjg=1 [1—ri/z)? n=o 12[?" 1—r¥/|z]?
27|z| 2
=< .
|z|—r
Thus the left side of (4.1) is bounded by
< 27r 2 .
llz]=r[72(1 =r|z]) 72
Hence
t)l lul(1—]2))*
F(r )—F(— d sC(l—r)f dA.
JI‘s“|=l s )|l p ||z|—r|V2(1—r|z])!2
Note that on {|z| < r?}U{Vr < |z| < 1} we have
lz|=r[2(=r|z])2 = y(1—1)7},
and so, by the dominated convergence theorem, it follows that
. |u|(1—|z])?
Iim (1-r) dA = 0.
r1- (lel< r2uwr<izl<n lzl—=rV2(1—r|z])!2

For 0 < p <1, define
U(p)=f |u(p$)||dE).
I$1=1

Then U is an increasing function of p and
lul(1-|2))*
(r2<le<vrt [|Z]—r[2(1—=r|2z])V/?
N
< c(1=nPH2UWF) [ | plo—=r|™V2dp < 51— IUGF)
r

and, from

(1-r) dA
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a-nfuaR e, [ Vo,

we deduce that the limit in the statement is zero.
If ue L'((1—|z|)?log(1/(1—|z|)dA), we use Fubini’s theorem and the
well-known estimate

|dA| 1 )
IR 1 T ) —’1—9
fwz, TEY i ey B

to obtain, for all p > 1,

dA
[ 1roonan= [ oz [ A a4
=p D Al=p 12—A]
scf |u)(1—|z)?)? log L aa,
p—|z|

which shows that these integrals remain bounded when p — 1%, that is, Fe
H'(D,). In the case when ueL'((1—|z|?)*~!dA), we use the fact that
|z—A| > 1—|z| for |A| > 1 to conclude that

IFQ)| < 2ﬁf |u|(1—|z])P ! dA;
D
that is, F belongs to H°(D,). (]
Before proving the main result, we make the following remarks.

REMARKS. (1) If f(¢) (¢eT) is the boundary function for an fe H(D),
then f(¢) is the boundary function for a function in H(ID,) (the function
being f(1/7)). A similar situation holds for a function in H(D,).

(2) We remind the reader that if feNt(D) and f({) € LP(T) for some
0 < p < +oo, then fe H?(D) [9, Thm. 2.11].

(3) Recall from the introduction that if 7 is an inner function then 7 has a
pseudocontinuation to NN([D,) given by

= 1
I(z)=——, |z|>1, 1/Z¢ Z(]). 4.2
(z) 71/2) |z| (1) 4.2)
(4) The spectral radius of L is equal to unity and hence (1—AL)"'L exists
for Ae D. A computation shows that, for fe A2,

S

ALV F =
(1=AL)~Lf = =

(4.3)
Proof of Theorem 1.3. As usual, for a function h on D and 0 <r<1, we
let A, denote the function 4,(z) = k(rz). Suppose that f e A” satisfies condi-
tions (i) and (ii) of Theorem 1.3. Then for g€ S we have fge LI(T). If we
write g = 1,0,, with I, inner and O, outer, then I divides 7,.

We first argue that f/I, has a pseudocontinuation jz e NH(D,) that van-
ishes at infinity. Toward this end, we notice that by (4.2) the function 1/1,
has a pseudocontinuation

L(/A)/I(/A), |A]> 1. (4.4)




306 ALEXANDRU ALEMAN & WILLIAM T. Ross

But since I,/Ie H*(D), it follows that ,($)/I(¢), (€T, are the boundary
values of an H*(ID) function. Thus by remark (1) above 1, (§')/I(§‘) are the
boundary values of an H*(D,) function. Thus, by (4.4), I/I has a pseudo-
continuation to H*(D,). Because f/I has a pseudocontinuation to RH(D,)
that vanishes at infinity,

has a pseudocontinuation fg e N1(D,) that vanishes at infinity.
Then on T we have a.e.

JE(§) = f(9)0,(1/§) e H(D,),
which vanishes at infinity; hence

fitg 1%l

=0 vkeNU{0).
Is]=1 27

Note also that f,g, converges to fg in LY(T) and hence, by the dominated
convergence theorem,

S &—f8=/8—S8)8 /8 +/8(& /8 —8/8) (4.5)
converges to 0in L'(T) when r— 1~. Thus, for g€ S and k € NU {0} we have

Gizkey=lim | fi¥e ”' fu 1Bl o 4
¢l=1

r—1"Yit|=r 2
which shows that fe 9.
Conversely, let fe 9. By the remark above, (1 —AL)IL9N C 9N for all
AeD. For ge S use (3.6) and (4.2) to obtain
0=((1-AL)"'Lf, &
. S=f) _|d¢]
= lim
- dp=r TN 2
= 7n,! /=] ; ) (2"t 1g) Pt D(1—|2]%) "= dA.
D

By Lemma 41, we can define the functions G and A on C\T by the
formulas

no+1 (e + 11 1 12V1a
G(A):vrna!f(z g Az
Z—A
ne+1 N, +1) 1 1,12\
H(A):vrna!ff(z g)z_)\(l 120™ 44,

and notice from the above that
SFA)YGA)Y=H(A) vAeD. 4.7)

For |¢|=1and 0 < r <1, a computation using power series and (3.6) gives
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ne,+H1 N+ 1 _{~12V1a
6(L =7rna!f(z O A—|zP™
r z—={/r

= lim g ldzl
p—1"Y|z|=p T~ f/l‘ 27
Another computation reveals
(zna+lg)(na+l)(1_|z|2)na

= r{g(rt). (4.8)

— 1
G,(¢) = wn,! fmsr p— dAe H\(D,)
or equivalently, by the above remarks, G, e H'(DD).
By Lemma 4.1 and (4.8) we have
G,— {g(¢) in H\(D,) as r— 1~ (4.9)
and
H.-H inLY(T)asr—1". (4.10)

Then, by (4.7) and (4.10), f,G, = H,— H in L'(T); as in (4.5), it follows
that £, G, converges in L'(T), hence also in H!(D) to # = HG/G. Since for
AeD
h(N) = lim £,G,(A) = f(A) lim G.(A) = f(AN)Ag(A),
r—1- r—1"
we get that fg e H'. Moreover, on T we have a.e. fzg = He H'(D,), which
implies

JTI(§) = FH(§)/04(1/€) (4.11)
a.e. on T. Then f/I, has a pseudocontinuation f; e NH(D,) with

() B,(0) = f@ f(2" V1)t (1 —|z|2) " dA = 0. (4.12)

This shows that f has a pseudocontinuation in 9([D,) such that the inner
factor in the denominator of the canonical Nevanlinna factorization divides
1/1 for arbitrary g € S. Then this inner factor also divides 1//, where I is the
greatest common inner divisor of the inner functions I, (g € S) and I is given
by (4.2); that is, f/I has a pseudocontinuation f in E)?+(De) satisfying

F=fI/I

Finally, if we choose g€ S such that [, /I(O) # 0, then I /T has no pole at
0. Hence from (4.12) we obtain f() =

To finish, we need to show that f has an analytic continuation to C \{z:
1/z€ Z(S)}. Using the fact that f has a pseudocontinuation f to D,, we
need only show that if {€ T\ Z(S) then f extends to be analytic in a neigh-
borhood of ¢.

If e T\Z(S), then there exists a g€ S and an open set U containing ¢
such that

lg(2)|=86>0 vzeUND. (4.13)
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But since fg € H'(D), we have fe H'(UND). From (4.11) we observe that
the pseudocontinuation f of f satisfies
ZH(zZ)
g(1/z)’
By Lemma 4.1, He H'(D,) and thus, by (4.13), fe H(UND,). Using

Morera’s theorem [11, p. 95], we get that f has an analytic continuation
across TNU. O

flz)=

|z| > 1.

REMARKS. (1) If the functions g€ S in Theorem 1.3 satisfy the stronger
condition

gt -zt e LU~ |z)™), g=p/(p-1), (414
then, by Lemma 4.1, the condition (i) in Theorem 1.3 can be replaced by

(i’) fgeeH® forall fe M andall ge S.
(2) Let S be a subset of x, ; such that

1 1
(n,+1) —
«T(Z)=0 lo vgeS. 4.15
Then exactly the same argument shows that [S]* consists of all functions
fe Al with the properties (i) and (ii) of Theorem 1.3.

5. Applications

In this section we will give the following applications of our results:

(1) L-invariant subspaces of certain Bergman spaces;
(2) cyclic vectors;

(3) the adjoint of the weighted Dirichlet shift;

(4) weighted Bergman spaces on an annulus; and

(5) the backward shift on A,

S5.1. L-invariant Subspaces of Certain Bergman Spaces

By combining Theorem 1.3, Theorem 3.2, and (4.14), we can completely
characterize the L-invariant subspaces of A for fixed > —1and 1 < p<
+oo that satisfy

a>p—2+mp. (5.1

We remind the reader that the definition of m is found in (3.4).

NotaTiION. Foraset ACC, let
A*={1/a:ae A}.

Notice that if A contains the origin, then A* contains the point at infinity.
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Before stating Theorem 5.1, we remind the reader that any inner function 7/
has a pseudocontinuation given by 1/1(1/%), z € D,. Moreover, this pseudo-
continuation is an analytic continuation to C\spec(/)* [12, p. 68].

THEOREM 5.1. Let o and p satisfy (5.1). If M € Lat(M,, AL) with I = AX,
then M = l[g](Mz,Ag) for some g € A”; moreover, fe AL belongs to M if
and only if
(1) fee H*(D) and
(2) f has an analytic continuation to C.)\Z(g)* such that f/I, belongs to
N*(D,) and vanishes at infinity.

5.2. Cyclic Vectors
In this section we will show that when « and p satisfy (5.1), every nontrivial
L-invariant subspace M C A% is cyclic, that is,

M= [f](L,Ag)

for some vector f. We will also give a specific formula for this vector. In
order to do this, we need a few preliminaries.
For a finite (complex) measure u on T, let

d
ag=[

lej=1 §—2
be the Cauchy transform of u. Note that i € Hol([D) and
R du({)
() (z) =sz _BS) k01,2,
# [¢]=1 (§—2)kH!

LEMMA 5.2. Fix a>—1 and 1 < p < +oo satisfying (5.1). If u is a finite
(complex) measure on T then

pReA? v0<k=<m, (5.2)
and for every g € X, , we have
(P, gy = fl _ TP auo). (5.3)
f=1

Proof. For « and p satisfying (5.1) we have X, pCC(m), in particular,
Xe,1 C X1 C CA and the inclusion maps are continuous. Then the rule

g- I D du )
Is]=1

defines a continuous linear functional on X,, , if p > 1 (or x,, ;). Hence there
is an fe€ A% such that

gy = fl o~ FE+(Rg)® dpu(t)
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forall ge X, ,, p>1(or x,,). For g(z) = 2" we obtain

£(0) N CEY 5) k] A )
n —<f’ )—' n! jlrg-l 1§‘ dp’(g-)___—n"——‘:

which means that f =) and that (5.3) holds for all ge X, ,, p>1 (or

Ol l)
To finish, note that x;* = X, ; and so (5.3) holds for all ge X, ;. ]

REMARK. For the proof of this next lemma, we recall some facts.

(1) If p is a finite measure on T, then (A), |A| <1, belongs to H”(ID) for
all0< p<1[9, p. 39]. Note also that a(A), |A] > 1, belongs to H?(D,) for
all 0 < p < 1. Furthermore ([9, p. 39]; see also [20, Prop. 1}),

lim g(r¢)— lim g(r§) =2niu’(¢) a.e. {eT.
ro1* r—1-

(2) If f'e H? for some 0 < p < 1 then fe H? where g = p/(1—p). This is
a result of Hardy and Littlewood; see [9, p. 88] for further references.

3) If f’e H', then fe C(D) [9, Thm. 3.11].

@) If feRT(D) and f(¢) € LP(T,|d¢|), then fe HP(D) [9, Thm. 2.11].

(5) If fe Hol(D) and (Af)(z) = [§ f(w)dw (i.e., the antiderivative that
vanishes at zero), then using integration by parts one shows that, for all
nelN,

n
A"y =z"f+ 3, A+ p,
k=1

where ¢, are constants and p is a polynomial.

LeEMMA 5.3. Let p,vy, ..., v, be finite (complex) measures on T such that
V1, ..., Uy are singular with respect to |dz|. If

n
M)+ Y 29 z)=0 vzeD, (5.4)
k=1

then v, = --- = v, =0 and dp. = f|dz| for some f e H'.

Proof. Assume vy, ..., v, are not all zero. Let r < n be the greatest index
with v, # 0. Notice from (5.4) that
r—1
2N =—p—3 "0,
k=1
Now notice that
r—1
AT(Z5{0) = —AT () — = A"F AR 5.
k=1
But from remark (5) above we have

A"(zk (k)) —Z k+ E C; AJVk+pk,
Jj=1

and so by remarks (1) and (2) above we have
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A"z = he H\(D).
Now apply remark (5) again to obtain
Az =2"5,+ 3 ¢, A, +p, =he H.
s=1
Again by remarks (1) and (2),
5, e H(D) = 5,e H(D).

Notice that 5,(A), |A| < 1, belongs to H'(D), that j,(A), |A| > 1, belongs to
H?(D,) for all 0 < p <1, and that since », is singular with respect to |dz| it
follows (by remark (1) above) that

lim g,.(s¢)— lim @,(s¢) =0. (5.5)

s—>17 s—1*

This says that 4,(}), [A| > 1, belongs to H”(D,) and has L'(T, |dz|) bound-
ary values, which means (by remark (4) above) i,()), |A|> 1 belongs to
H'(D,). By (5.5) and Morera’s theorem, #, is entire. However, p.(0) =0
and so, by Liouville’s theorem, #, = 0 on C. This implies that

[ dangr=0 viez,
|$1=1

which means that », = 0. Thus by the definition of », we have v, =--- =, =0.
Finally, from (5.4) we get that 4(z) =0 for all z e [, which means that

[ dauzy=0 vi<o
l§f=1

by the theorem of F. and M. Riesz [9, Thm. 3.8], this gives the desired result.

O
THEOREM 5.4. Let o and p satisfy (5.1), and let X(1,E,, ..., E,,) be a non-
trivial ideal of X, ,. Let po, pys ..., b be finite measures with supp p; =
E,, 0<k=<m,and let

Jo =L(1+/§o ﬁk). (5.6)
Then

X (I, E,, ..., E,;) = span{L’f,, j = 0}.
Proof. If ge X, ,, then
(L'fo,8Y=0Vj=0
S (fO,zjg)=OVj20

1

< (fo, l_ézg>=OVae[ED

. m _ Zk z (k)
= f ljaZIZgIdZI‘Fk;O zk+l<1£_égz)_) duk(z)_—_OVaeD_

The last equality is an application of Lemma 5.2.
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Suppose that (L’/f,, g) = 0 for all j = 0. Letting 4 = zg, we have
1 _ m ] zkh (k)
——TIh|dz|+ Z —— d, =0 vaeD. 5.7
f 1—-az |dz] kgo 2 (1—52) ki (2) @€ (-7

Notice that

(zkh (k) ! k) (Zkh)(j)
1—az =0 J! (1—az)k—J+v’

and so (5.7) becomes

_ m k t . kpy(J)
f 1 L 1h|dz)+ > z"*‘( > kT'a'f—f (z°h)
|z[=1

—az |zj]=1k=0 j=0 J* (1—az)k-J/+1

)d.uk(z)

=f 1 — Ih|dz|
jgj=1 1—aZ

m
+ E 2k+l 2

. , d z

|z]=1 k=0 j=0 J! (z—a)k—i+! ) pi(2)
f L < ( k1 ak=izi(zkh)D
|z]=1

( K gt gk—igk=i+1(zkpyD

—Ih|dz|+ . . )d (z
1—az I I |z|=lk§0 ) J! (z—a)k—i+1 pi(2)

L - k! 2 (2" m)D
= Ihldz|+ "f LA S R ,
J|lz:|=1 1—az |dz| rgoa " k_?ﬂ T —ay i (2)

O<j<k=m

which we rewrite as
m
f 2 _Ih|dz|+ 3 a0 (a), (5.8)
Zi—a r=0

where », are the finite singular measures (note that the measures p;, 0<
k < m, are singular)
k1

dv, = ————7/(2*n) D dy,. (5.9)
’ k—§j:=r J'(k_.])! ( He
O<j<k=m
By Lemma 5.3, this implies that ge IH' and dv, =0, r < m. But from
(5.9) we have

dvy,=2"hdp,,=0

and hence 42 =0 on E,,. Analogously, from dv,,_; = 0 we obtain
dvy_1=2"hdp,_+mz(z"h) dp,, = 0.

But since # =0on E,,, we conclude that h =0on E,,_;and A’=0o0n E,,_;.
Clearly this can be continued to show that E (h) DE; forall 0=k=m
(recall the definition of E;(4) from (3.10)). Thus ge X([, Ey, ..., E,;).

Of course, if ge X(I, Ey, ..., E,,) then (5.7) is satisfied and so {(L’f,, g) =0
for all j = 0; thus, by an application of the Hahn-Banach theorem, we are
done. O
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5.3. The Adjoint of the Weighted Dirichlet Shift

In this section we will apply our results to examine the invariant subspaces
for the adjoint of the weighted Dirichlet shift. For —eco < 8 < +-00, let Dg be
the space of f = 3 a,z*¥ € Hol(ID) with norm

1715 = 2 1 +K)FlaP,

where =3 a,z*. Dy is called the weighted Dirichlet space. We refer the
reader to a paper of Brown and Shields [5] for further information, but for
now we note that

D ={A2_1_B, <0
g X_14+8,2, B>0

= (g€ Hol(D): g"-1+a*D(1 —|z[?)"-+a*1=F e L3 (1—|2?)~1*4,

with equivalent norms.
Dy is a Hilbert space with the inner product

(f,8)0,= T (1+K) ab,

and the operator M,: Dg— Dy, M f = zf (“multiplication by z”) is contin-
uous. In this section we wish to obtain information about the invariant sub-
spaces for M7, the adjoint of M. This problem has been examined before in
the special cases 3 =0 and 8 =1 [8; 19].

For —oo < 3 < +o0 and f € Dg, let

(Bg f)(z) =( ,ﬁ) =Y a1+ kP25, f=Saz~

Bg f € Hol(ID), and a calculation similar to (2.4) shows that Bg: Dg— D_g is
unitary with

LBg = BgM;,
where M7 is the adjoint of M, on Dg and L is the backward shift (i.e., Lf =
z7Y(f—£(0))) on D_g. Also note that
(Bgf.&)=(/.8)p, Vf,8€Dg.

Applying Theorem 1.3 yields the following.

THEOREM 5.5. Let 8> 0 and M € Lat(M, Dg), M = Dg, such that M+ =
[S)a,, p,) (note: L is with respect to the inner product in the Dirichlet space),
where S is a set of functions g € Dg with

g("—l+6+l)(1 |z|2)n 1+g+1— ﬁlog ELZ((1—|Z|2)_1+B).

I |

Then I consists exactly of the functions f € Dg, where
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(1) gBsfe H'(D) forallge S, and
(2) (Bgf)/I has a pseudocontinuation to N (D,) that vanishes at infinity
(where 1 is the greatest common inner divisor of S).

Moreover, By f has an analytic continuation to C\Z(S)*.

Condition (5.1) with « = —1+ 3 can be written as
—1+8>2m, (5.10)
so applying Theorem 5.1 yields the following corollary.

CoOROLLARY 5.6. If B satisfies (5.10) and MM € Lat(M,, Dg), M # Dy, then
M = [g]ipr, o5

Jor some g € A*. Moreover, f € Dg belongs to I if and only if

(1) gBgfe H*(D), and
(2) Bgf has an analytic continuation to C\Z(g)* such that Bgf/I, €
NY(D,) and vanishes at infinity.
Furthermore, if f, is defined by (5.6) then

M = [B_gSolwmz,p,)-

ReEMARK. Corollary 5.6 says that for 3 satisfying (5.10), every M;-invariant
subspace of Dy is cyclic (i.e., generated by a single vector). Recall from Sec-
tion 2 that this was discovered by Richter for § = 1.

5.4. Bergman Spaces on an Annulus

In this section, we will apply Theorem 1.3 to invariant subspace problems
for weighted Bergman spaces on an annulus and the exterior disk.
Let w, , be a positive, continuous function on (1, ) with

we () (p—1)* if p~1,
o piP o4 if p~ +oo,
Forl<p<+4oand a> —1, let
LE*(D,) = {fe Hol(D,): fe L/(D,, w,, ,(]z|) dA)}

be the weighted Bergman space on the exterior disk. A straightforward cal-
culation reveals that the operator

U: A5 - LE*(D,), (Uf)(z)=,(1/2)
is continuous and invertible with L . U = UL, where
Lot LE (D) » LY *(D,), Leog=2z(g(z)—g()).

(Note that since w,, , is a finite measure, L is continuous.) Applying Theo-
rem 5.1, we have the following.

THEOREM 5.7. Fix aa > —1and 1 < p < +oo satisfying (5.1). If
MNelat(Ly, Ly p(‘De)): AN # Lg’p(De)a
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then X =U *[g](Mz, x,, ) Jor some g € A®. Moreover, fe Ly *(D,) belongs
to N if and only if

(1) fUge H*(D,) and .
(2) f has an analytic continuation to C\{Z: z€ Z(g){ such that I,(Z) fe
ZNH(D).
Furthermore, if [y is defined as in (5.6) then

N =[UfolL,, L27)-

We can apply Theorem 5.7 to examine the invariant subspaces under the
forward shift M, f = zf of the weighted Bergman space on the annulus. Let
G ={z:1<|z| < R} be an annulus, and let

L3 7(G) = {fe HOl(G): fe LP(G, w,, ,(]2]) dA)}

be the weighted Bergman space on the annulus. It is well known that
Lat(M,, L3 ?(G)) is very complicated, and a complete characterization is
unknown. We can, however, characterize the subspaces X € Lat(M,, Ly ?(G))
with the additional condition

le X,

as was done by Royden [20] for the Hardy space. For further information
on the Hardy space of an annulus, we refer the reader to [2; 20; 21].

For a function fe Ly #(G) we write the Laurent series in the following
way:

[+ o] o0 b
f=Xaqz"+ X —:—;
k=1 k=0 <

let /_ be the second sum above. For a subspace 1e X C LS ?(G) with zX C X,
we have

¥ =span{z¥: k= 1} +X_,
where X_ ={f_: fe X}. Now, using the fact that 1e X_, we have
L, X_CX_.
Apply Theorem 5.7 with 91 = X _ to obtain the following.

CoroLLARY 5.8. Fix a>—1 and 1< p<+oo satisfying (5.1). If Xe
Lat(M,, LY ?(G)), X # Ly P(G), and 1€ X, then

X_=U'glm, x. ,)
Jor some g e A*. Moreover, fe L “(G) belongs to X if and only if

(1) f_Uge H*(D,) and
(2) f_ has an analytic continuation to C.\{Z: ze€ Z(g)} such that T;(Z)f _€E
NHD).

As a corollary to this result, we get that X is generated by the two vectors 1
and Ufo.
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COROLLARY 5.9. Fix a> -1 and 1= p < 4+ satisfying (5.1). If Xe
Lat(M,, Ly P(G)), X # LG P(G), and 1€ X, then

X =1[1, Ufolm,, L2 7)-

5.5. The Backward Shift on A~
Let £ > 0 and define

A~ = [feHol(D): sup,en(l—|z|)| f(2)] < +0},
A= A"

1>0
A% is a topological algebra when endowed with the inductive limit topol-
ogy [15] and the backward shift operator L is continuous.

REMARK. A set UC A~ is open if, given f e U, there exist sequences {#},
ty T+oo, and {e;}, e, > 0, with

LkJ[g e A7 | f—gllau<eg)CU.

In this section, we employ duality again to characterize the L-invariant sub-
spaces of A~ and show, unlike the weighted Bergman spaces, they are not
all cyclic.

The dual of A~ can be identified with A with the usual pairing (1.1).
(For a description of the topology of A” see [26, p. 1267].) Thus, as before,
if 9 is an L-invariant subspace of A~® then M = +X; here X is an ideal of
A%, which by a result of Taylor and Williams [26] is of the form

K = K(I, Eg, Ey, Es, ...) = {(he A°: Ex(h) D E, VO < k < +oo, I, /T € H®)

(same as before except there are now an infinite number of E;s). Again by
[13], this ideal is generated by a single function g € A%; that is,

L=I, E(g)=E V0=<k<+o. (5.11)

Notice that if fe A~ then fe A~ for some >0, which means that
fe Al Also, if ge A® as in (5.11), then g certainly belongs to X, ; and,
moreover, easily satisfies (4.14). If one follows the proof of Theorem 1.3
(using the Hahn-Banach theorem for topological vector spaces) one obtains
the following.

THEOREM 5.10. Let MeLat(L,A™™), M = A~". Then
M =+X(I, Ey, Ey, E, ...) = *[g)a,, 4=
for some g e A*. Moreover, fe A~ belongs to M if and only if

(1) fee H®(D) and
(2) f has an analytic continuation to C\Z(g)* such that f/1, belongs to
N*(D,) and vanishes at infinity.
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Moreover, if M =X, E,, ..., E;) and f, is defined as in (5.6), then
M =[folr,a—)-

However, unlike the weighted Bergman spaces, not all L-invariant subspaces
of A~ are cyclic.

CorOLLARY 5.11. Let X(I,E,,...) be a nontrivial ideal of A*. Then
X (I, Ey, ...) is cyclic if and only if M ; E; = 0.

Proof. By the previous theorem, it suffices to show that if (; E; # @ then
t& (1, E,, ...) is not cyclic. So suppose that

[f](L,A—w) = "LJ{:(I, EO’ "')'
Since fe A~ for some ¢ > 0, it follows that fe Al Since

flig,a—= # A%,
there is a nonzero A € A® with

fiz/hy=0 Vj=0.

But 4 also belongs to X, ;, so f generates a nontrivial L-invariant subspace
of A! that, by our earlier discussion, is of the form

{heAl:(h,z/g) =0Vj =0}, (5.12)

where g € A and more importantly (by the result of Khrushchev [13]) g ¢
X(I, Ey, ...) (i.e., all the derivatives of g do not vanish on (; E;). But (5.12)
implies

g€ [f]%L,A_m) = JC(I: EO’ -“)s
a contradiction. L]

6. Final Remarks

6.1. H’, 0<p<1

Knowing that, for 0 < p <1, the dual of H? is X),,_, ; (with the pairing
(1.1)) [10], one might be tempted to use our techniques to obtain a character-
ization of the backward shift-invariant subspaces of H”. One should avoid
this temptation because our techniques involve heavy use of duality and in
particular the Hahn-Banach theorem. For 0 < p <1, H? is not a Banach
space and the Hahn-Banach theorem may fail [10]. The L-invariant sub-
spaces of H” are more complicated and were handled (using much different
techniques) in [1].

6.2. Cyclic Vectors

By [8], a vector fe H?is L-cyclic for H? (i.e., [ f1, g2 = H?) if and only if
S does not have a pseudocontinuation to 9(ID,). For the weighted Bergman
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spaces, lack of a pseudocontinuation is still a sufficient condition for L-
cyclicity but it is not a necessary one. For example, an inner function 7 has
a pseudocontinuation. One proves, using the theorem of F. and M. Riesz,
that 7 is not L-cyclic for A2 if and only if 7 is an inner divisor for some non-
zero X, , function. Note that when o and p satisfy (5.1), this is equivalent to

flog dist(¢, spec(l))|d¢| > —oo. 6.1)

Thus, some inner functions are L-cyclic for the Bergman spaces. Note also
that in the Hardy space, L-cyclicity is independent of the choice of 1 <
p < +o. For the Bergman space, however, L-cyclicity does depend on the
parameters o and p. For example, one can create an inner function that
divides a nonzero Xj , function and with spec(I) =T [6]. By (6.1), this func-
tion would be L-cyclic for 4%, 1 < p < 2, but not for A3.

6.3. A~

For each ¢ > 0, one can choose an fe A7 \R(D) [9, p. 86]. Since A" is not
separable, [f]# A~ and so the analog of Theorem 1.2 and Theorem 1.3
cannot possibly hold here. However, if one endows A~/ with the weak-star
topology, then A~ is separable and one can prove that every (nontrivial)
weak-star closed L-invariant subspace MU belongs to (D) and that every
S €M has a pseudocontinuation to N(M,) [3]. A complete characterization
of these O remains open.
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