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1. Introduction

Several developments in the study of singular integrals and related harmonic
analysis techniques have made it possible to apply the classical method of
layer potentials to numerous boundary value problems in domains with min-
imal regularity assumption. Among others, important examples in the case
of C! domains are [7] and [18], and in the case of Lipschitz domains [17] and
[6]. If for a given boundary value problem the classical method of layer po-
tentials in smooth domains provides solutions for continuous boundary data,
then one has come to expect that in C! domains, the method should also
give solutions for data in L” for the full range 1 < p < o; see for example [7]
and [18]. Remarkably, this should still be achieved, as in the classical case,
through Fredholm theory. On the other hand, in the case of arbitrary Lip-
schitz domains, Fredholm theory is not applicable in general. In some cases,
however, the method of layer potentials combined with energy estimates like
the ones in [9] still provides solutions in the Lipschitz situation, at least for
a more restrictive range of p; see for example {17] and [6].

Along these lines, we have studied in [16] several boundary value problems
for the scalar Helmholtz equation (A+ k?2)u =0 in Lipschitz domains (see
also [1]). This equation arises in the study of the scattering of time-harmonic
acoustic waves. The purpose of this paper is to study a boundary value prob-
lem in the vector-valued case, which naturally occurs in the scattering of
electromagnetic waves. We will consider the so-called Maxwell boundary
value problem for the case of a perfect conducting surface, extending known
results for smooth domains to domains with less regular boundaries. In the
case of smooth domains, the classical theory is described in [15] and [4].
More recent developments for the Helmholtz equation in smooth domains,
as well as numerous references to related works, can be found in [10] for the
scalar case and in [12] for the vector-valued case.
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The particular form of the boundary conditions, as well as the crucial
choice of functional space for the boundary data, is what makes the bound-
ary value problem in this paper technically more complicated. The impor-
tance of the problem in applications makes it worthy of consideration.

The treatment of the various singular layer potential operators associated
with the vector Helmholtz equation on nonsmooth boundaries rests on the
results in [2] and [3] regarding the Cauchy integral operator, from which
boundedness results are obtained in a standard way. Another major ingre-
dient in our approach is our previous work on the scalar Helmholtz equation
on Lipschitz domains mentioned above.

In the case of time-harmonic waves in R3 with wave number k (ke C,
Im k£ = 0), and after a suitable normalization, Maxwell equations take the
form

curl E—ikH =0, curl H+ikE =0,

where E and H are the electric and magnetic fields representing the wave.
It is a well-known fact that solutions of these equations are divergence-free
solutions of the vector Helmholtz equation.

Let E' and H’ be (given) incoming vector fields, and let £ and H be solu-
tions of Maxwell equations corresponding to the scattered fields by a per-
fectly conducting obstacle. If we represent the object by a bounded domain
D, then the tangential component of the total field £+ E’ should vanish
on dD. Consequently, if N denotes the outward unit normal to dD, then
NXE=—-NXE’ on the boundary. This leads to the following boundary
value problem:

curl E—ikH =0 on R3\ D,
curl H+ikE =0 on R3\ D,
NxE=A on dD,

where A = —N X E’ is a given tangential vector field. A similar problem can
be stated for the interior of D. For C! or Lipschitz domains and for non-
continuous boundary data, we shall interpret the boundary values pointwise
a.e. in nontangential fashion. Notice that if a divergence-free solution E
of the vector Helmholtz equation with wave number k satisfied N x E = A,
then defining H = —(i/k) curl E, we have that £ and H are solutions of the
above problem. If we now let Div denote surface divergence on the boundary
of D then we should have, at least for smooth domains,

Div(N X E) = —(N, curl E). 1)

A consequence of (1) is that the existence of boundary values for the normal
component of H implies some extra regularity on the tangential component
of E, and vice versa. For this reason some regularity in the boundary datais
usually imposed. For example, in the case of smooth domains, the boundary
data is often assumed to be in the space of Holder continuous tangential
vector fields with Holder continuous surface divergence. This regularity of
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the boundary data yields solutions that are continuous up to the bound-
ary (see [11]). A Sobolev space version of such space of boundary data was
studied for C? domains in [8], where the boundary values of the solutions
were interpreted in an appropriate L? sense.

In the case of C! and Lipschitz domains, we shall consider the spaces
L?PY(@3D) consisting of all tangential fields in L?(dD) having their surface
divergences (in a distributional sense) in L”(dD), 1 < p < co. In addition, we
shall impose some boundedness conditions for the nontangential maximal
functions E* and H*. All this will allow us to make sense of (1) in nonregu-
lar domains and, in turn, to guarantee the existence of pointwise boundary
values for H. Moreover, the choice of space is optimal in the sense that, for
a given tangential vector field 4 in L?(0D) and a solution E with tangential
boundary values A, the companion vector field A has pointwise (nontan-
gentially) boundary values if and only if Div 4 is also in L?.

In the above setting, we prove existence and uniqueness of solutions and
optimal estimates in L2 ®"(3D) for the full range 1 < p < oo, in the case where
Im k£ > 0 and when the domain is assumed to be of class C! (as usual, some
radiating condition at infinity is imposed in the exterior problem). We suc-
ceed in extending to the C! case the study of the boundary layer operators
related to the vector Helmholtz equation, and show that Fredholm theory
is still applicable. The vector fields £ and H, solutions of the problem, are
then expressed as the curl and curl curl of a single layer potential operator.
Actually, we also obtain a uniqueness result for an arbitrary Lipschitz do-
main. The lack of compactness of certain boundary operators, however,
prevents us from extending the arguments for the existence result to the
Lipschitz situation. As mentioned earlier, a priori energy estimates derived
from Rellich-type identities are in many cases an alternative tool to prove
invertibility results in the Lipschitz case. Relying in part on the results we
present here and on the same choice of boundary data, such an approach
has been recently considered in [13] for boundary data in L% ®"¥(3D), with p
in a small neighborhood of p = 2. The case of other values of p for general
Lipschitz domains remains open.

Regularity properties for solutions of Maxwell equations in nonsmooth
domains have been considered in [5]. We want to point out that the results
of this paper, together with the boundedness of appropriate nontangential
maximal functions, can be used in a standard way to show that E and H
belong to the Sobolev space H'/2(D). This has been described in a joint
work in [14]. We would like to thank M. Mitrea for our conversations on a
preliminary version of this paper and related problems.

2. Notation

We recall some basic definitions and facts about Lipschitz domains, and
we introduce some spaces of functions defined on the boundary of such
domains.
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An open, bounded, simply connected domain D of R3, with connected
boundary 8D, is called Lipschitz or C'if dD is given locally by the graph of
a Lipschitz or C! function, respectively. Let do denote surface measure on
aD. Let (-, -) denote the usual inner product in R3, and let X denote exterior
product.

A vector-valued function 4 defined do-a.e. on dD is said to be tangential
if (A, N)=0 a.e. on dD, where N is the unit exterior normal to dD. The
spaces of all tangential L” vectors is denoted by L% (dD). The L?-L” pairing,
1/p+1/p’ =1, used in this paper is given by

(4,B) = aD<A(Q)’ B(Q)) do(Q). @)

The space of L? scalar functions with tangential gradient in L?(dD) is de-
noted by L”!, If, for example, ¢ is a Lipschitz continuous function on a
neighborhood of dD, then the tangential gradient vector field of { can be
computed almost everywhere as Vyy = Vi — (dy/dN)N. A vector field 4 in
L%(dD) is said to have a surface divergence if there exists a (unique) scalar-
valued function b in L?(dD) such that

(Vry,Addo=—| vyYbdo 3)
aD aD

for all functions ¢ that are Lipschitz in a neighborhood of dD. The sur-
face divergence b in (3) is denoted by Div A4, and the space of all L? vector
fields with surface divergence is denoted L%’ PV(3D). The norm of the space
LY PV@D) is given by

|4 “L‘?‘ Divop) = |4 ||L”(aD) + ||DiVA||L”(aD)-

Notice that, by density, the formula in (3) holds for all ¢ in L?*}(dD). For
domains with smooth boundaries, the definition of surface divergence can
be given in several other equivalent ways—for example, pointwise (see [4]).

We will always assume that at every point Q in the boundary, an open,
right circular, doubly truncated cone I'(Q), with vertex at Q and two convex
components (one in D and the other in R3\ D), has been chosen so that
the resulting family of cones is a regular family as described in [17]. The
interior component of such cones will be denoted by I', (Q) and the exterior
by I'_(Q). As usual, for a function « defined in D or R3\ D, the nontangen-
tial maximal function #* is given by

u*(P)= sup |u(X)|,
Xel,(P)
or
u*(P)= sup |u(X)|,
Xel_(P)
depending on where the function u is defined. Boundary values of functions
defined in D or R3\ D are assumed to be taken as nontangential limits almost
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everywhere with respect to surface measure on the boundary of D. That is,
U |,p is defined by
u(P)= Ilim u(X),

X-P
Xel' (P)

or

u(P)= Ilim wu(X).
X-P
XeTl_(P)

Similar definitions apply for the normal and partial derivatives of a func-
tion, and for each component of a vector-valued function.

3. The Scalar Helmholtz Equation

Let £ be a complex number with Im £ = 0, and consider the radial funda-
mental solution for the Helmholtz operator A+k?in R3,

elkIXl

dr|X|

For a function f defined on the boundary of D, the single and the double
acoustic layer potentials are given by

d(X)=—

$f(X)=| HX-Q)f(Q)do(Q), XeR’

oD
and

DfX) = [ an 2(X~0)/(Qdo(Q), XeRNaD,

respectively.

The properties of the single and double layer acoustic potentials and the
boundedness results for the corresponding trace operators are essentially the
same as those for the case of Laplace’s equation & = 0, and can be obtained
from the results in [3] on the Cauchy integral on Lipschitz curves. See [1]
and [16].

For any f in LP(dD) we have that S f and D f solve the Helmholtz equation
in R3\aD, and also satisfy

1685 |2@py + VS, )* || L7y + D) * (| L7@py = Cll f | 70Dy s

forany 1 < p < co.
For any fe LP(dD), the boundary traces of §f and Df are given by

lim S§f(X)= lim 8f(X)=Sf(P), PeadD,
X-P X—-P
Xel (P) Xel_(P)

and
lim fo(X)z(i%I—i—K)f(P), PeadD,

X-P
XeT,(P)
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where
Sf(P) = 1 e™lo- Pf( ydo(Q), PedD
ap |Q—P)| Q)do(Q), PedD,
and
N(Q),Q—P) . _ .
Kf(Py=pv. L [ DC—P) iio-ri1 k10— Pl 1) do(0).

p.v.

47 Jip |O—P|?
In addition, for almost every Pe dD,
asf

lim ——(X)= lim (N(P),VSf(X))=(F3I+K*)f(P),
x-p ON X-P
Xel(P) XeT.(P)

where K* is the transpose operator of X.
The main properties of the trace operators are summarized in the follow-
ing theorem.

THEOREM 3.1 [1; 16]. Let D be a bounded Lipschitz domain in R3. Then:
(i) S:LP(AD)— LP(D) is a compact operator for any 1 < p < ;
(ii) S:LP(3D)— LPY(dD) is a bounded operator for any 1 < p < co;
(iii) +37+K:LP(@D)— LP(dD) are bounded operators for any 1< p <
oo; and
(iv) =3I+K:LPY(3D) - LPY(3D) are bounded operators for any 1<
p < oo,
In addition, if Imk > 0, then:
(i) S:L*(D)— L*\dD) is invertible;
(ii) +37+K:L*(dD)— L*(dD) are invertible; and
(iii) £i/+K:L*Y(dD)— L*>Y(dD) are invertible.
Moreover, if dD is actually of class C', then the above invertibility results
hold in the analogous L? settings with 1 < p < oo, and the operator K is
compact.

We will need to make use on several occasions of the following Dirichlet
and regularity boundary value problem for the scalar Helmholtz equation.

THEOREM 3.2 [1; 16]. Let D be a bounded Lipschitz domain in R? and let
Im k > 0. Then the Dirichlet problem
(A+k>u=0 onD,

le*)| L2@p) < oo,
u|ap = feLP(AD)

has a unique solution for p = 2. The solution can be written as
u=D(3+K)7'f).
If 3D is actually of class C', then the result holds for any 1 < p < .
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THEOREM 3.3 [1; 16]. Under the hypothesis of the previous theorem, the
regularity problem

(A+k®>u=0 onD,

|l e*|| L2y + (V) * || LDy < 0,
ulyp=feLP(3D)

has a unique solution for p = 2. If the domain is C! then the result holds for
the full range 1 < p < . In either case, the solution can be written as u =
DL+ K)7'f) and also as u = $(S7'f).

Similar results are valid in the exterior domain R3*\ D provided u is also
assumed to have an adequate decay at infinity; this is known as the Sommer-
Jfeld radiation condition.

REMARK. In the case of an arbitrary Lipschitz domain, the L? inversion
results in Theorem 3.1 are still true in the L” settings for appropriate ranges
of p. The regularity boundary value problem can actually be solved for p in
a (small) neighborhood of p = 2 which only depends on the Lipschitz char-
acter of D. See the remarks in [16, p. 1474]. In what follows, for simplicity in
the presentation we state several results for Lipschitz domains only for the
case p = 2. Nevertheless, those results that depend on Theorem 3.3 remain
true in a neighborhood of p = 2.

4. Formulas for the Vector Helmholtz Equation

We shall indicate how to obtain the classical Stratton-Chue integral repre-
sentation formulas for vector fields satisfying the Helmholtz equation in the
case of Lipschitz domains. To do so we need a standard approximation pro-
cedure. Given a Lipschitz domain D, we fix a family of smooth approximat-
ing domains like the one in [17, Thm. 1.12]. That is, we chose domains {;
contained in D such that the following conditions hold.

(i) There is a sequence of Lipschitz diffeomorphisms A;: D — 9{}; such
that the Lipschitz constants of A; and its inverse are uniformly
bounded in j. Furthermore, A;(Q) e I',.(Q) for all j and all Qe dD,
and supgeap|Q—A,(Q)| = C/.

(i) There are positive functions w;: dD — R, bounded away from zero
and infinity uniformly in j such that: (a) for any measurable set F' C
oD, [pw;do = [ r doj; (b) w;—1a.e. and every L?(3D),1 < p < .

(iii) The sequence of normal vectors to Q;, Nj(A;(-)), converges to N
a.e. and in every L?(dD), 1 < p < o0,

We also fix an approximating sequence of domains from the outside of D
with analogous properties. These approximations will be denoted by ;T D
and Q; | D, respectively.
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Many results known for smooth domains can be extended to the Lipschitz
case by using the above approximating domains, provided one works on the
right space of functions. We illustrate this with the following result.

LEMMA 4.1. Let E be a smooth vector field in D. If E and curl E have non-
tangential limits for almost any P € dD, and if
I E*|| L7@py +|l(curl E)* || r@p) < oo

Jor some 1 < p <o, then NXE has a surface divergence in LP(3D). That
is, Nx Ee L% °Y@3D) and

Div(N X E) = —(N, curl E').
Proof. By a density argument it is enough to show that

(Vry, NXEYdo= | y«(N,curl EYdo
aD aD

for all ¥ that are C® in a neighborhood of D. This last equality is easily
checked for smooth domains and smooth functions up to the boundary.
Hence, using ;T D,

(V¥, N;xE) do; = f YN, curl E) do
a9, 29,
and

(ViYy,NXE)Ydo=| (Vy,NXE)do
aD 3D

=lim | (Vy, N;XE)do
Jj—o oo 391

= lim Y{(N;, curl E’) dg;

= Y{(N, curl E) do.
aD
To justify the two limits in the above expression, we first observe that

f (V¥, N;x EY do,
29,

= aD(W(AJ-(Q)), N(Q) X E(Aj(Q)))w; do

+ aD(Vl.b(Aj(Q)), (N;(A(Q) —N(Q) X E(Aj(Q)))w; do.

Since | V| is bounded in a neighborhood of D,
KVY(A(Q)), N(Q) X E(A;(Q))|w; = C|E™|. 4)
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By the properties of the approximating domains,

(VY(A;()), N(Q) X E(A(Q))w; = (VrY, NXE)

at almost every point in the boundary, so—using (4), the fact that | E*||.»5p
is finite, and the dominated convergence theorem—we can pass to the limit.
By the same arguments,

|| cTHAL@), (N (A1@N) ~NQY) X E(A;(@); do 0.

The limit involving curl £ can be handled in the same way because we are
also assuming that ||(curl E)*||,#p, is finite. 0

For the rest of the paper, we shall no longer present the proof of similar re-
sults in such details. Notice that to carry out the above limiting argument we
needed the boundedness of appropriate nontangential maximal functions.
For this reason we introduce the following spaces of solutions of the vector
Helmholtz equation AE+ k2E = 0 (cf. [16]).

DerINITION 4.1. Let D be a Lipschitz domain. For 1 < p < oo, the space
VP(D) is the space of all complex-valued vector fields E in C?(D) that solve
the vector Helmholtz equation and for which E, curl E, and div E exist a.e.
on 4D, while E*, (curl E)*, and (div E)* are in LP(dD).

As usual, in order to obtain uniqueness results when dealing with the ex-
terior domain, some radiation condition must be imposed.

DEFINITION 4.2. Let D be a Lipschitz domain. For 1 < p < o, the space
Vi”(D) is the space of all complex-valued vector fields £ in C*(R3\ D) that
solve the vector Helmholtz equation and satisfy the so-called Silver-Miiller
radiation condition at infinity,

X . X
curl E(X) X — +divE(X)—-
| X | X|

for | X'| - o, uniformly in all directions in R3, and for which E, curl E, and
div E exist a.e. on 4D, and E*, (curl E)*, and (div E)* are in LP(dD).

—kE(X) = o(|X|™)

We can now extend to the Lipschitz situation the following representation
formulas.

LEMMA 4.2. Consider 1 < p < o, and let_E be a vector field in VF(D) or
in VP(D). Then, for all X € D or X e R*\ D, respectively,

+E(X) = fa  curly(@(X—~Q)N(Q) x E(Q) do

“ ) Vx ®(X = Q) XN(Q), E(Q)) do

+ LD P (X — Q) (N(Q) X curl E(Q) —div E(Q)N(Q)) do.
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LEMMA 4.3. (i) Let E be a vector field in V(D). Then
aD«N(Q) X E(Q), curl E(Q))+div E(Q)XN(Q), E(Q))) da(Q)
- fD(|curl EXO+|div EQOP— k2| E(X)?) dX.
(ii) Let E be a vector field in V(D). Then

lim (— f |k |E(X)? +|curl E(X) X N(X)+div E(X)N(X)[*ds,
|X|=r

r—oo

~21Im(k) f |curlE(X)|2+|divE(X)|2+|k|2|E(X)|2dX)
D,

—2Im (k [ «n@), B©@)xcurl E))
ab
+divE(Q)N(Q), E(Q))) do), |

where ds, is the surface measure on B,(0), the ball of radius r, and where
D, =R\ DN B,(0).

Proof. The above formulas hold on any smooth domain (see €.g. [4, pp.
110-120]). The limiting arguments using approximating domains can be ap-
plied because of the conditions on E. C

The following corollary is an easy consequence of these lemmas.

COROLLARY 4.4. Let D be a Lipschitz domain, and assume that Imk > 0.
If E is a vector field in V(D) and if div E and N X E vanish almost every-
where on the boundary, then E =0 in D. The analogous result holds for
R3\D if E is in the space V(D).

5. Vector-Valued Layer Potential Operators

We will look at solutions to the vector Helmholtz equation defined via layer
potentials. The action of the layer potential operators § and » on vector
fields in L?P(3D) is defined componentwise. We have the following.

LEMMA 5.1. Let A be a vector field in LP(dD), 1 < p < .
(i) For almost every Pe dD,

lim divSA(X) = FL(N, AXP)+p.v. | dive(®(P—Q)A(Q)) do.
X-P 2 aD
XeT,(P)

(ii) For almost every Pe dD,
lim curl SACX) = =F—;—(N><A)(P) +p.v. f curl p(@(P— Q) A(Q)) do.

X->P aD
XeT.(P)




Layer Potential Operators in Nonsmooth Domains 199

(iii) All the above integral operators are bounded on every LP(dD) for
< p<oo,
(iv) For 1< p < oo,

”(diV SA)* "LP(aD) + ”(Curl SA)* I]LP(('JD) = C"A "L”(aD) :

Proof. Parts (iii) and (iv) are consequences of the main result of [3]. From
this, (i) and (ii) follow from the limiting argument described above and the
fact that they hold for smooth domains. O

Notice that if A € L% (3D) then there is no jump for div 84 across the bound-
ary of D. Notice also that E = 84 is in V;”(D) or V(D). On the other hand,
if E = curl 84 then E still has nontangential boundary values and bounded
nontangential maximal function, although curl £ may not have these prop-
erties. In fact, using the identity curl curl = —A + V div, we see that curl E is
in V;P(D) or V(D) if and only if (VdivSA)* is in L”(dD). The following
lemma addresses this issue and justifies the choice of boundary data that we
shall make for the Maxwell problem.

LEMMA 5.2. Let D be a bounded Lipschitz domain, and let 1 < p < . Ifa
vector field A in L%(0D) has a surface divergence in LP(0D), then divSA =
S(Div A). In particular, ||(V(div8A))*||.rsp) < . If Imk > 0 then the con-
verse implication is always true for p =2 and, if the domain is actually C,
it is also true for the whole range 1 < p < oo,

Proof. Assume first that Div A € LP(aD). Because, for any fixed point X in
D, the function ®(X — -) is Lipschitz on dD, we have

divSA(X)=div| ®(X-Q)A(Q)ds(Q)
aD

= — aD<VQq)(X— Q), A(Q)> do(Q)
- fa (T, 2(X=0), A do(Q)

= | ¥(X-Q)(DivA(Q))do(Q)

aD
= §(Div A)(X).

The converse implication relies on Lemma 3.3. Assume that A eL2T(6D) is
such that [|[(V(div 8A4))*||.2ap) < . Since div 84 solves the scalar Helmholtz
equation in D with datum in L>!(dD), it follows from the uniqueness in
the regularity problem that divS8A = $b for some b € L?(dD). Now, for any
function ¢ Lipschitz in a neighborhood of aD,
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(VrSy, A) do(P) =f (Vp@(P—-Q)Y(Q), A(P))>do(Q) do(P)
aD aD YaD

=—] WQ)divsA©Q) do(0)

=—| yShdo
oD

=—| Sybdo.
aD
Since the space of all functions of the form Sy with ¥ as above is dense in
L>1(dD), we conclude that Div A = Sb is in L%(dD), as desired. The change in
order of integration in the above calculation can be justified, once again, by
a limiting argument using the approximating domains. Finally, notice that if
D is actually of class C! then the regularity problem for the scalar Helmholtz
equation holds for the full range 1 < p < o0, and the above arguments can be
repeated in the L”(3D) setting if we assume that ||(V(div 8A4))* || 7@ap) < .

We consider now the tangential component of the operator obtained by tak-
ing the curl of the single layer potential.
Let A be a vector field in L?(3D). Then, at almost every point P on aD,
one has
lim N(P)xcurl SA(X) = (x531+M)A(P),

X—-P
XeTl' (P)

where

MA(P) =p.v. | N(P)Xcurlp(®(P—Q)A(Q))da(Q).
aD
Clearly, the vector field MA is always tangential and, by the results in [3],
M is a well-defined, bounded operator from L% (D) into itself for all 1 <
p < oo. Furthermore, routine calculations show that its formal transpose,
M*: LE(dD) — L%.(3D), has the form

M*B=NxM(NxB), BelL%(@D).

THEOREM 5.3. Let D be a bounded Lipschitz domain in R3, and let Im k >
0. Then, the operators ++I+ M: L7(dD)— L7(dD) are injective for 2 <
p < oo and have dense ranges for 1 < p < 2.

Proof. We first treat the case p = 2. Suppose that (3/+M)A =0 a.e. on
dD for a tangential vector field A4 in L?,'—(BD), and set U = 84 in R3\aD. As
a single acoustic layer potential, U belongs to both V;*(D) and V(D). Also,
going to dD from inside D, we have

NxcurlU=(3I+M)A =0.
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By Lemma 4.2, we have that for any X in D,

U(X)=curly | ®(X—-Q)N(Q)xU(Q)ds(Q)

aD
— ] Vx®(X—OXN(Q), U(©Q) do(Q)
-] #(X-0)divU@)N(Q)do(Q).

Taking the divergence of both sides of this equation and then going to the
boundary, on dD we obtain

div U = k2SN, UY) + 31+ K)(div U),
or
(AI—-K)(divU) = k2SN, UY).

Now, since S maps L2(3D) into L>»'(dD) and 17— K is invertible in the latter
space, it follows that div U e L*!(3D). Thus, by the uniqueness in the regu-
larity problem for the scalar Helmholtz equation, there exists a scalar-valued
function u in L?(8D) such that div U = Su on dD. Furthermore, since div U
is continuous across dD —in this case by the uniqueness in the Dirichlet prob-
lem for the scalar Helmholtz equation with L?-data (Theorem 3.2)—it fol-
lows that div U = Su in all R
Now let E = curl SA on R3\3D. Note that

curl E = curl curl U = —AU+ V(div U) = k2U+ V(div U);

hence E satisfies the Helmholtz equation in D and is in V2(D). Since both
div £ and E X N are zero on the boundary of D, it follows by Corollary 4.4
that £ must be identically zero in the interior of D. Let H = (1/ik) curl E;
that is, let

H= —ikU—%V(div U) = —ikSA —%V(Su) on R3\aD.

Because SA4 and the tangential component of V(8u«) are continuous across the
boundary, it follows that the same is true for N X H. Consequently, these
boundary values, taken from the exterior of D, are zero since H= 0 in D.

Furthermore, H is divergence-free, satisfies the Helmholz equation in
R3\ D, and is also in V(D). Corollary 4.4 finally yields that H must vanish
in the exterior of D as well. However, in R3\ D,

k?E =—AE =curlcurl E+VdivE;

therefore E = 0 in the exterior of D also. Taking this to the boundary, it
then follows that

(—3I+M)A =0,
and finally that
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A=EI+M)A—(=LI+ M)A =0.

The arguments for —37+ M are virtually the same. Next we show that the
ranges of +3/+ M are dense. Toward this end, we shall check that +37+M*
are also injective on L3(dD). Since this is an immediate consequence of
_ZI+M N X ((x3I+M*)(N X)) on L3%(3D), the proof of the case p =2
is complete.

We are considering bounded domains, so the above reasoning implies that
+1]+ M are also injective on L%(dD) for 2 < p < . Since +1I+ M=
NX((£3I+M*)(N x-)) on LZ(@D), it follows that so do iZI+M* Fi-
nally, using the duality of M and M* given by (2), we infer that +37+ M
have dense ranges for 1 < p < 2. O

We now turn our attention to the action of M on L% D""(()D). The main
result in this respect is the following.

THEOREM 5.4. Let D be a Lipschitz domain in R, and let 1 < p < o, The
operator M is bounded from L?°¥(@aD) into itself. Moreover, if A is a vec-
tor field, initially in L3-(dD), for which (+ I+ M)A is in L2 :DV@3D), then
A actually belongs L% D“’(aD) If the domam is of class Cl then the last
statement remains true Jor the whole range 1 < p < .

Proof We already know that +5 7+ M are bounded on L%(3dD). In estimating
Div((31+ M)A), we shall use Lemma 4.1. First note that, for A in L2 °(3D),
the vector field £ = curl 84 in D satisfies the hypotheses of that lemma, as

curl E = curlcurl 84 = (—A+ V div)8A = k28 A+ V§(Div A4),
by Lemma 5.2. Therefore, since
Div((3/+M)A) = Div(N X E) = —{N, curl E),
we finally obtain
|IDiv((31+ M)A)|| > < C|lcurl E|j.r < C(|| Al >+ || Div A|| .»).

Similar arguments apply to —3 I+ M.

Consider now A4 in L% (3D) so that B = (A1 + M)A e L»PY@D), where
p =2 for a general Lipschitz domain and 1 < p < « if the domain is C'.
Clearly SA falls within the range of Lemma 4.2. Thus, after taking the di-
vergence in D and going to the boundary, we have

divSA = k2S((N, SAY) + (:I+ K)(div SA) + div SB.
Using once again Lemma 5.2, we can write
(31— K)(divSA) = S(k*(N, SAy+ Div B).

By Theorem 3.1, it follows then that the boundary trace of divSA is in
L?1(3D). Hence, by the uniqueness in the regularity problem for the scalar
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Helmholtz equation in D, there exists a b € L?(dD) such that divSA = 8b in
D. Finally, we obtain DivA = be LP(dD). O

THEOREM 5.5. If D is a bounded C' domain, then the operator M is com-
pact on every LE(0D), 1 < p < oo.

Proof. As has been observed many times (see e.g. [4, p. 60]), for a tangen-
tial vector field A the integrand N(P) X curlp(®(P—Q)A(Q)) in MA can
also be written as

Vp®(P— Q) N(P)—N(Q), A(Q)) — N, 2(P—Q)A(Q).

The second term is precisely the integrand of K*A4 (recall that K* is the trans-
pose of the singular double acoustic layer potential operator). Furthermore,
if the domain D is of class C!, the gain in the first term is N(P)—N(Q) =
o(1) as |P— Q]| goes to zero. From these and well-known techniques [2; 7],
the theorem follows. O

The following is an immediate consequence of Theorem 5.5, Theorem 5.3,
and the Fredholm theory for compact operators.

COROLLARY 5.6. Let D be a bounded C' domain and let Imk > 0. Then
+11+ M are invertible on LY.(0D) for any 1 < p < 0.

If we use Theorem 5.4 then we also have the following.

COROLLARY 5.7. Let D be a C' domain and let Imk > 0. Then the oper-
tors +11+M are invertible on L2 °Y(3D) for any 1 < p < .

6. The Maxwell Boundary Value Problems

In this section we solve the boundary value problem for the Maxwell equa-
tions mentioned in the introduction. The uniqueness of solution for 2 <
p < = is a simple consequence of Corollary 4.4, even in the Lipschitz case,
because we are dealing with bounded domains. More generally, we have the
following lemma.

LEMMA 6.1. Let D be a bounded C' domain and assume that Imk > 0.
Suppose that E is a solution of the vector Helmholtz equation in D that is
in V(D) for some 1< p < . If div E and N X E vanish at almost any point
of aD, then actually E vanishes identically inside D. A similar result is valid
Jor vector fields in V(D).

Proof. The proof once again involves the representation formulas of Lem-
ma 4.2. Suppose that E satisfies the hypotheses of the lemma inside D (the
reasoning for the complementary domain is completely analogous).
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First, note that div E is a solution of the homogeneous Dirichlet problem
for the scalar Helmholtz equation in D. Therefore, by the uniqueness part
in Theorem 3.2, div E is identically zero inside D.

Next, by Lemma 4.2 we can write

E(X)=~- aDVx‘I’(X- Q)N(Q), E(Q)) da(Q)

+| ®(X—Q)N(Q)xcurl E(Q)da(Q).
oD

Taking the curl of both sides and going to the boundary, we obtain

Nxcurl E= —(3I+M)(N X curl E)
or
(—3I+M)(N Xcurl E) =0,

so that N xXcurl £E=0.
After this, we again go to the boundary in the integral representation of
FE and take the inner product with N. We obtain

(N, E) = (3I-K*)KN, E))
or
(3I+K*)(N, E)) =0.

Therefore (N, E) =0 and the same integral representation formula finally
yields E=0on D. O

THEOREM 6.2. Let D be a bounded C! domain in R?, and assume that
Im k > 0. The interior Maxwell boundary value problem

curl E—ikH =0 on D,
(M) < curl H+ikE =0 on D,
NXE=AeL?»"™@D)

has a unique solution in V(D) for all 1< p < . Moreover, the solution
can be written as

E(X)=curly | ®(X-0)(z/+M)'A(Q)do(Q),

aD
and H = (1/ik) curl E. In particular,
C7Y Al Lz Pvapy < |E* |l 27@py + | H || 20Dy < Cl| Al L2:ovep). )

Similarly, the exterior Maxwell boundary value problem

curl E—ikH =0 on R3\ D,
(M,) < curl H+ikE =0 on R3\ D,
NXE=AeL?"@D)

has a unique solution in V(D). The solution can be written as
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E(X)=curly | ®(X—-0)(—3I+M)'A(Q)do(Q),
oD

and H = (1/ik) curl E. Hence (5) holds in this case also.

Proof. Obviously, E given above is a divergence-free vector field for which
E* is in LP(aD). Since

H=—ikS{(x1I+M)™'A) —-li—VS(Div((i%I+M)"A)),

we also see that || H*||.7py < . The fact that E and H given by the above
formulas satisfy (M;) and (M,), respectively, is already contained in the pre-
vious sections; Lemma 6.1 gives the uniqueness of solutions. As for (5), we
note that |[N X E| < |E| while, by Lemma 4.1, |DivA|=|k(N, H)| < C|H|
and everything follows. Ul
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