On Removable Singularities for the
Analytic Zygmund Class
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1. Introduction and Statement of Results

A complex-valued function f defined on the complex plane C belongs to
the Zygmund class (f € A.), or quasismooth class, if it is bounded and there
exists a positive constant C such that

|f(z+h)+ f(z—h)—2f(z)| < C|h| 1.1)
forall z,heC.

The boundedness of f and (1.1) imply the continuity of f. We define the
Zygmund norm as || f|« =||flle+ [ f]la., Where || f]s. denotes the smallest
constant C for which (1.1) holds.

We shall call a compact subset K in C a removable set for the analytic
functions of the Zygmund class (resp. Lipschitz class) provided that every
function fe A, (resp. f€ Lip,) that is analytic on C\ K has an analytic ex-
tension to the entire plane.

We recall the definition of Hausdorff measure. A measure function is an
increasing continuous function A(¢), ¢ = 0, such that #(0) =0. Let E be a
bounded set, and for 0 < § < oo write

AW(E) = inf{ §; h(diam(U)): E C O U;, diam(U)) < 5}.
Jj=1 Jj=1

Since A% (E) is a decreasing function of 8, the limit

An(E) = lim A%(E) = sup AS(E)
50 6>0

exists; it is called the Hausdorff measure of E with respect to 4. For instance,
if h(t) =t for some a > 0, then we will write A, instead of A,. We will
denote by m the planar measure A,. If § =0, A} = M, is called the Haus-
dorff content with respect to 4. From the definitions it follows that A,(E) =
0 if and only if M, (E) = 0. See [2] for more information.

Dolzenko [1] proved that K is removable for the analytic functions of Lip,,
(0<a<1)if and only if Ay, ,(K) =0. This result is also true for the ex-
treme case o = 1, as was proved by Uy [11]. The limit case o = 0 corresponds
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to the BMO class, and Kaufman [4] showed that X is removable for analytic
functions in BMO if and only if A;(K) = 0.

In this paper we study the problem of the characterization, in metric or
geometric terms, of the removable singularities for the analytic Zygmund
class. If a compact set has m(K) > O then it is nonremovable for analytic
functions in the Zygmund class. To show this, let » be the restriction of the
Lebesgue measure on K. The Cauchy transform of »,

ﬁ(z)=fc 1 dv(w), (1.2)

belongs to A, [2, p. 80] but 35 = —7» % 0 in the sense of distributions [2,
p. 38]; hence # is not an entire function. In 1986, Uy [13] found a compact
set K with m(K) = 0 nonremovable for A,. On the other hand, using the
fact that the modulus of continuity of Zygmund functions is O(6 log(1/6))
[14, p. 44] and the ideas of Dolzenko [1], one can see that K is removable if
A,(K) =0 where h(t) = t*log(1/t). We will show that A,(K) =0 is not a
necessary condition. Lord and O’Farrell [6] showed, making use of an ex-
ample of Kahane and Uy, that there exists a compact set K nonremovable
for A, such that A,(K) = 0 with g(#) = t*+/log(1/¢) . Recently, Kaufman [5]
showed that a porous set is removable for A,. Following [5], a closed set
E is called porous (with parameter a > 0) if, for each é > 0, there is a cov-
ering of E by disjoint open disks D(z;, r;) such that r;< 4§ and each disk
D(zj, r;) contains a disk D(z}, ar;) disjoint from E. He also proved that, for
any measure function 4 such that lim,_, o+ #(#)¢ 2 = oo, there is a porous set
of positive A, measure. This means that A,(K) = 0 is not a necessary condi-
tion for A.-removability.
We define the following measure function:

v(t) = t*\[log(1/t)logloglog(1/t) if 0 <t =< exp{—e®}
and constant if ¢ = exp{—e®}. (1.3)

The function ¥/(f)/t, involving an iterated logarithm, plays a fundamental
role in Makarov’s work on Bloch functions and conformal mappings (see
[7; 8; 9.

Our results are the following.

THEOREM 1. If K C C is a compact set such that Ay (K) =0, then K is Ay-
removable.

THEOREM 2. There exists a compact set K, with finite A, measure such that
K, is nonremovable.

THEOREM 3. There exists a compact set K, A.-removable with A (K3;) = .

Let K| be the compact set given by Theorem 2. Since K| has finite A, measure,
by the comparison lemma between Hausdorff measures [2, p. 60} one has
A, (K;) = 0 for every measure function ¢ such that lim,_, o(¢(£)/¢(2)) = 0.
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This means that the function y cannot be replaced by a smaller function in
Theorem 1. In other words, Theorem 1 gives in some sense the best sufficient
condition for A,-removability. Theorem 3, as has been stated, can be ob-
tained from the aforementioned result of Kaufman. We include it here for
two reasons. The first is that the proof of the A,-removability of K, is help-
ful in giving a geometrical proof of the fact that a porous compact set is
removable. The other reason is that X, is not locally porous at any point.
Our results leave open the problem of finding a complete characterization of
A.-removable sets, but they tell us that the situation is completely different
from the Lip, and BMO cases.

Throughout this paper we will denote by C certain absolute constants,
not necessarily the same in each occurrence.

2. Preliminary Results

In proving Theorem 1, we will use some ideas from Makarov’s papers [8; 9].
We will always denote by Qg the unit cube in C. For each #n = 0, let D,, be the
family of dyadic squares

ky k;+1 ky ky+1
27 o )X |2 T

By definition, if R € D, then there are four disjoint squares of D,,; whose
union is R. We will need several definitions.

), 0 =<k, ky <2 2.1)

DErFINITION 1. A dyadic martingale (S,), n =0, is a sequence of complex
functions defined on Qg with the following properties:

(1) the function S, is constant on every square of D,,; and
(2) if Re D, then [ S, dm =[S, dm.

Condition (2) implies the following important property of martingales:

fS dm = Sodm, n=0. (2.2)

One of the main tools in the theory of martingales is the notion of stopping
time. We will say that 7: Qy— NU {oo} is a stopping time with respect 10
(D,) if {7 =k} is the union of some squares in D, for every k. A crucial
theorem [10, p. 73] in the theory of martingales is the following: If (S,)
is a martingale then the sequence (S,,,), where 7An = min{r, n}, is also a
martingale.

DEerFINITION 2. Let f be a Lebesgue integrable complex function defined on
Qo. The conditional expectation E(f|®D;) is the function defined in each
square Q € D, as

E = i
(f D) (2) (Q)ffdm if ze Q. (2.3)
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The main ingredient in proving Theorem 1 is the following resulit.

THEOREM A. Assume that (S,) is a dyadic real-valued martingale defined
on Qq such that |S,—S,_,| <1 for all n and Sy = c> 0. Then

Ay(fwe Qp: S,(w) > 0 for all n}) >0,
where  is the function defined in (1.3).

This theorem is a two-dimensional version of Theorem 3.1 in [9]. The kernel
of the proof is the original one of Makarov, but it is necessary to introduce
some modifications to adapt it to our situation. We will need several lemmas.

LemMmaA 1. Let (S,) be a dyadic real-valued martingale on Q. Assume that

|S,—Sn_1| =1 for every n. Define Z, = exp{S,} and
exp{S,}

IT% =1 E(exp{Sk—Sk_1} | D)’

Then (Z,) is a dyadic martingale and there exists an absolute constant o =
1/2 such that

Zn= n=1. (24)

Z! = exp{tS,—at?n}, t=0, n=0, (2.5)

where (Z)) denotes the martingale (2.4) associated to (tS,,).

Proof. Let Re D,. Observe that each function E(exp{S;—Si_1}|Dr_,) is
constant on R for k < n; therefore, statement (1) of Definition 1 holds. Let
R =RUR,UR3URy, where RjeD,,,. Denote by a;=3S,,r, and a=
Sy r- The condition (2) for (S,) is equivalent to the assertion

1 4
a=—3a. (2.6)
4~

From this we need only verify that

I . e
e!==7% .
4 Jj=1 E(CXD{S,H.] _Sn} | ‘(’Dn) IR
By calculations, the last equality is just (2.3).
To prove (2.5) it is necessary to make an upper estimate on the denomina-
tor of (2.4). Then (2.5) will follow from the inequality

E(exp{t(Sy—Si— )} | Di—1) < explaE(* (S — Sk 1) | De—1)), k=1 2.7)

By hypothesis and (2.3), one has that E(¢*(Sy—Si—1)*| Dsx_;) < t?; thus
(2.7) implies (2.5).

Taking into account the martingale condition (2.6), the inequality (2.7) is
equivalent to

4 4 4
S el < 4exp{—j{i D xf}, provided 3 x;=0. (2.8)
j=1 j=1 j=1
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We check (2.8) in the special case where x; = —x, =y and X3 =—x;,=2. In
this case, the elementary inequality cosh x < exp{x?/2} gives

cosh y+coshz < 2exp{(y?+22%)/4},

which is (2.8) with o« =1/2.
To show the existence of o for which (2.8) is true, we define the function
f on the hyperplane IT = {(x, X3, X3, X4): 7= x; = 0} as

4
f(0)=%, f(p)=4log(% _Elexf)llpll_2 if p#0, (2.9
j:

where p = (x;, x,, X3, X4) and || p||* = S}, x/. Let us see that lim,_, , f(p) =
0 and f is continuous. Jensen’s inequality states that f(p) =0 if pell, so
a =maX,q f(p) is well-defined and (2.8) holds for this constant. By the
definition (2.9),
4max15js4|xj| < 4

| P12 ¥4l

so lim,_, . f(p) =0. The inequality log(l+x) <x if x=0, the fact that
p ell, and Taylor’s formula for e* give that

fp) -+ < 4(z Zj-1e9=1)=3| p|? < i€ —1—x;—3x7)
2 | p|I? I |2

0= f(p)=<

4 eE-’—l 2 -2 £
5(2 5 xj)||p|| < max |e¥—1|-0 (2.10)
Jj=1 1= /j=4
as p — 0 because |§;| < [x;].
Fix 0 < 6 < 1. The inequality éx < log(1+ x), if x is small enough, and an
analogous argument to the one made in (2.10) give 6—1 < f(p)—1/2. Let-
ting 6 — 1, we obtain the continuity of f. O

After some computations, one can see that 3 < «a < 3. It is interesting to
point out that the inequality (2.7) does not hold for general martingales.

LeEMMA 2. Let (S,) be a dyadic real-valued martingale, let Sy = ¢ > 0, and
assume that |S,—S,_i| <1 for all n = 1. Put S; = max, < j< ,|S;]. If a is the
constant in (2.8), then:

(1) m({max(S,, ..., S,) = a)) <exp{—(a—c)’/4an} ifn=1and a = c;

(2) m({S} = a})) =2exp{—(a—c)4an} ifn=1and a = c; and

(3) fQO(S,’;‘)Z” dm=<CPp!n®ifn=1and p=0, where C only depends on c.

Proof. Let n be fixed. To prove (1), let us consider the stopping time 7 =
inf{k: Sy = a} if {k: Sy = a} is nonempty and 7 = o otherwise. Put

E = {z: max{S$,(2), ..., S,(2)} = a}.

It is clear that z belongs to E if and only if 7(z) < n.
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Fix ¢t > 0 and consider (Z,) the martingale (2.4) associated to the martin-
gale (£S;). Then, by (2.2) and using Fatou’s lemma, we obtain

e“=lim | Z.,dm=liminf | Z. dms= f Z.dm.  Q.1)
k—o Y0y k- YE E
The inequality (2.5) and the definition of 7 give
Z. = exp[tST—-oztzfl > exp{ta—at’n} on E.
Integrating the previous inequality and using (2.11), it follows that
e’ = m(E) exp{ta—at’n)
for all £ > 0. The best choice of ¢ is 1 = (a—c)/2an. With this value, the
previous inequality gives (1).
Now, by the definition of S,
m({S, = a}) < m(E)+ m({max{-S,, ..., —S,} = a})
=m(E)+m({max{2c—S;,...,2¢c—S,} = 2c+a}).

The martingales (S,) and (2¢—S,,) start at ¢, so we can apply to them the
first part of this lemma. Thus

— )2 2 2
m([S*za})sexp{—(a4a;) }+exp{—(a4_;;) }sZexp{—-(a ) }

dan

and we have proved (2).
Let us show (3). Computing the integral by means of the distribution func-
tion of S,;, we obtain

2c )
(SH* dm = 2pf 2P m((Sk> ) dt+2p | t*P7\m({S; > t) dt.
0

Qo 2¢

We estimate the last integral using (2). Hence the previous sum is bounded by

CP+4p | ¢?P7! exp{—( )
2c 4

) 2
}dtst+22p+1pf uz"‘lexp{——y——z du.
an 0 4dan

With a change of variable, the previous integral can be calculated in terms
of the gamma function. Thus

(S5’ dm < CP + (16a)pnppf xP~le=* dx < CPn?p!,
o) 0
where we can take C = 2 max{4c?, 16«}; this gives (3). O

Proof of Theorem A. We consider the stopping time 7 defined by 7(w) =
inf{n: S,(w) = 0} if the set {n: S,(w) < 0} is nonempty and 7(w) = o other-
wise. Define

tn = Spar dm.

Since (S,,,,) is a martingale, (2.2) implies that u,(Qg) = c. The fact that
|S,—S,_1] =1 tells us that the function S, takes its values in [0, 1]. Hence
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¢ < |luxll = 1a(Qo) + 1n (Qo) = c+1.

Let u. # 0 denote some limit measure (in the weak-star topology) of the se-
quence (u}). It is clear that u, is supported on the set {7 =00} = {w| S, (W) >
0 for all n}. Now we can follow Makarov’s proof [9, p. 26]. His Lemma 3.4,
asserting that

(S5)%° du < CPp! n?, (2.12)
Qo

is also true in our case. A proof of (2.12) can be obtained by carefully fol-
lowing Makarov’s argument. However, since we are working with dyadic
martingales on C, we cannot assert that

J SEERL A Sunr—Sin-nar)?dm =0 forall j=<p,

as he did. Yet the fact that this integral vanishes for j =0, together with
inequality (3) of Lemma 2, becomes crucial for obtaining (2.12). From in-
equality (2.12) and following the proof of Makarov’s Corollary 3.5, we obtain

ol Sk < MY (k) for all k = 4} > c/4, (2.13)

where ¥(k) = vk loglog k and M > 0 is a well-chosen number.

Denote by A = {r =} and B = {S; < M ¥ (k) for all k= 4}. Since pu is
supported on A, we have u (AN B) > c/4 by (2.13). Let R be a dyadic square
of »,, n = 4, intersecting AN B. Then 7(w) = n and S, (w) < MY (n) for each
w € R. Therefore

so(R) = lim( f Sy dm+ f S,:Mdm)s lim | S, dm+m(R)
k—o\YR R k—o VYR

= [ Sunrdm+m(R) = | s, dm-+m(R)
R R

=CY¥(n)ym(R) < C\,b(j}n—).

The last inequality implies that M, (A4 N B) is positive and hence Ay, (AN B) >
0. O

Now we define a martingale associated to a function in the Zygmund class.
Let fe A«(C) and Re D, and fix ze€ R. We then define

M,(f)(z) =4" . S(w)dw. (2.14)

LEMMA 3. The sequence of functions defined by (2.14) is a dyadic martin-
gale. Moreover, there exists an absolute constant C such that

(M, ()M, (N =C|f||l« Sforall n=0. (2.15)

Proof. The first assertion follows from the fact, obtained by cancellation
of line integrals, that
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4
M) Ir=G 3 MyniDlay
J=

where Re D, and R;, 1 < j < 4, are the squares of D, included in R.

To prove the second assertion, let z be a point in Qg and let R and R, be the
squares of D, and D, (respectively) that contain z. Denote by R,, R3, R,
the other three squares of D, ; included in R. Then

| My 1 (f)(2) =M (f)(2)| =
and this is bounded by

4n+l fwydw—4" | f(w) dw‘,
aR, aR

4
4" >

Jj=2

S(w)dw— S(w)dw
R, 3R,

. (2.16)

We will estimate each of the terms of (2.16) in the same way. Call R, one of
the cubes R;, 2 = j < 4. Let us denote by ¢, the geometric center of RyUR,.
Observe that the function 7(w) = 2co— w maps dR, onto dR;. Then, by a
change of variables, we have

Swydw—|  f(w) dW' =] (W) +f(2co—w)) dW‘

R, R, 3R,

= (fW)+f(2co—w) —2f(co)) dW‘

dR,
C
<||fll« sup |[w—co|A1(BR)) < ||f||*—4—n
weaRl
Inserting the previous inequality in (2.16), we obtain (2.15). O

We will need a useful characterization of the functions in the Zygmund class.
It is probably mentioned somewhere, but we have not found any reference
and so will prove it here.

PRrROPOSITION 1. Let f be a bounded function in C. Then fe A.(C) if and
only if there exists a C such that

|(1=2) fa)+2f(b)— f((1—t)a+1thb)| < Cp(t)|b—al (2.17)
Sfor all 0 <t =<1 and for all a, be C, where ¢ denotes the function ¢(0) =
¢(1) =0 and ¢(t) = min{t,1—t}log(1/minf{t,1—¢}) if 0<t<1.

Note that (2.17) implies the continuity of f and gives us the correct modulus
of continuity. Taking t =1/2, (2.17) is exactly (1.1).

Proof. Suppose that fe A,.(C), and define for 1€ R the function g(¢) =
f(a+t(b—a)). Since g e A.(R) and || g4, <|| f]la.|D—a], the inequality (2.17)
will follow from

|(1—¢)g(0)+1g(1)—g(2)| < C|lg|l«e(t), O0=t=<]1. (2.18)
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By the continuity of the functions g and ¢, we need to prove (2.18) only for
a dyadic point € [0, 1]. Under these reductions, our goal is to show that

k k k k
(l——)g(0)+2,, g(1)— g(zn) sCllgII*<p(—2—,,), (2.19)

where k is an odd number k& < 2" and n > 1. We must distinguish two cases.

Casel: 1<k <2""!, Then

k k k
(l—?)g(OH 78(1)— g(zn)

AP g(0)|+|g(0) g(?f‘)

n

2
<2|g|+ +C|Ig||* log —

k
k
Scllg"w’(?;)-

The last inequality follows because k/2" < 1/2 and ¢ < (1/log2)¢log(1/t)
forall0<t<1/2.

Case 2: 2" ' < k < 2", Then

k k k
'(1—7)g(0)+ o g(l)— g(z,,)

k
g(l)—g(gn—>

k k 1 k
— 2 * 1_—_ * 1 l P ——— S * 1—_ ’
<2l (130 }+ Cliell (1-55 ) o8 =5 = Clell (1)
since 1 —k/2" < 1/2. Therefore, (2.19) has been proved. O

< (1—§)|g(1)—g(0)|+

If fe A.(C), a more difficult argument improves (2.17) in the sense that it
holds also taking C = 2| f|4,/log2.

3. Proofs of the Theorems

Proof of Theorem 1. Let K be a compact set such that Ay (K) = 0, and sup-
pose that K is not A,-removable. Then there exists a function f e A,(C) ana-
lytic on C\K such that [ ag f(2) dz # 0 for a certain square Q. By a change
of variables, we may assume that Q is the unit cube Q,. Without loss of gen-
erality we suppose that

Re f()dz=c>0.
Qo
Let us consider the complex martingale (M, (f)) defined by (2.14), and put
S, =ReM,(f). By (2.15), (S,) has uniformly bounded increments. More-
over, if z€ Qp\ K then there exists ngy such that S,(z) = 0 for all n = n,. Then
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the set {z: S,(z) > 0 for all n = 1} is included in K. Hence we can apply Theo-
rem A to obtain

Ay(KNQp) = Ay(fz: S,(z) >0 for all n =1}) > 0.
The previous statement contradicts the fact that A, (K) =0. O

The proof of Theorem 2 requires some preliminary definitions and results.

DerFINITION 3.  Let p be a locally finite positive measure on C. We say that
p is a Zygmund measure if

|1(Q) —u(Q")| = Cm(Q) (3.1)

for any two adjacent squares Q, Q' of the same size.

The inequality (3.1) implies
w(Q(h)) < Ch?log(1/h), O0<h<1/2, (3.2)

where Q(#4) is any square of side length k. The proof of (3.2) can be ob-
tained with an analogous argument to the study of the modulus of conti-
nuity of a Zygmund function [14, p. 44]. Therefore, by (3.2), the Cauchy
transform f of u, defined by (1.2), is continuous on the whole plane because
its modulus of continuity is O(8 log?(1/6)) [2, p. 76]. We will need also the
fact that the Cauchy transform of a Zygmund measure is a function that
belongs to A,(C) [12].

Now we recall the construction due to Kahane {3] of a compact set, which
has become a source of counterexamples. Given x € [0, 1], consider its 4-
adic development:

= —, x;€{0,1,2,3}.

x z}l 2 Niel }
We define the independent Bernouillian random variables ¢, as follows: If
x, = 0 or 3 then ¢,(x) = —1; define ¢,(x) =1 otherwise. Let us consider the

4-adic martingale S,(x) =1+ X7, ¢;(x). The compact set is
K={x:S,(x)>0forall k=1]j.

This compact set is usually known by the name of Kahane’s compact set. It
has the remarkable property, proved by Kahane [3], that K supports a posi-
tive singular Zygmund measure ux on R. This measure is the limit (in the
weak-star topology) of the sequence of probability measures

Bn=Syns dx,

where 7 is the stopping time 7(s) = inf{n = 1: 5,(s) = 0}.

Makarov [7] made a careful study of such compact set and was able 10
prove that it has finite A, measure, where ¢(¢) = (#)/t and ¢ is the func-
tion defined by (1.3).
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Proof of Theorem 2. Let K; = K X[0, 1] and write v = pug X fdt, where dt is
the Lebesgue measure on R and f is a C! function with compact support
included in (0, 1) such that 0 < f < 1. Since A4(X) > 0, we can apply Frost-
man’s theorem [2, p. 62] to find another positive measure i # 0 supported
on K such t (/) < C¢(diam I) for all open intervals I C R. Let 5 = g X dt.
If we denote by Q(z, r) the square of center z = x;+ ix, and side length 2r,
one has

#(Q(z,r)) =2ri(x;—r, x;+r) < CY(2r). (3.3)
From (3.3) and using

Y(2r) = 4y(r), (3.4)
it follows that A, (K;) > 0.
To show that K| has finite A, measure, fix e > 0 and 0 < é < 1. Then there
exists a 6-covering (U;) of K such that

2 d(diam U)) < Ay(K) +e. (3.5)
j=1
For each j, let us consider the half-open intervals I} k= = [ko;, (k+1)¢)), 0=
k = [1/4;], where §; = diam U;. Considering the \/_6 -covering (U; ><Ik) and
using (3.4) and (3. 5), one has

APK)) < _2 diam(U; x If)¢(diam(U; x IF))

<2\/‘a ([ ]+1)¢(26)<CE¢(26)<CA¢(K)+C6

Letting e — 0 and 0 — 0 in the last inequality, we obtain A (K;) =< CA4(X),
s0 Ay (K)) <oo.

Now we will see that v is a Zygmund measure. Consider two adjacent
squares Q and Q' of side length / < 1/2. First suppose that Q =71XxJ and
Q’'=I"xJ. Since pg is a Zygmund measure on R, we have

(@) (@] = (1) — g (D) L Jdi = CI* = Cm(Q).

On the other hand, if Q =7IXJ and Q’'=171xJ' then

ffdt—f’fdt

for some points {e€J and {’e J’. Using the estimate ux (/) = O(/log(1/1))
and the fact that f is C!, we obtain

|#(Q) —v(Q")| = CI* log(1/]) < Cm(Q);

therefore v is a Zygmund measure.
Finally, let # be the Cauchy transform of the measure ». By Uy’s theorem
[12], & is a Zygmund function. Also, 4 is holomorphic on C\ K, bounded

[»(Q) —v(Q)| = px(I) = ux (D) =)
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and continuous on C, but it is nonconstant since A’() =lim,_, ,, 2h(2) =

Proof of Theorem 3. For 0 < t <1 we define the function ¢ as

t

¢(0) =0, o(t)=—— if t>0.
Jlog,(2/t)
The function ¢ is strictly increasing and strictly convex on [0, 1], so

202"ty < (27", n=0. (3.6)

Let ¥(s) = (¢ !(5))% 0 <s=<1. A straightforward computation shows that
v(s)

lim (3.7)
s—0 ll/(S)

Our compact set will be constructed in a similar way as the usual 1/4 planar
Cantor set [2, p. 87]. Let us denote by 0% = g, = E,. By induction, let
E,=Uj}., 0", where Q{" (1= j < 4") are all the closed corner squares of
the squares Q‘” D1<j=< < 4n- 1 with side length ¢(27"). Note that this con-
struction is p0551b1e in every step by (3.6) and since ¢(1) = 1. Our compact
set is K, =(,» E,. Define the probability measures p, = (1/m(E,))dm g, .
Let u be the limit of the sequence {u,} in the weak-star topology. Then
supp(r) C K; and p(Q{") = 47",

Given a small r > 0, let n be such that ¢(27""!) < r < ¢(27"). Since each
square Q(z, ¢(27")) intersects at most eight squares QJ(”“), we have

1(Q(z,r) = u(Q(z, p(27") < 8-47" =827 " Y2 = C¥(r).

The last inequality implies My (K5) > 0 and so Ay (K3) > 0. Using (3.7) and
the comparison lemma between Hausdorff measures, we have A, (K;) = «.

Now we will see that K, is A,-removable. Let f be a Zygmund function
analytic outside K,. First we will show that

2ot f(z)dz=0 forall n,j. (3.8)

Taking into account that each Q{" N K, is geometrically similar to QoM K>,
it is necessary to prove only that

f(z)dz=0.
3Q
Since f is analytic on C\ K, the Cauchy integral theorem gives
4n
f(R)dz= 2] f(z)dz for all n.
30, j=1Jagw

Fixn>=1and 1 < j < 4". We shall estimate
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f(z)dz.

aQ}n)

Write R = Q™. Let ¢ be the middle point of the right side of R. For each
z€dR, define z’ = T(z) as the point of C such that (1—¢)z+ ¢z’ = ¢ for some
t > 0. The number ¢ is chosen in such a way that the interior of the square
T(R) is included in C\K,. A suitable selection of ¢ is made taking

_ @(27")
P27 ) —p(27")

By (3.7) and by the definition of ¢, one has that 1/2 < ¢ < 1. Since f is holo-
morphic on the interior of T'(R), we conclude that

t2
dz| = dz— "V dz’
aRf(Z) ‘ aRf(Z) ¢ fT(&R) (l—t)zf(Z) ‘
~ f (f(z)+—~—-1_tf(—————~t ))dz
= 11 ((1—t)f(z)+tf<5—-:l )—-f(c))dz.
— 1 |Jar 4 4

The last term can be estimated using Proposition 1 and the fact that 1/2 <
t < 1. Hence

Sf(z)dz
dR

1 1
<Cl ——f —|c—2z||d

(271t —p(277)
e(2 M) —2p(27") "

Repeating this argument for each Q" we obtain

P27 — (27"
P (2 ) =20(277)

1 \/4n+1—%% logn
=C log 2 7 =0|—),
Jn+1 In+1—=Yn Jn

which goes to 0 as n goes to infinity. This gives (3.8).

Since f is bounded, f has a removable singularity at co. We must prove
that f is constant. Fix z¢ K, and let Q be a big enough square such that Q
contains z and Qy in its interior. By Cauchy’s theorem,

1 S —f(z) 1 S —f(2)

oo )= — T2 d 3.9
SRS @ =5 | = ;qzw[aqm =% 69
for n big enough. The function g({) = (f(§) — f(2))/(¢ —z) belongs to A.(C)
and is analytic outside K,. Then (3.8) is true with f replaced by g. Therefore
the third term of (3.9) vanishes, so f(z) = f(0) for z4 K,. By continuity,
f is constant and the proof is finished. O

< Cp(27")?log

f(z)dz| < C4"p(27")* log

9Q
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Now we sketch the proof of the fact that the compact set X, is not locally
porous at any point of K,. Given a square Qj(-"), we label the four subsquares
of E, . included in Q}”’ with 0, 1, 2, 3 respectively, starting from the lower
left square and continuing counterclockwise. With this notation it is clear
that every point in K, can be identified with a sequence (e,), where ¢, € {0, 1,
2, 3}. Let us consider the set S of points in K, corresponding to the sequences
(e,) for which there exists ny(z) such that e, = 0 and €,,,,; = 2 if n = ny(z).
The set S is dense in K,. Assume that there exist ze S and 8, > 0 such that
K>N D(z, §,) is porous with parameter @ > 0. Let § < §p and § < ¢(1/270%),
For this §, consider the corresponding covering (D)) given by the porosity.
Choose the disk D;(r) such that z€ D;(r) and choose a positive integer n such
that ¢(1/2"*1) < r < ¢(1/2"). By the choice of z, the biggest open disk in-
cluded in D;(r) and disjoint from K has radius not greater than ¢(1/ 2"y
2¢(1/2"~1). So, by the definition of porosity, one has

1 N\~ 1 5 1
ag 2n+1 sar=e¢ n—2 T4 an—1J°

Letting 6 — 0, the previous inequality contradicts the fact that
Lo 2(2X) = 20(x) _
im =

Now we show how the argument devoted to prove the A,-removability of
the compact set K, gives us a geometric proof of the fact that a porous set is
removable.

0.

Proof. Let K be a porous compact set with parameter 0 < a < 1, and fix e >
0. Since m(K) =0, there exists a covering D(z;, §;) of K such that 272, 61-2 <e
and each disk D(z;, §;) contains a disk D(zj, ad;) disjoint from K. Fix j and
let S = 3dD(z;, 6;). Let f € A.(C) be any function analytic outside K. We show
that

< Cé8},

Lf(z) dz

where C depends on a and || f|..

Set D = D(z;,96;) and D, = D(zj,ad;). By a geometric argument, there
exists a point p € D; such that the homothety 2’ = T(z) = p+a(z— p) maps
S onto S; = dD,. As in the previous proof, one has

fs f(z)dz = fs f@dz—— L Sz

=1 fs (@f(2)+(1—a) f(p) — f(1—a) p+az)) dz.

a

By Proposition 1, we have

Lf(z) dz

C
< —a—go(z) le—p]ldz] < Cé}.
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Proceeding in this way for each D(z;, §;), we obtain

> f(z)dz| < Ce. (3.10)
J=1YC(z,,6))
Now complete the proof as before by considering g({) =(f({) —f(2))/({—2),
applying (3.10) instead of (3.8) and letting ¢ approach zero. O

REMARK. It is interesting to point out that the methods of our paper can
be used to study the characterization of those compact sets K on the real
line with the property that there exists a nonconstant function in the real
Zygmund class such that it is constant on each component of the comple-
ment of K. Then it is possible to prove, in a similar way, results analogous
to ours.

References

[11 E. P. Dolzenko, On the removable singularities of analytic functions, Amer.
Math. Soc. Transl. Ser. 2, 97, pp. 33-41, Amer. Math. Soc., Providence, RI,
1971.

[2] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297, Spring-
er, Berlin, 1972.

[3] J. P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseign. Math.
(2) 15 (1969), 185-192.

[4] R. Kaufman, Hausdorff measure, BMO, and analytic functions, Pacific J.
Math. 102 (1982), 369-371.

, Smooth functions and porous sets, Proc. Roy. Irish Acad. Sect. A 93
(1993), 189-191.

[6) D. J. Lord and A. G. O’Farrell, Removable singularities for analytic functions
of Zygmund class, Proc. Roy. Irish Acad. Sect. A 91 (1991), 195-204.

[7]1 N. G. Makarov, Smooth measures and the law of the iterated logarithm, Math.
USSR-Izv. 34 (1990), 455-463.

, Probability methods in the theory of conformal mappings, Leningrad

Math. J. 1 (1990), 1-56.

, On a class of exceptional sets in the theory of conformal mappings,

Math. USSR-Sb. 68 (1991), 19-30.
[10] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam, 1975.
(111 N. X. Uy, Removable sets of analytic functions satisfying a Lipschitz condition,
Ark. Mat. 17 (1979), 19-27.

, A characterization theorem on Cauchy transforms of measures, Com-

plex Variables Theory Appl. 4 (1985), 267-275.

, A nonremovable set for analytic functions satisfying a Zygmund con-

dition, Illinois J. Math. 30 (1986), 1-8.
[14] A. Zygmund, Trigonometric Series, vol. I, Cambridge Univ. Press, 1979.

[5]

(8]

[9]

(12]

(13]

Departament de Matematiques
Universitat Autonoma de Barcelona
08193 Bellaterra

Barcelona

Spain






