Inductive Limits of Algebras of
Generalized Analytic Functions

S. A. GRIGORYAN & T. V. TONEV

We study inductive limits of algebras of generalized analytic functions gen-
erated by compact abelian groups with ordered duals. In particular, we an-
swer a question raised in [2] for inductive limits of spaces of type H* on a
compact abelian group with ordered dual.

1. Introduction

Let " be a subgroup of the group R of real numbers. We assume that I' is
equipped with the discrete topology. Denote by G the dual group of I', that
is, G is the group of characters of I'. Note that G is a compact abelian group
with unit e.

In what follows we make use of the terminology and notation from [7].
By the Pontryagin duality theorem, the dual group G of G is isomorphic to
I'. For a given aeT let x?e G be the character x%(g) = g(a), g€ G. Let o be
the normalized Haar measure on G. Every function f in L1(G, o) relative to
o has a formal Fourier series

f(@)~ Y clx“(g),

ael’
where

o = [ 1@)x(e)dote)
G

are the Fourier coefficients of f. The set S(f) of numbers ¢ in I" for which
¢/ # 0 is the spectrum of f. A function fe LG, o) is called a generalized ana-
Iytic function on G if S(f) is contained in the semigroupI', = {ae T |a = 0].

Let Ag be the set of semi-characters (i.e., homomorphisms from I', into
the unit disc in C) of the semigroup I';, . Ay is called the big disc over G. It is
well known that A is a compact set and can be obtained from the Cartesian
product [0, 1] X G by identifying the points in the fiber {0} X G. Every point
me Ag can be expressed in the polar form m = rg for some re[0,1] and
g€ G. Observe that G = {1} X G C A since the characters on I' are semi-
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characters on I',. Actually, G is the topological boundary of Ag;. It is well
known that the big disc A; is the maximal ideal space of the algebra Ag
of continuous generalized analytic functions on G, while G is its Shilov
boundary. Every function fe Ag gives rise to a continuous function f on
A by the rule

fim)y=m(f), meAg.

It is well known that A is a Dirichlet algebra on G. Therefore, given a point
m e A%, = AG\G, there is a unique positive measure p,, on G, the represeni-
ing measure of m, such that supp(u,,) = G and

Fim) = fG £(8) dim(g) )

for every fe Ag.
For a given me Ag and g € G the function mgy(a) = m(a)g~(a) is a char-
acter onT', i.e. mye Ag. As it follows from (1),

Fmp) = fG f(gh) dunm(g) = fG £(8) dum(gh™), @)

i.e., the representing measure for the point m, can be obtained from the
representing measure p,, of m by a translation with #~!. Henceforth the rep-
resenting measure u,, of the point m =rg in A% coincides with the repre-
senting measure u,, of re translated by g.
Given an r € (0, 1), we denote by £ the function f(g) = f(rg). Clearly
fe Ag and
sup|f"(g)| = sup| f " (g)| ©)
geCG geG
whenever ry = r,.
Let H® be the algebra of bounded functions on the interior A of the big
disc that can be approximated on compact subsets of A% by functions £
feAg. Given an fe H™, the limits

fHe) = liml f ()
r—

exist for o-almost all ge G. The boundary value function f* belongs to
H*(G, o). We identify f with its boundary value function f*. The space of
functions f*, fe H*, we denote again by H®. Thus, the algebra H® we
view as the space of functions in L*(G, o) that are boundary values of con-
tinuous functions on A%;. Note that H* is a closed subalgebra of L*(G, o)
with respect to the norm || || (see e.g. [S]), and

|/l = lim sup|f " (g)|.
r—1geG )
The algebra JC* of generalized analytic functions in L*(G, o) is the weak*-
closure of A4 in L*(G, o) [4]. Clearly H* is a closed subalgebra of 3C*.

Let I be a directed set; that is, let 7 be a partially ordered set such that
for every pair i; and /, in I there is an i€ I such that i; < i; and i, < i3. We
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consider a family {I}};c; of subgroups of I' indexed by 7 such that T'; C T},
whenever i; < i,. Under the natural inclusions, {I';};c; becomes an induc-
tive system of groups. Suppose that I' coincides with the inductive limit of
the system {I';};c;, that is, T' = lim;.; I';. Let H;® denote the space of func-
tions fe H* with S(f) C I;. Clearly, H;” is a closed subalgebra of H*, and
H;*C H;? if and only if I'; C I';. Therefore the family { H;°},;; of subalgebras
of H® is ordered by the inclusion. Denote by H;° the closure with respect to
the norm || ||, of the set U;c; H", that is, of the inductive limit lim;; H;”.
Clearly H;” is a commutative Banach algebra.

In a similar way we define the algebra 3C7 as the ||« ||o-closure of the in-
ductive limit lim;¢; 3C;°, where 3C° = (e IC*| S(f) C I'}}.

Algebras of type H;” were introduced in [6] (see also [7]) in connection with
the corona problem for algebras of generalized analytic functions. Curto,
Muhly, and Xia [2] have introduced other algebras of this type in connection
with their study of Wiener-Hopf operators with almost-periodic symbols.
They have raised the question of whether the algebras of type H;° coincide
with H®,

The next theorem gives a criteria for the coincidence of these algebras.

THEOREM 1. Let G be a compact abelian group whose dual group T' = G is
a subset of R and such that T' =1im;; I';, where {T'};c is a family of sub-
groups of T'. Let H;® (resp. 3C{°) be the space of functions in H® (resp. 3C%)
whose spectrum is in T';, i € I. Then the following are equivalent.

(@) H® =Ue; H;i® and 3% =U;¢; IC7.

(b) H* = H;” and 3C* = JC}.

(c) Every countable subgroup Ty in T is contained in some group from

thefamily {Fi}ieb

2. Proof of Theorem 1
The proof is based on the following lemma.
LEmMMA 1. Let re(0,1) and let u, be the representing measure on G of the

point ree A%. Then

lim sup p,(gV}) =0 4
J—oo geCG

Sor every nested family ViDOV,D :--DV,D .-+ of neighborhoods of the
identity e with M7=, V; = {e}.
Proof. Assume on the contrary that

lim sup u,(gV}) >0,
Jj—w geG

and let {g;]}7° be a sequence in G with p,(g;V}) = ¢ > 0. By the compactness
of G there is a subsequence of {g;}{°, say {A,]T, that converges to a point
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heG. Note that u,(hV,) = lim,_, . u, (8 V;) = c for every integer n, since
hV, D h,Vj for k big enough. Consequently, u,.(h) =1lim,_, . n,.(h Vi) =c.
Consider the Lebesgue decomposition of u, —§,, with respect to the Dirac
measure 6, at 4, namely

Pr—0re = pr ()0, +v,

where the measure » is singular with respect to 6,. By Ahern’s theorem (cf.
[3, Chap. II, Cor. 7.8]), the measure &, (as well as ») is orthogonal to the
algebra A. This is impossible because there certainly is a function in A that
is nonvanishing at 4 # re. O

Proof of Theorem 1. We give the proof of the theorem for the space H”
only. The proof for the corresponding space JC* is virtually the same.

The implication (a) = (b) is trivial.

(c) = (a). Let fe H®. By Parseval’s identity the spectrum S(f) of f is
countable. Therefore the group I'y generated by the set S(f) is countable as
well. By the supposition there is a group T'; € {I';};c that contains I'y. Hence
fE H;:)OC U] H,'oo.

(b) = (c). Let I'y be a countable subgroup of I'. Without loss of generality
we can assume from the beginning that I'y coincides with the group T (i.e.,
that T' is a countable group). Then G =1 is a metric and separable space.
Let {A,}T — e be a sequence of different points in G, and let {B,} be a collec-
tion of disjoint (metric) balls centered at 4, and not containing e, such that
for every neighborhood V of e there is a natural number N such that B, CV
foralln= N.

Consider a function f, € Ag such that || /|| = fu(h,) =1, fu(e) =0, and
| fn]| <1/2" on G\B,. Such a function exists because the points of G are
peak points for A;. Identities (1) and (2) imply

|fn(r)(g)| =

f fn(gh)dnr(h)’Sf | fu(gh)| du.,(h)
G G

= [ \emldu i+ [ | futeh)l du(h)
-1, G

g \g~'B,
1
on°

The specific requirements for the balls B,, guarantee that

<p(g7'B)+

S 1@ = ule Vo) + g <2,
n=
where V;, = U~ B,. As follows from (4), for every e > O there is a kK such
that u,(g"1V}) < e for all g € G. Consequently, the series -, f,{") converges
uniformly on G to a function /e Ag. Clearly || /|| < 2. Therefore the
function f=3_, f, belongs to the algebra H>. Since (by hypothesis) H® =
H7, the function f is in H[°. Then there is an f in one of the spaces H;®
such that



Inductive Limits of Algebras of Generalized Analytic Functions 617

I/ =Sl < 76

By the well known result from group theory, the group I'; is the dual group of
the quotient group G/G;, where G; = {ge G| x°(g) =1 for all e T';}. There-
fore the space H;” coincides with the space of G;-invariant functions in H*;
that is, v € H;” if and only if v € H® and u(h) = u(gh) = u,(h) for all ge G;
and h € G. Consequently, f = f, for geG;, and

1/ =Fello =N/ =Fllot I fg—Sello <5 (%)

for every g € G;. Suppose that T; # T, that is, suppose G; # {e}. Fix a g€
G\{e}. By the continuity of f on G\{e} the set

V={heG\le}||f(h)—f(go)| < &)

is an open neighborhood of go # e. By the construction of f there are g; and
g, in g5'V \fe} such that | f(g;)| > & and | f(g,)| < & Now

| f(g) —Fe @ = | f—Fello<% for i=1,2
implies
|fele)] > and | f (g2l <3
Consequently,

| feol81) = Feo(82)] > 35

which is impossible since g g, and gy g, belong to V. Thus, G; = {e}; that is,
F0=Fie{ri}iel' N

3. Examples and Consequences

ExampLE 1. Let I' = @ be the group of discrete rational numbers. Assume
that {I';};c,is an inductive system of subgroups of Q such that @ =lim,;,I}.
If @ is not a member of {I}};c;, then by Theorem 1 we obtain that H;” # H®.

The algebra H;° (of so-called hyper-analytic functions) was introduced and
studied in [6] (see also [7]) for the case when the subgroups I'; are isomorphic
to Z, the group of integers. As shown in [6], this algebra does not have a
corona and its maximal ideal space resembles the maximal ideal space of the
algebra H” related to the unit circle. As we have seen, in this case H;° = H™.

The properties of algebras of type H* related with general compact groups
G are less known. In particular it is not known if they possess corona; their
maximal ideal spaces and Shilov boundaries lack a satisfactory description.

ExaMmpLE 2. The algebras introduced in [2] are another example of algebras
of type H;". LetI' =R and A C R, be a basis in R over the field @ of rational
numbers. Consider the family J of pairs {(vy, n)}, where v is a finite subset
in A and » is a natural number. We equip J with the following ordering:

(y,n)<(6,k) ifandonlyif yCé and n=<k.
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For a (v, n) e J with v = (y1, v2, .-+, 7x), We define the group

1 .
Taom = ["?."(m171+m272+ e mpy) |l mieZ, j=1, ..., k}-

Clearly T, , is isomorphic to the group Zk = @¥., Z. Moreover, Ly,mC
I's, k) whenever (v, n) < (8, k), and
R= lim T, .
(v.n)eJ

For a given j, 1 < j < k, consider an increasing (resp. decreasing) sequence
faf )32 (resp. {B/}7>,) of positive irrational numbers converging to Y €Y:

lim o = v; = lim 7.

F ) )

Denote
k ,
P[ = n{(mls ---smk)ezklmlvl_i- teT +mjA{+ My = O]s
J=1

where A{ is either oz,j or B,j, and let

1
Pl(n)= {F(mwl“l’ sy [ (my, ., ) GPI}-

Clearly P/(n) C R,. Moreover, the group generated by the semigroup P} (n)
coincides with the group I, ,,. Denote by H *(P/(n)) the set of functions in
L*(G, o) whose spectrum is contained in the set P}(n). Clearly H®(P/(n))C
H>®(Pj(m))if y C8, n<m, and ] < d. It is easy to check that H*(P}(n)) C
H{ .y, where

HE y={feH®|S(f)CT, nl

The closure H under the ||-||-norm of the set U, ), nesxn HZ(Pf(n)), or
(equivalently) of the inductive limit im (., »y, /ye s xn H “(P](n)), is isomorphic
to the algebra considered in [2].

There arises the question of whether the algebra A from Example 2 cain-
cides with H* or not. The answer to this question is negative, as follows.

THEOREM 2. The set H =1im,, »),nesxn HT(P](n)) is a proper closed
subalgebra of H™.

Proof. The inclusion H C H* is proved essentially in [2]. Assume that H =
H™. Then, by Theorem 1, @ C R belongs to the family {I', )}, nes. How-
ever, this is impossible since, unlike @, the group I, ,) is isomorphic to Z*
for some natural k. O

The algebra H is isometrically isomorphic to the algebra H7 4 p(R) C H®(R)
consisting of boundary values of I'-almost periodic functions on R that are
analytic in the upper half plane. In a similar way the algebra H is isomor-
phic to a subalgebra H(R) of H7,p(R). As an immediate corollary from
Theorem 2 we obtain that these two algebras are distinct as well.
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