Inductive Limits of Algebras of Generalized Analytic Functions

S. A. GRIGORYAN & T. V. TONEV

We study inductive limits of algebras of generalized analytic functions generated by compact abelian groups with ordered duals. In particular, we answer a question raised in [2] for inductive limits of spaces of type H^{∞} on a compact abelian group with ordered dual.

1. Introduction

Let Γ be a subgroup of the group \mathbb{R} of real numbers. We assume that Γ is equipped with the discrete topology. Denote by G the dual group of Γ , that is, G is the group of characters of Γ . Note that G is a compact abelian group with unit e.

In what follows we make use of the terminology and notation from [7]. By the Pontryagin duality theorem, the dual group \hat{G} of G is isomorphic to Γ . For a given $a \in \Gamma$ let $\chi^a \in \hat{G}$ be the character $\chi^a(g) = g(a)$, $g \in G$. Let σ be the normalized Haar measure on G. Every function f in $L^1(G, \sigma)$ relative to σ has a formal Fourier series

$$f(g) \sim \sum_{a \in \Gamma} c_a^f \chi^a(g),$$

where

$$c_a^f = \int_G f(g) \bar{\chi}^a(g) \, d\sigma(g)$$

are the Fourier coefficients of f. The set S(f) of numbers a in Γ for which $c_a^f \neq 0$ is the spectrum of f. A function $f \in L^1(G, \sigma)$ is called a generalized analytic function on G if S(f) is contained in the semigroup $\Gamma_+ = \{a \in \Gamma \mid a \geq 0\}$.

Let Δ_G be the set of semi-characters (i.e., homomorphisms from Γ_+ into the unit disc in \mathbb{C}) of the semigroup Γ_+ . Δ_G is called the *big disc* over G. It is well known that Δ_G is a compact set and can be obtained from the Cartesian product $[0,1] \times G$ by identifying the points in the fiber $\{0\} \times G$. Every point $m \in \Delta_G$ can be expressed in the *polar* form m = rg for some $r \in [0,1]$ and $g \in G$. Observe that $G \equiv \{1\} \times G \subset \Delta_G$ since the characters on Γ are semi-

Received July 7, 1995.

Research of the second author was partially supported by a grant from the National Science Foundation.

Michigan Math. J. 42 (1995).

characters on Γ_+ . Actually, G is the topological boundary of Δ_G . It is well known that the big disc Δ_G is the maximal ideal space of the algebra A_G of continuous generalized analytic functions on G, while G is its Shilov boundary. Every function $f \in A_G$ gives rise to a continuous function \hat{f} on Δ_G by the rule

$$\hat{f}(m) = m(f), \quad m \in \Delta_G.$$

It is well known that A_G is a Dirichlet algebra on G. Therefore, given a point $m \in \Delta_G^0 = \Delta_G \setminus G$, there is a *unique* positive measure μ_m on G, the *representing* measure of m, such that $\operatorname{supp}(\mu_m) = G$ and

$$\hat{f}(m) = \int_{G} f(g) \, d\mu_{m}(g) \tag{1}$$

for every $f \in A_G$.

For a given $m \in \Delta_G$ and $g \in G$ the function $m_g(a) = m(a)g^{-1}(a)$ is a character on Γ_+ , i.e. $m_g \in \Delta_G$. As it follows from (1),

$$\hat{f}(m_h) = \int_G f(gh) \, d\mu_m(g) = \int_G f(g) \, d\mu_m(gh^{-1}), \tag{2}$$

i.e., the representing measure for the point m_h can be obtained from the representing measure μ_m of m by a translation with h^{-1} . Henceforth the representing measure μ_{rg} of the point m=rg in Δ_G^0 coincides with the representing measure μ_{re} of re translated by g.

Given an $r \in (0, 1)$, we denote by $f^{(r)}$ the function $f^{(r)}(g) = \hat{f}(rg)$. Clearly $f^{(r)} \in A_G$ and

$$\sup_{g \in G} |f^{(r_1)}(g)| \ge \sup_{g \in G} |f^{(r_2)}(g)| \tag{3}$$

whenever $r_1 \ge r_2$.

Let H^{∞} be the algebra of bounded functions on the interior Δ_G^0 of the big disc that can be approximated on compact subsets of Δ_G^0 by functions \hat{f} , $f \in A_G$. Given an $f \in H^{\infty}$, the limits

$$f^*(g) = \lim_{r \to 1} f^{(r)}(g)$$

exist for σ -almost all $g \in G$. The boundary value function f^* belongs to $H^{\infty}(G, \sigma)$. We identify f with its boundary value function f^* . The space of functions f^* , $f \in H^{\infty}$, we denote again by H^{∞} . Thus, the algebra H^{∞} we view as the space of functions in $L^{\infty}(G, \sigma)$ that are boundary values of continuous functions on Δ_G^0 . Note that H^{∞} is a closed subalgebra of $L^{\infty}(G, \sigma)$ with respect to the norm $\|\cdot\|_{\infty}$ (see e.g. [5]), and

$$||f||_{\infty} = \lim_{r \to 1} \sup_{g \in G} |f^{(r)}(g)|.$$

The algebra \mathcal{K}^{∞} of generalized analytic functions in $L^{\infty}(G, \sigma)$ is the weak*-closure of A_G in $L^{\infty}(G, \sigma)$ [4]. Clearly H^{∞} is a closed subalgebra of \mathcal{K}^{∞} .

Let I be a directed set; that is, let I be a partially ordered set such that for every pair i_1 and i_2 in I there is an $i_3 \in I$ such that $i_1 < i_3$ and $i_2 < i_3$. We

consider a family $\{\Gamma_i\}_{i\in I}$ of subgroups of Γ indexed by I such that $\Gamma_{i_1} \subset \Gamma_{i_2}$ whenever $i_1 < i_2$. Under the natural inclusions, $\{\Gamma_i\}_{i\in I}$ becomes an inductive system of groups. Suppose that Γ coincides with the inductive limit of the system $\{\Gamma_i\}_{i\in I}$, that is, $\Gamma = \varinjlim_{i\in I} \Gamma_i$. Let H_i^{∞} denote the space of functions $f \in H^{\infty}$ with $S(f) \subset \Gamma_i$. Clearly, H_i^{∞} is a closed subalgebra of H^{∞} , and $H_i^{\infty} \subset H_j^{\infty}$ if and only if $\Gamma_i \subset \Gamma_j$. Therefore the family $\{H_i^{\infty}\}_{i\in I}$ of subalgebras of H^{∞} is ordered by the inclusion. Denote by H_I^{∞} the closure with respect to the norm $\|\cdot\|_{\infty}$ of the set $\bigcup_{i\in I} H_i^{\infty}$, that is, of the inductive limit $\varinjlim_{i\in I} H_i^{\infty}$. Clearly H_I^{∞} is a commutative Banach algebra.

In a similar way we define the algebra \mathcal{K}_I^{∞} as the $\|\cdot\|_{\infty}$ -closure of the inductive limit $\lim_{i \in I} \mathcal{K}_i^{\infty}$, where $\mathcal{K}_i^{\infty} = \{f \in \mathcal{K}^{\infty} | S(f) \subset \Gamma_i\}$.

Algebras of type H_I^{∞} were introduced in [6] (see also [7]) in connection with the corona problem for algebras of generalized analytic functions. Curto, Muhly, and Xia [2] have introduced other algebras of this type in connection with their study of Wiener-Hopf operators with almost-periodic symbols. They have raised the question of whether the algebras of type H_I^{∞} coincide with H^{∞} .

The next theorem gives a criteria for the coincidence of these algebras.

Theorem 1. Let G be a compact abelian group whose dual group $\Gamma = \hat{G}$ is a subset of \mathbb{R} and such that $\Gamma = \varinjlim_{i \in I} \Gamma_i$, where $\{\Gamma_i\}_{i \in I}$ is a family of subgroups of Γ . Let H_i^{∞} (resp. \mathfrak{IC}_i^{∞}) be the space of functions in H^{∞} (resp. \mathfrak{IC}_i^{∞}) whose spectrum is in Γ_i , $i \in I$. Then the following are equivalent.

- (a) $H^{\infty} = \bigcup_{i \in I} H_i^{\infty}$ and $\mathfrak{IC}^{\infty} = \bigcup_{i \in I} \mathfrak{IC}_i^{\infty}$.
- (b) $H^{\infty} = H_I^{\infty}$ and $\mathfrak{IC}^{\infty} = \mathfrak{IC}_I^{\infty}$.
- (c) Every countable subgroup Γ_0 in Γ is contained in some group from the family $\{\Gamma_i\}_{i\in I}$.

2. Proof of Theorem 1

The proof is based on the following lemma.

LEMMA 1. Let $r \in (0,1)$ and let μ_r be the representing measure on G of the point $re \in \Delta_G^0$. Then

$$\lim_{j \to \infty} \sup_{g \in G} \mu_r(gV_j) = 0 \tag{4}$$

for every nested family $V_1 \supset V_2 \supset \cdots \supset V_n \supset \cdots$ of neighborhoods of the identity e with $\bigcap_{j=1}^{\infty} V_j = \{e\}$.

Proof. Assume on the contrary that

$$\lim_{j\to\infty}\sup_{g\in G}\dot{\mu}_r(gV_j)>0,$$

and let $\{g_j\}_1^{\infty}$ be a sequence in G with $\mu_r(g_jV_j) \to c > 0$. By the compactness of G there is a subsequence of $\{g_j\}_1^{\infty}$, say $\{h_n\}_1^{\infty}$, that converges to a point

 $h \in G$. Note that $\mu_r(hV_n) \ge \lim_{k \to \infty} \mu_r(h_k V_k) = c$ for every integer n, since $hV_n \supset h_k V_k$ for k big enough. Consequently, $\mu_r(h) = \lim_{k \to \infty} \mu_r(h_k V_k) = c$. Consider the Lebesgue decomposition of $\mu_r - \delta_{re}$ with respect to the Dirac measure δ_h at h, namely

$$\mu_r - \delta_{re} = \mu_r(h)\delta_h + \nu,$$

where the measure ν is singular with respect to δ_h . By Ahern's theorem (cf. [3, Chap. II, Cor. 7.8]), the measure δ_h (as well as ν) is orthogonal to the algebra A. This is impossible because there certainly is a function in A that is nonvanishing at $h \neq re$.

Proof of Theorem 1. We give the proof of the theorem for the space H^{∞} only. The proof for the corresponding space 30^{∞} is virtually the same.

The implication (a) \Rightarrow (b) is trivial.

- (c) \Rightarrow (a). Let $f \in H^{\infty}$. By Parseval's identity the spectrum S(f) of f is countable. Therefore the group Γ_0 generated by the set S(f) is countable as well. By the supposition there is a group $\Gamma_{i_0} \in {\Gamma_i}_{i \in I}$ that contains Γ_0 . Hence $f \in H_{i_0}^{\infty} \subset \bigcup_I H_i^{\infty}$.
- (b) \Rightarrow (c). Let Γ_0 be a countable subgroup of Γ . Without loss of generality we can assume from the beginning that Γ_0 coincides with the group Γ (i.e., that Γ is a countable group). Then $G = \hat{\Gamma}$ is a metric and separable space. Let $\{h_n\}_1^{\infty} \to e$ be a sequence of different points in G, and let $\{B_n\}$ be a collection of disjoint (metric) balls centered at h_n and not containing e, such that for every neighborhood V of e there is a natural number N such that $B_n \subset V$ for all $n \geq N$.

Consider a function $f_n \in A_G$ such that $||f_n||_{\infty} = f_n(h_n) = 1$, $f_n(e) = 0$, and $|f_n| < 1/2^n$ on $G \setminus B_n$. Such a function exists because the points of G are peak points for A_G . Identities (1) and (2) imply

$$|f_n^{(r)}(g)| = \left| \int_G f_n(gh) \, d\mu_r(h) \right| \le \int_G |f_n(gh)| \, d\mu_r(h)$$

$$= \int_{g^{-1}B_n} |f_n(gh)| \, d\mu_r(h) + \int_{G \setminus g^{-1}B_n} |f_n(gh)| \, d\mu_r(h)$$

$$\le \mu_r(g^{-1}B_n) + \frac{1}{2^n}.$$

The specific requirements for the balls B_n guarantee that

$$\sum_{n=k}^{\infty} |f_n^{(r)}(g)| \le \mu_r(g^{-1}V_k) + \frac{1}{2^{k-1}} < 2,$$

where $V_k = \bigcup_{n=k}^{\infty} B_n$. As follows from (4), for every $\epsilon > 0$ there is a k such that $\mu_r(g^{-1}V_k) < \epsilon$ for all $g \in G$. Consequently, the series $\sum_{n=1}^{\infty} f_n^{(r)}$ converges uniformly on G to a function $\tilde{f}^{(r)} \in A_G$. Clearly $\|\tilde{f}^{(r)}\|_{\infty} < 2$. Therefore the function $\tilde{f} = \sum_{n=1}^{\infty} f_n$ belongs to the algebra H^{∞} . Since (by hypothesis) $H^{\infty} = H_I^{\infty}$, the function \tilde{f} is in H_I^{∞} . Then there is an f in one of the spaces H_i^{∞} such that

$$\|\tilde{f} - f\|_{\infty} < \frac{1}{16}.$$

By the well known result from group theory, the group Γ_i is the dual group of the quotient group G/G_i , where $G_i = \{g \in G \mid \chi^a(g) = 1 \text{ for all } a \in \Gamma_i\}$. Therefore the space H_i^{∞} coincides with the space of G_i -invariant functions in H^{∞} ; that is, $u \in H_i^{\infty}$ if and only if $u \in H^{\infty}$ and $u(h) = u(gh) = u_g(h)$ for all $g \in G_i$ and $h \in G$. Consequently, $f = f_g$ for $g \in G_i$, and

$$\|\tilde{f} - \tilde{f}_g\|_{\infty} \le \|\tilde{f} - f\|_{\infty} + \|\tilde{f}_g - f_g\|_{\infty} < \frac{1}{8}$$
 (5)

for every $g \in G_i$. Suppose that $\Gamma_i \neq \Gamma$, that is, suppose $G_i \neq \{e\}$. Fix a $g_0 \in G_i \setminus \{e\}$. By the continuity of \tilde{f} on $G \setminus \{e\}$ the set

$$V = \{h \in G \setminus \{e\} \mid |\tilde{f}(h) - \tilde{f}(g_0)| < \frac{1}{16}\}$$

is an open neighborhood of $g_0 \neq e$. By the construction of \tilde{f} there are g_1 and g_2 in $g_0^{-1}V\setminus\{e\}$ such that $|\tilde{f}(g_1)| > \frac{15}{16}$ and $|\tilde{f}(g_2)| < \frac{1}{16}$. Now

$$|\tilde{f}(g_i) - \tilde{f}_{g_0}(g_i)| \le ||\tilde{f} - \tilde{f}_{g_0}||_{\infty} \le \frac{1}{8}$$
 for $i = 1, 2$

implies

$$|\tilde{f}_{g_0}(g_1)| > \frac{13}{16}$$
 and $|f_{g_0}(g_2)| < \frac{3}{16}$.

Consequently,

$$|\tilde{f}_{g_0}(g_1) - \tilde{f}_{g_0}(g_2)| > \frac{5}{8},$$

which is impossible since g_0g_1 and g_0g_2 belong to V. Thus, $G_i = \{e\}$; that is, $\Gamma_0 = \Gamma_i \in \{\Gamma_i\}_{i \in I}$.

3. Examples and Consequences

EXAMPLE 1. Let $\Gamma = \mathbb{Q}$ be the group of discrete rational numbers. Assume that $\{\Gamma_i\}_{i\in I}$ is an inductive system of subgroups of \mathbb{Q} such that $\mathbb{Q} = \varinjlim_{i\in I} \Gamma_i$. If \mathbb{Q} is not a member of $\{\Gamma_i\}_{i\in I}$, then by Theorem 1 we obtain that $H_I^{\infty} \neq H^{\infty}$.

The algebra H_I^{∞} (of so-called hyper-analytic functions) was introduced and studied in [6] (see also [7]) for the case when the subgroups Γ_i are isomorphic to \mathbb{Z} , the group of integers. As shown in [6], this algebra does not have a corona and its maximal ideal space resembles the maximal ideal space of the algebra H^{∞} related to the unit circle. As we have seen, in this case $H_I^{\infty} \neq H^{\infty}$.

The properties of algebras of type H^{∞} related with general compact groups G are less known. In particular it is not known if they possess corona; their maximal ideal spaces and Shilov boundaries lack a satisfactory description.

EXAMPLE 2. The algebras introduced in [2] are another example of algebras of type H_I^{∞} . Let $\Gamma = \mathbb{R}$ and $\Lambda \subset \mathbb{R}_+$ be a basis in \mathbb{R} over the field \mathbb{Q} of rational numbers. Consider the family J of pairs $\{(\gamma, n)\}$, where γ is a finite subset in Λ and n is a natural number. We equip J with the following ordering:

$$(\gamma, n) < (\delta, k)$$
 if and only if $\gamma \subset \delta$ and $n \le k$.

For a $(\gamma, n) \in J$ with $\gamma = (\gamma_1, \gamma_2, ..., \gamma_k)$, we define the group

$$\Gamma_{(\gamma,n)} = \left\{ \frac{1}{n!} (m_1 \gamma_1 + m_2 \gamma_2 + \dots + m_k \gamma_k) \mid m_j \in \mathbb{Z}, j = 1, \dots, k \right\}.$$

Clearly $\Gamma_{(\gamma,n)}$ is isomorphic to the group $\mathbb{Z}^k = \bigoplus_{i=1}^k \mathbb{Z}$. Moreover, $\Gamma_{(\gamma,n)} \subset \Gamma_{(\delta,k)}$ whenever $(\gamma,n) < (\delta,k)$, and

$$\mathbb{R} = \lim_{(\gamma, n) \in J} \Gamma_{(\gamma, n)}.$$

For a given j, $1 \le j \le k$, consider an increasing (resp. decreasing) sequence $\{\alpha_l^j\}_{l=1}^{\infty}$ (resp. $\{\beta_l^j\}_{l=1}^{\infty}$) of positive irrational numbers converging to $\gamma_j \in \gamma$:

$$\lim_{l\to\infty}\alpha_l^j=\gamma_j=\lim_{l\to\infty}\beta_l^j.$$

Denote

$$P_{l} = \bigcap_{j=1}^{k} \{ (m_{1}, ..., m_{k}) \in \mathbb{Z}^{k} \mid m_{1}\gamma_{1} + ... + m_{j}\lambda_{l}^{j} + ... + m_{k}\gamma_{k} \ge 0 \},$$

where λ_l^j is either α_l^j or β_l^j , and let

$$P_l^{\gamma}(n) = \left\{ \frac{1}{n!} (m_1 \gamma_1 + \dots + m_k \gamma_k) \mid (m_1, \dots, m_k) \in P_l \right\}.$$

Clearly $P_l^{\gamma}(n) \subset \mathbb{R}_+$. Moreover, the group generated by the semigroup $P_l^{\gamma}(n)$ coincides with the group $\Gamma_{(\gamma,n)}$. Denote by $H^{\infty}(P_l^{\gamma}(n))$ the set of functions in $L^{\infty}(G,\sigma)$ whose spectrum is contained in the set $P_l^{\gamma}(n)$. Clearly $H^{\infty}(P_l^{\gamma}(n)) \subset H^{\infty}(P_d^{\delta}(m))$ if $\gamma \subset \delta$, $n \leq m$, and $l \leq d$. It is easy to check that $H^{\infty}(P_l^{\gamma}(n)) \subset H^{\infty}_{(\gamma,n)}$, where

$$H_{(\gamma,n)}^{\infty} = \{ f \in H^{\infty} \mid S(f) \subset \Gamma_{(\gamma,n)} \}.$$

The closure H under the $\|\cdot\|_{\infty}$ -norm of the set $\bigcup_{((\gamma,n),l)\in J\times\mathbb{N}} H^{\infty}(P_l^{\gamma}(n))$, or (equivalently) of the inductive limit $\underline{\lim}_{((\gamma,n),l)\in J\times\mathbb{N}} H^{\infty}(P_l^{\gamma}(n))$, is isomorphic to the algebra considered in [2].

There arises the question of whether the algebra H from Example 2 coincides with H^{∞} or not. The answer to this question is negative, as follows.

THEOREM 2. The set $H = \underline{\lim}_{((\gamma, n), l) \in J \times \mathbb{N}} H^{\infty}(P_l^{\gamma}(n))$ is a proper closed subalgebra of H^{∞} .

Proof. The inclusion $H \subset H^{\infty}$ is proved essentially in [2]. Assume that $H = H^{\infty}$. Then, by Theorem 1, $\mathbb{Q} \subset \mathbb{R}$ belongs to the family $\{\Gamma_{(\gamma,n)}\}_{(\gamma,n)\in J}$. However, this is impossible since, unlike \mathbb{Q} , the group $\Gamma_{(\gamma,n)}$ is isomorphic to \mathbb{Z}^k for some natural k.

The algebra H^{∞} is isometrically isomorphic to the algebra $H^{\infty}_{AAP}(\mathbb{R}) \subset H^{\infty}(\mathbb{R})$ consisting of boundary values of Γ -almost periodic functions on \mathbb{R} that are analytic in the upper half plane. In a similar way the algebra H is isomorphic to a subalgebra $H(\mathbb{R})$ of $H^{\infty}_{AAP}(\mathbb{R})$. As an immediate corollary from Theorem 2 we obtain that these two algebras are distinct as well.

References

- [1] R. Arens and I. Singer, *Generalized analytic functions*, Trans. Amer. Math. Soc. 81 (1956), 379–393.
- [2] R. Curto, P. Muhly, and J. Xia, Wiener-Hopf operators and generalized analytic functions, Integral Equations Operator Theory, 8 (1985), 650-673.
- [3] T. W. Gamelin, *Uniform algebras*, Prentice-Hall, Englewood Cliffs, NJ, 1969.
- [4] H. Helson, Analyticity on compact abelian groups, Algebras in analysis, pp. 1-62, Academic Press, New York, 1975.
- [5] K. Hoffman, *Boundary behavior of generalized analytic functions*, Trans. Amer. Math. Soc. 87 (1958), 447-466.
- [6] T. Tonev, The algebra of bounded hyper-analytic functions on the big disc has no corona, Analytic functions (Kozubnik, 1979), Lecture Notes in Math., 798, pp. 435-438, Springer, Berlin, 1980.
- [7] ——, Big-planes, boundaries and function algebras, North-Holland, Amsterdam, 1992.

S. A. Grigoryan
Institute of Mathematics
Armenian Academy of Sciences
Erevan
Armenia

T. V. Tonev
Department of Mathematics
University of Montana
Missoula, MT 59812-1032