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0. Introduction

We show, under mild hypotheses, that the intersection of a Lipschitz con-
tinuous set-valued mapping and a Lipschitz continuous ball-valued mapping
is again Lipschitz continuous. This allows us to give simpler proofs, with
improved Lipschitz constants, of several known results. In particular, we
obtain:

(1) the result of Isbell [12] that, for any Banach space X, JC(X) (i.e.
the family of all closed, bounded, convex, nonempty subsets of X,
equipped with the Hausdorff metric) is the range of a Lipschitz retract
on any metric space containing it;

(2) a result of Skaletskii {29] implying that if @ is a “reasonable” subset
of JC(X) with “uniformly normal structure” then there is a selector
F:®@— X whose restriction to each bounded subset of JC(X) is uni-
formly continuous;

(3) the result of Le Donne and Marchi [17] that there is a Lipschitz selec-
tor s: JIC(R") —» R” satisfying s(A4y) = x, for any previously specified
Xo€ Age IC(R™); and

(4) the generalization of this due to Artstein [1], asserting that a Lipschitz
selection on a subdomain can be extended to a Lipschitz selection on
the entire domain of any set-valued mapping into JC(R").

A key ingredient of our proof is a simple 2-dimensional argument. Given a
Banach space X, we define a function £: [0, 1) — R that depends only on the
2-dimensional subspaces of X. This function arises naturally in our work,
and seems to be connected with the geometry of X. For example, £ is mini-
mal when X is a Hilbert space and maximal when X contains the 2-dimen-
sional ¢, space.

Our set-valued mappings will all be from some metric space S into the
family of convex subsets of some Banach space X. This family of sets will
always be considered in the Hausdorff metric (defined below), so it makes
sense to talk about Lipschitz maps. (Actually, we hardly ever use the com-
pleteness assumption, so our results could easily have been formulated for
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normed spaces instead of Banach spaces.) To avoid trivialities we assume,
unless stated otherwise, that X has dimension at least 2.

Restricting our attention to the case when X is finite-dimensional some-
times makes our task easier and sometimes not. Accordingly, Sections 1-3
contain results valid for the general case while results valid only in finite
dimensions are postponed until Section 4. Restricting our attention to the
case when X is a Hilbert space does lead to improved Lipschitz constants,
which will therefore be stated separately. Of course, readers who need only
know that a Lipschitz constant exists can ignore our estimates for them. In
no case do we believe that these estimates are the best possible.

Section 1 includes the definition of £, some of its essential properties, and
the intersection theorem mentioned previously. Proposition 2 implies that a
reader who is not interested in the geometry of Banach spaces need not cal-
culate £ explicitly. It would suffice to replace £(8) by (1+8)/(1 — ) through-
out the paper. The reader interested only in the Euclidean case could make
the stronger substitution £(8) = 1/4/1—32. It is also of interest to relate the
behavior of £ to some geometric properties of Banach spaces, such as uni-
form convexity and normal structure. We do this in a separate article [6],
where we also use it to characterize Hilbert spaces.

The results of Section 1 are applied in Section 2 to give new, simpler proofs
of the results of Isbell and Skaletskii, which avoid the integration technique
used in the original proofs. Section 3 contains further technical results that
were not necessary earlier. Some of them are necessary for the presentation
of our finite-dimensional results, in particular the extension theorems, that
appear in Section 4.

It might be helpful now to clarify our notation. By a pseudometric on a
set S we mean a symmetric function d: S X S — [0, o] satisfying the triangle
inequality and vanishing on the diagonal. A metric is a pseudometric that
vanishes only on the diagonal. We stress that the value o is acceptable to us;
this allows us to consider unbounded sets. In case d admits only finite values,
we say that it is a finite (pseudo)metric. Balls in a pseudometric space are de-
fined in the usual way, and may have radius co. The concept of Lipschitz map-
ping between pseudometric spaces should be clear; we denote the Lipschitz
constant of a mapping f by L. For subsets A, B < S and a point x € S we set
d(x,A) =inf{d(x, a): ae A}, d(A, B) =inf{d(a,b):a€ A,be B}, h(A,B) =
sup{d(a, B): ae A}, and dy (A, B)=max{h(A, B), h(B, A)}. The first of these
numbers is the usual distance between a point and a set, while the last is the
well-known Hausdorff metric. We denote by C(X') the family of all closed
convex nonempty subsets of X, and by X(X) the family of all compact con-
vex nonempty subsets of X. Obviously, the definitions of €(X), JC(X), and
K (X) make sense when X is merely a subset of a Banach space. _

The support function of a subset A C X is the mapping s 4: X* — R U{co}
defined by A ,4(y) = sup,c4y(a). If A is a bounded set, then the restriction
of A4 to I, the unit ball of X*, lies in the Banach space {,(I'). The same
remark applies to the restriction of 44 to the unit sphere of X*. We will write
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A" for the restriction of 44 to I'. This is not the usual notation for the sup-
port function, but it saves us from some cumbersome formulas later on. In
case both 4 and B are bounded, the Hahn-Banach theorem tells us that
| A" — B*|| = d; (A, B). In other words, the natural embedding of JC(X) into
?-(T) is an isometry. We will also have cause to use the natural isometric
embedding of X into JC(X), that is, x — {x].

1. The Modulus of Squareness and
the Intersection Theorem

Observe that for any x, y € X with || y|| <1 <||x||, there is a unique z = z(x, y)
in the line segment [x, y] with ||z|| = 1. We set

Ix—=20x, )
[l —1

w(x, y) =
and define £ =£4:[0,1) - R by

£(B) = supfw(x, y):||ly]| =B <1< x|}

We will call ¢ the modulus of squareness of X. It seems to us that large
values of this function tend to imply the presence of 2-dimensional sub-
spaces whose unit balls are close to square. Our first result permits us, in a
weak sense, to reverse the triangle inequality.

LemMA 1. Let y,z,x be (in that order) three colinear points in a normed
space with || y|| <|z|| < ||x|. Then

SN
x| ={l=ll — "\l
The left inequality is the usual triangle inequality, while the right inequality
is a trivial consequence of the definition of £. Serious results depend on

having some estimates for £. It is clear that £ is an increasing function, and
that £(0) = 1. A priori, we do not even know if £(3) is finite for positive 3.

Let us set £,(B) = (1+8)/(1—B) and £,(B) = (1-B%)V2

PROPOSITION 2.

(i) For any Banach space X, £y < &,.
(ii) If X is a Hilbert space, then £y = §,.
(iii) The function & is convex and absolutely continuous on [0, 1).

Proof. (i) Consider ||y[|=B<1<]|x|| with z=z(x, y). Then z=ax+(1—a)y
for some o €[0, 1), so re-arranging the triangle inequality yields

A—a)(fIx[| =[x = llx[| ==l

[l —z|| <l +yl_ (Ilyll

ol = TS e uxn> L(B).
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(ii) Fix x with [[x|| > 1. One sees easily that sup|,j<gw(x, ») is attained for
some y with | y|| = 8, and that the line segment [y, x] is contained in a line
tangent to the sphere with center at the origin and radius 8. In other words,
x—y is perpendicular to y. Hence we obtain

2_g2\/2_(1_g2)1/2
sup w(x,yy= W= ==Y _ oy,
Iyl<8 [|x]|—1

where f is a decreasing function. Thus £(8) = lim,_; f(¢) = (1—-8%)7"2,
(iii) Since this result is not essential here (right continuity is only used inci-

dentally in Theorem 4), we refer the reader to [6] for the proofs. We remark

that proving left continuity is an easy exercise. O

The inequality £ < £&; seems to be a much rediscovered result. An equivalent
result appears in [35]. As far as we know, a related inequality was first used
by Abel to show that if a power series has radius of convergence 1 and con-
verges at some point z, on the unit circle, then the convergence is uniform
on any set in which |z¢o—z|/(]z¢|—|z|) remains bounded [10, Thm. 50.3].
Setting x = (1+¢,0) and y = (0, 8) in £,(2) shows that the estimate £ < £,
cannot be sharpened in general.

Note that the definition of £ makes sense if the norm is replaced by a semi-
norm, and that Proposition 2 still holds in this case. Thus our results could
be applicable in locally convex spaces. But rather than pursue this point
now, we proceed with applications. First we need a simple lemma.

LEMMA 3. Suppose that A is a convex subset of X which meets the ball
B(x, ry). Then, for every a€ A and every r, > r,, there is an a’€ A satisfying
la’—x|| < ryand ||a—a’|| < (|a—x||—ry) &(ry/r3).

Proof. We may assume that x is the origin. The only nontrivial case is when
|a|| > ;. Choose any a”e AN B(x, ry) and define a’ as the unique element of
the line segment [a@, a”] with norm equal to r,. Dividing everything by r, we
see that a/r, = z(a/r,,a’/r,). Hence

|a/ry—a’r| = (la/r]|-VYw(a/ry, a’ry) < (|a/ry|| - 1) E(r1/1r3),

as required. W

Our first theorem looks a bit cumbersome, but it is no harder to prove than
any of the special cases we shall need later, so we state it in its full generality.
It says that, under reasonable hypotheses, the intersection of two Lipschitz
continuous set-valued functions is again Lipschitz. Special cases appear in
[1], [4, Lemma 9.4.2], [9, Prop. 2.1], and [22, Lemma 1]. A similar idea
appears in [24, Thm. 5.4].

THEOREM 4. Let S be a metric space, let X be a Banach space, and let f:
S—>X, F:S—>C(X), and g: S— RU{oo} be three Lipschitz mappings. Sup-
pose that there is a v > 1 for which g(x) = vd(f(x), F(x)) for every x € S.
Then the intersection map G: S — C(X) defined by
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G(x) = F(x)NB(f(x), g(x))
is Lipschitz continuous, with its Lipschitz constant

L <Lp+(Lp+Lg+LR)E(1/y).

Proof. The given inequality guarantees that G(x) is nonempty. It is obvi-
ously closed and convex. Given x, y € S and a € G(x), we must find be G(y)
with ||b—a| at most epsilonically larger than (Lg+(Ls+L,+LF)£(8))d,
where 8 =1/y and d = d(x, y). We need only concern ourselves with the
case where d, g(x) and g(y) are finite.

If g(y) = 0 this is easy; we then have G(y) = [f(»)} and

la =S = la=fE+ S x) = fF )] —&(»)
=gx)—g(»)+Lsd
= (Lg+Lf)d.
Otherwise, choose ¢ > 0 with € < g(y)—d(f(»), F(»)). Certainly we can
find a b € F(y) with [|b—a|| < dy(F(x), F(y))+¢. Note for later use that
[6—fN—&(») =||b—al|+[a—f(X)|+].f(x)—f D] —&(»)
<(L;+Lp+Lgd+e.
Now set ry =d(f(y), F(y))+e€, r,=g(y), and B'=r,/r,. For e small enough,
B’ will not be significantly larger than 3. Since F(y) meets B(f(»), r;), Lem-
ma 3 gives us some b’e F(y) with ||b’— f(»)|| < g(») and
|6=0|| = (|b=SfD)|—e(INFTEB’) = (Ly+ Lo+ Lp)d+€)E(B).
But then b’e G(y) and
|6'—al|<||b—a||+|b—b'| < Lrd+e+((Ly+L,+Lr)d+€)£(B').
Letting € —» 0, we conclude that G is Lipschitz with
LG <Lp+(Ls+Lg+Lp)E(B+).
Using the right continuity of £ completes the proof. O

Easy examples show that the hypothesis v > 1is essential in Theorem 4. Take
X =/0,(2) and S =[0,1], with f(x) =0 and g(x) =1 being constant func-
tions. Let F(x) be the line segment joining (1,1) with (1+x,0). Then F is
clearly a Lipschitz function, as is any constant ball-valued function, and
d(f(x), F(x)) = g(x) for all x. However, the intersection function G is not
even continuous at 0.

Theorem 4 has a number of interesting special cases. We will give only
one now, then proceed straight to applications. Further special cases will be
studied in Section 3.

CoOROLLARY 5. Define G: X - I(A) by G(x) = AN B(x, vyd(x, A)), where
A€ C(X) and v > 1 are fixed. Then G is Lipschitz with Lg < (1+v)£(1/%),
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and satisfies G(a) = {a} for every ae A. We may choose v so that L; < 8 in
general; Lg < 33 in the case where X is a Hilbert space.

Proaof. This is more or less obvious from Theorem 4. For the Lipschitz con-
stant, put v = 3 for a general Banach space, and y = 1.6 for a Hilbert space.

‘ U
REMARK. All of the preceding results, and many of those which follow,
can be restated for mappings with convex but not necessarily closed values.
It is necessary only to replace the inequality constraints by strict inequalities.

2. Absolute Retracts and Uniformly
Continuous Selectors

We prove here the theorems of Isbell and Skaletskii mentioned in the intro-
duction. A metric space is said to be an absolute retract if it is the range of a
continuous retract on any metric space that contains it as a closed subset.
A routine application of Michael’s selection theorem shows that any closed
convex subset of a Banach space is an absolute retract.

We will call a given metric space a Lipschitz absolute retract (resp., a A-
Lipschitz absolute retract) if it is the range of a Lipschitz continuous retract
(resp., with Lipschitz constant A) on any metric space that contains it as a
closed subset. The following result is well known and easy to prove (see [34,
Chap. 3]).

LEMMA 6. (i) For every index set T', the Banach space {(I') is a 1-Lipschitz
absolute retract, and contains an isometric copy of every metric space with
weight (density character) less than or equal to the cardinality of T.

(ii) A metric space Y is a A-Lipschitz absolute retract if and only if the
following is true: For every ( pseudo)metric space S, for every S, C S, and
for every Lipschitz continuous function f: Sy— Y, there is a Lipschitz con-
tinuous extension g: S—Y, with L, < AL;.

(iii) If the metric space S, is a A-Lipschitz absolute retract, and if S, C S, is
the range of a A,-Lipschitz retract on Sy, then S, is a A{A,-Lipschitz absolute
retract.

Now we would like to have some examples of Lipschitz absolute retracts.
Isbell [12] showed that JC(X) is a uniform absolute retract for any Banach
space X, finite- or infinite-dimensional. Lindenstrauss [18] pointed out that
Isbell’s argument actually shows that JC(X) is a 12-Lipschitz absolute re-
tract. A slight improvement of this estimate was noted in [25, p. 114]. The
main aim of this section is to show that JC(X) is actually an 8-Lipschitz ab-
solute retract, using a simpler proof than that of Isbell.

THEOREM 7. For any Banach space X and any M € C(X'), the metric space
JC(M ) is an 8-Lipschitz absolute retract.
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Proof. As usual, let T denote the unit ball of X* There is an obvious iso-
metry between 3C(M) and JC"(M) = (B": Be 3¢(M)} € £ (T'). Define U:
Je(3eH(M)) - 3¢"(M) by

h
U(B) =( U C) .
CheB
Easy calculations show that U is Lipschitz continuous with Lipschitz constant
1, and that U({B"}) = B” for every singleton {B"}. Now define R: ¢ (") -
JC(M) by R =U-G, where G: £.(T") - JC(JC*(M)) is the map given by Cor-
ollary 5, with A =3C*(M). Then G is an 8-Lipschitz map that is (loosely
speaking) the identity on M. Thus R is a retract from ¢,(I") onto 3C"(A),
with Lipschitz constant 8. The preceding lemma completes the proof. [l

Combining this with Lemma 6(ii), we see that Lipschitz mappings into
JC(A), defined on any subset of a metric space, admit Lipschitz extensions
to the whole space. A special case of this was first proved in [7].

We have seen [25] that, whenever X is infinite-dimensional, there is no
uniformly continuous (let alone Lipschitz) selector 3C(X) — X. A reason-
able question is then: Given a suitable subset @ of JC(X), is there a uni-
formly continuous selector @ — X ? Lindenstrauss [18, Thm. 8] showed that
there is a uniformly continuous retract when X is uniformly convex and
@ ={AeJ(X):diam A < r} for some r > 0. Skaletskii [29] improved this
by establishing the existence of a selector, whilst also weakening the first
assumption to “X has uniformly normal structure”. Here we will give a new
simple proof of Skaletskii’s theorem, without the convexity assumption im-
posed in [25, Thm. 7.2].

The radius of a set A4 relative to a point x is defined by rad(x, A) =
SUPge 4l X —a||. One then defines the radius of 4 by rad A = inf, . y rad(x, 4).
The Jung constant of X is J(X) =supf{rad A/diam A: A€ JC(X), A infi-
nite}; X is said to have uniformly normal structure if J(X) <1. It is well
known that every uniformly convex space has uniformly normal structure.
(A long-standing conjecture is that the converse is true, after renorming.)
Following Skaletskii, we will say that a subset @ of JC(X) has uniformly
normal structure if sup{rad A/diam A: A € @, A infinite} < 1. If we consider
JC(X) to be embedded in JC(f.(I')), it is a routine exercise to prove the iden-
tity d(A", A) = rad A.

THEOREM 8. Let @ be a subset of 3C(X), with uniformly normal structure.
Suppose also that Q is an “ideal”, that is, suppose
[Ae3(X),BeER,ACB] = A€eQ.

Then there is a selector F: @ — X with the property that, for each r > 0, the
restriction of F to {A € Q: diam A < r} is uniformly continuous.

Proof. For each « > 1, we define T,,: @ » @ by T, (4) = AN B(A", a rad A4).
Theorem 4 guarantees that 7, is Lipschitz continuous. Note that 4" does
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not lie in X, but rather in the larger Banach space f,(I'); this does not affect
the applicability of Theorem 4.

Now we show that diam 7,(A) < arad A for every A€ @. For any q, be
7,(A), we have

arad A = || 4" —a| = sup, A"(y)—y(a) = sup, y(b—a) =|b—a|,

as required. Since @ has uniformly normal structure, we may choose « so
that, for some fixed k <1, diam7,(A) < k diam A for every Ae®. Then
diam 7,]'(A) < k" diam A — 0, and so F(A) =My~ T.)(A) is a singleton set.
We may regard F as a selector from G@. Now

dy(F(A), T(A)) =diam T(A) < k" diam A,

and so 7,)'(A) — F(A) uniformly on {4 € @: diam A4 < r}. As a uniform limit
of uniformly continuous functions, F must be uniformly continuous on
fAe@:diam A < r}. Ol

It is clear that uniform continuity of a selector is not affected by renorming.
Thus, if X is isomorphic to a Banach space with uniformly normal struc-
ture, then there is a selector JC(X) — X that is uniformly continuous on
each of the sets {Ae JC(X):diam A < r}.

The following consequence of Theorems 7 and 8 was pointed out to us by
the referee. The meaning of uniform absolute retract should be obvious.

CoOROLLARY 9. If X is isomorphic to a Banach space with uniformly nor-
mal structure, then its unit ball is a uniform absolute retract.

The assumption of uniformly normal structure is not essential here. For ex-
ample, the unit ball of the nonrefiexive Banach space f, is also a uniform
absolute retract. (According to [5] or [20], any Banach space with uniformly
normal structure is reflexive.) However, there do exist Banach spaces whose
unit balls are not uniform absolute retracts [18, Cor. 1, p. 282].

3. Computations, Observations, and Variations

This section contains technical results that might not be of interest to all
readers. Some of them will be needed for the extension theorems in Sec-
tion 4.

We begin by asking: Can the Lipschitz constant from Theorem 7 be im-
proved? Let us write A5 (X) for the smallest value of A for which JC(X) is
a A-Lipschitz absolute retract. (We use this notation rather than A(X), since
the latter is already in widespread use for the projection constant.) For any
infinite-dimensional classical Banach space X, in particular for any Hilbert
space, we can show that JC(X) is not a A-Lipschitz absolute retract for any
A< 2. Probably this is true for every infinite-dimensional Banach space. Our
proof of this requires a number of definitions, which may or may not be of
wider interest. Recall that an Auerbach basis for an n-dimensional Banach
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space X is an algebraic basis x, ..., Xx,, of norm-1 vectors whose coefficient
functionals fi, ..., f, also have norm 1. Auerbach’s lemma [19, 1.c.3] asserts
that every finite-dimensional Banach space has an Auerbach basis. Let us
define the boringness of X by b(X) = sup|| X/ x;|, where the supremum is
taken over all Auerbach bases for X.

LEMMA 10. For any finite-dimensional Banach space X,

2b(X)

/\JC(X)Z———-————-——I_*_b(X).

Proof. Let xy, ..., x, be any Auerbach basis for X. Put A= {2, a;x;:
loj] =1 for all i}, and for 1< |k|<n set Ay =[] ;x;€ A: g = sgnk}.
Easy calculations show that dy; (A4, A¢) =2 whenever j # k. Let S=S,U{B}
be a metric space containing S, = (A4, ..., A,} with d(B, A;) =1 for all k.
Lemma 6(ii) gives us a mapping R: S — JC(X) that extends the identity I:
So— ¥(X) and has Lipschitz constant A < Az (X). We assume that A < 2, as
otherwise there is nothing to prove. Then dg (R(B), A;) < A for all k, which
implies that | f;(x)+1| < A for all x e R(B) and both choices of sign. In other
words, R(B) € (A—1)A < A. This forces

k

= max h(Ag, R(B))
k

=maxh(Ag, (A—1)A)
k

=h(A,(A—1)A)
= (2—A) sup||a|

acA

ix,-
1

i

=(2—A)sup

n

Since the choice of Auerbach basis was arbitrary and (+x;) is an Auerbach
basis whenever (x;) is, we have A = (2 —A) b(X). ]

We call a Banach space infinitely boring if it admits a sequence of finite-rank
projections P, with b(P,X) — c and ||P,| — 1. Not all infinite-dimensional
spaces have this property; in this context, the example of Pisier [23, Cor.
10.8] is rather interesting.

PROPOSITION 11.
(i) If X is infinitely boring then Az (X) = 2.
(ii) Any £, space, 1 < p <, is infinitely boring.
(iii) Any Banach space that contains an isomorphic copy of c is infinitely
boring.
(iv) Any Banach space with a monotone basis is infinitely boring.
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Proof. (i) If P: X —Y is a projection, then Az (Y) < || P||Ase(X).-

(ii) For p < o, this follows from the easy estimate b(f,(n)) = n'’?. For
»p = oo, it follows from the proof of (iii).

(iii) A result of James [19, 2.e.3] implies that X contains almost isometric
copies of {(n) for all n. Since {,(n) is the range of a norm-1 projection on
every superspace, it suffices (by a routine approximation argument) to show
that b(f(n)) — . For n = 3, set ‘

xn=(-1,111,...), x,=(1,-1,1,1,...), x3=(1,1,-1,1, ...), ...;

1 1
= - 91s s Ly see)y =
h=gpB-mbLL.) =5

Then x,, ..., x, form an Auerbach basis for {,(n), and f, ..., f, are the cor-
responding coefficient functionals. Furthermore,

(1,3—=n,1,1,...),....

b(lo(n)) = || X, —x3—X3— - —x,|| = n.

(iv) Let P, be the projections associated with some monotone basis of X.
Then each P, has rank # and norm 1. If the sequence (P, X') is not bounded,
the conclusion is obvious. If it is bounded, a routine argument shows that
X is isomorphic to ¢y, and (iii) is applicable. O

If X is finite-dimensional (say, n-dimensional) then the argument from (iii)
also shows that JC(X) is never a 1-Lipschitz absolute retract, except in the
degenerate case when n = 1. For

Ap(X)=1= b(X)=1

n
= [ Y +x;|| =1 for all choices of sign,
i=1

and at least one Auerbach basis

= X is isometric to {(n)
= b(X)=n.

Thus X is 1-dimensional. We can also show that A;(X) > 1 whenever X is
infinite-dimensional, but we omit the proof.

Now we return to the study of intersections with balls. Recall that if we
have a collection (finite or larger) of metric spaces (M;, d;), the product space
can be metrized by the supremum metric d((x;), (¥;)) = sup; d;(x;, y;).

A trivial consequence of Theorem 4 is that the function

(x,A)» AN B(x, yd(x, A))

is Lipschitz on X X JC(X') for any given vy > 1. Fixing x (as in the proof of
Theorem 8) then gives us a Lipschitz map JC(X) — JC(X); fixing 4 (as in
Corollary 5) yields a Lipschitz map X — JC(X). We now pursue this idea in
more detail.

COROLLARY 12. (i) Let @ be a subfamily of C(X), and equip X XQ with
the sup metric. Suppose g: X X@ — RU {0} is a Lipschitz continuous func-
tion, and that there is a 3 <1 such that Bg(x, A) = d(x, A) for every xe X
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and Ae Q. Then the mapping T: X X®@ — C(X) defined by
T'(x,A)=ANB(x, g(x, A))

is Lipschitz continuous with Lt < 1+ (L,+2)(B).

(ii) Let @ be a subfamily of C(X), let g: @— RU {0} be a Lipschitz con-
tinuous function, and suppose there is a 3 <1 and an xe X such that g(A) =
d(x, A) for every Ae Q. Then the mapping T: QR — C(X) defined by T(A) =
AN B(x, g(A)) is Lipschitz continuous with Lt < 1+ (Lz+1)£(B).

(iii) For every x€ X there is a Lipschitz mapping T =T,: C(X)— JC(X)
with Ly <9 such that T(A) € A for every Ae C(X) and T(A) = {x} when-
ever A s Xx. Furthermore, these mappings satisfy the “linearity” relation

T;r+y(A+y) =T, (A)+y.

In the case where X is a Hilbert space, each T can be chosen so that Lt <

14+ /1114 5V5) < 4.4.

Proof. (i) Set S=XXQ@, f(x,A)=x, and F(x,A) = A for each (x,A)e S
in Theorem 4.

(ii) This follows equally easily from Theorem 4.

(iii) It suffices to set g(A) = yd(x, A) and @ = C(X) in part (ii), with y =
%(\/g +1) if X is a Hilbert space, or v = 3 for a general Banach space. [

As a special case of (iii), we see that for each y> 1, the map 7_,: C(X) - 3C(X)
defined by 7. (A) = AN B(0,vd(0, A)) is Lipschitz continuous with Ly <
1+ (y+1)£(1/7), and has the so-called zero property [21], that is, T, (A) =
{0} whenever O e A.

When X is reflexive and strictly convex, one defines the minimal selector
as the single-valued mapping that assigns to each A € G(X) the unique ele-
ment of A4 closest to the origin. As y — 1, T, (A4) might or might not converge
in some sense to the minimal selector. In any case, the Lipschitz constants
of T need not remain bounded as y — 1, and simple examples [3, §1.7] show
that the minimal selector is not always Lipschitz continuous.

With a more technical argument, the Lipschitz constant in (iii) can be
reduced to 3 in the case of a Hilbert space, and this is the best possible [22].
The optimal choice for v turns out to be V3.

In many cases (in particular, whenever X is reflexive), putting v =1 in
Corollary 5 also gives us a well-defined (i.e. non-empty-valued) mapping.
Sometimes—for example, in the strictly convex case—this leads to a single-
valued function, the metric projection onto A. Even when A is a subspace,
the metric projection need not be continuous (see [31] and the references
therein). In the case of a Hilbert space, one can check that the metric pro-
jection is continuous, with Lipschitz constant 1. For uniformly convex and
other spaces, see [33]. The next result recovers something in these situations;
even when a Lipschitz selection cannot be obtained, one can at least find an
interesting Lipschitz subset-valued function. We state it separately since it
will be used later for Corollary 17.
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CoOROLLARY 13. Let S be a metric space and suppose that F: S — C(X) and
S 8— X are Lipschitz mappings. Given v > 1, there exists a Lipschitz map-
ping G=G,: 8- 3C(X) such that:

(i) GSF, that is, G(x) € F(x) forall xe S;
(i) dg({f(x)}, G(x)) =vd(f(x), F(x)) for all xe S; in particular, G(x)=
{f(x)} whenever f(x) € F(x); and
(ili) Lg=Lp+(Ly+Lg)(y+1)E(177).

Proof. Define g(x) = vd(f(x), F(x))and let G be given by Theorem 4. Then
(i) is obvious and (ii) follows from the trivial inequalities

dy(x,ANB(x,r))<r
and
d(f(x), F(x)—d(f(»), F(»)) = (Ly+Lg)d(x, y).
To prove (iii), note that L, < y(Ls+ Lp). Ll

4. Finite-Dimensional Extensions and Selections

It is easy to see that any extension problem can be reformulated as a selec-
tion problem (for a function that is single-valued on the subset under consid-
eration), so our previous results can be applied also to such problems. The
results of this section depend on the existence of a Lipschitz selector— that is,
a Lipschitz mapping s: JC(X) = X with the property that s(A) € 4 for each
A. As we remarked earlier, there is no such map for any infinite-dimensional
space X. Hence we restrict our attention here to the finite-dimensional case.
We begin by recalling some information about the so-called Steiner point of
a convex body. There exists exactly one continuous mapping s: JC(R") — R”
with the properties that s(A+ B) =s(A) + s(B) for all A, BeJC(R”") and
s(TA) = T(s(A)) for every rigid motion 7T of R”.
The mapping s can be represented by the formula

s(Ay=n| AM(x)x do(x),
gn—

where A € 3¢(R"), A” is its support function, and ¢ is the usual probability
measure on the Euclidean sphere S” !, Shephard [28] first noticed that s(A),
now known as the Steiner point of A4, always belongs to the relative interior
of A. Equivalently, every bounded convex set contains the Steiner point of
its closure. Furthermore, s is Lipschitz continuous, with Lipschitz constant
equal to

2I(n/2+1)
Val((n+1)/2)’

where y is any element of S”"~! [8; 32]. The following tractable estimates
will be used several times without comment:

N2n/w <c, < N2(n+1)/7.

¢, =n f K3, x| do(x) =
Sn—l
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Every retract from X(R") onto the natural copy of R” has Lipschitz con-
stant no less than c,. Being a selector on X([R"), s is obviously a retraction
onto R”. For further information about Steiner points, we refer the reader
to [26] or [4, Chap. 9] and the references therein.

Building on these ideas, it was observed in [25, §6] that for every n-di-
mensional Banach space X there is a Lipschitz selector s =sy: 30(X) > X
with L, < n. For that particular selector, this estimate is sharp; it is attained
when X = {,(n) or {(n). With more work, a slightly better estimate can be
obtained.

PROPOSITION 14.

(i) For every n-dimensional normed space X, there is a Lipschitz selec-
tor s = sy: 3C(X) = X with Ly < c,Vn.

(ii) If X has dimension 2, there is a Lipschitz selector s =sy: 3C(X)—> X
with Ly <3/2.

Proof. (i) Recall the following result of John [13, Thm. 5.6(i)]: Given any
n-dimensional normed space (X, | :|)), there is a Euclidean norm |-| on X
satisfying |x| < || x|| = Vin|x] for all x € X. In other words, the Banach-Mazur
distance between X and ¢,(n) is no more than Va. Combining this with the
properties of the Steiner selector, we see that (i) holds.

(ii) In two dimensions, a sharper estimate exists. As noted in [25, §6],
there is a selector s: JC(f,(2)) = £(2) with Lipschitz constant 1. According
to Asplund {2], the Banach-Mazur distance of an arbitrary 2-dimensional
space from f(2) does not exceed 3/2. Thus follows (ii). 0

The Euclidean case of the following result was stated without proof in [25,
§5]. The case n =1 is very well known; see for example [34, Thm. 13.16].

PropPosITION 15. Let X be an n-dimensional Banach space, and let f: So— X
be a Lipschitz mapping defined on a subset S, of a pseudometric space S.
Then there exists a Lipschitz mapping g: S — X that extends f, with L, <
$n"8L;. If X is Euclidean, we have L, < c,Ly.

Proof. In the Euclidean case, g can be defined by the formula

g(x)=n f sup({f(y), uy—d(y, x))ude(u).
S lyeS,

(We inadvertently omitted the factor n in [25, p. 125].) For x€ S, the first

factor in the integrand is simply {f(x), ). Transitivity of $”~! under the

rotation group shows that g is an extension of f. Estimating the Lipschitz

constant is straightforward.

It is well known that, for X = {,,(n), we can arrange L, = L, simply by ap-
plying the 1-dimensional result componentwise. Auerbach’s lemma (stated
at the beginning of §3) implies that the Banach-Mazur distance of a general
n-dimensional Banach space from ¢ (#n) is at most #; this then gives a simple
proof of the slightly weaker estimate L, < nL,. For the general case, we can
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also use the stronger result of Szarek [30]: There is an absolute constant k
such that the Banach-Mazur distance of an arbitrary n-dimensional space
from £.(n) does not exceed kn"’%, Tinkering with Szarek’s proof shows that
k is not large. More precisely, one can take ¢ =1/2 in his Lemma 6, and
6 =¢€/3 in his Proposition 5. This leads to ¢y =1/3V6 and d(X, {.(n)) <
338478, Combining this with the previous observation completes the proof.
]
We note that for small values of », say 3 < n < 162, working via the Euclid-
ean case gives an extension g satisfying the sharper estimate L, < Vn nc,Ly.
In particular, we have L, 6nL rforalln=5. Forn=2, workmg via £,(2)
gives a better estimate, Lg <3L;.
A special case of the following result (namely, when A is fixed) appears
in [17]. Again, we assume that X is n-dimensional.

COROLLARY 16. For every x€ X, there is a selector s,: C(X) — X such that
sx(A) =x for every A containing x. Each of these selectors has Lipschitz
constant less than 8n, or less than 3Vn if X is Euclidean. Furthermore, they
satisfy the “linearity” relation s, ,(A+y) = 5,(A) +.

Proof. Using Corollary 12(iii) and Proposition 14(i) gives the general result
for n # 2. For n = 2, use Proposition 14(ii). For the Euclidean case, use also
the result of Ornelas [22] mentioned after Corollary 12. ]

The proof of the next result is similar, using Corollary 13.

CoroLLARY 17. Let S be a metric space and X an n-dimensional Banach
space. Suppose that F: S - C(X) and f: S — X are Lipschitz mappings. Fix
v > 1. Then there exists a Lipschitz selection s =s.: S — X such that:

(i) s(x)e F(x) forallxeS;
(ii) ||f(x)—s(x)||=vyd(f(x), F(x)) for all x € S; in particular, s(x) = f(x)
whenever f(x) € F(x); and
(ili) L= c¢,d(Lr+ (Ls+ Lg)(y +1)£(1/7v)), where d, =1 in the Euclid-
ean case and d, =Vn in general.

We can now state the main theorem of this section.

THEOREM 18. Let X be an n-dimensional Banach space, S a pseudometric
space, and Sy a subset of S. Suppose that F: S—C(X) and g: Sy— X are
Lipschitz mappings, with g(x) € F(x) for every x€ Sy. Then there is a Lip-
schitz mapping f:S — X that is simultaneously an extension of g and a se-
lection of F. Furthermore, f may be chosen so that L; < 10n"/8L,+8nLp.
If X is Euclidean, then Ly < 3nL,+4VnLy.

Proof. Combining Proposition 15 and Corollary 17 gives us a suitable func-
tion f. To verify these estimates for its Lipschitz constant, use the inequality
¢, <N2(n+1)/m for large values of n, and the exact value of ¢, for small
values of n. 0l
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If we use the version of Proposition 15 resulting from John’s theorem (in-
stead of Szarek’s theorem) in the preceding proof, we obtain the simpler esti-
mate L, < 6n2Lg+ 8nLr. For low dimensions, this is clearly stronger.

The Euclidean case of Theorem 18, with a larger Lipschitz constant, was
also proved implicitly by Dommisch {11] and explicitly by Artstein [1], using
a similar geometric argument.

We note that all of the results in this section are false for every infinite-
dimensional space X. To see this for the last theorem, put S =3C(X) and
So = X and let F and g be the identity functions. The existence of a Lipschitz
function f as in Theorem 18 would imply the existence of a Lipschitz selec-
tor JC(X) — X, which is impossible if X is infinite-dimensional [25].

Nevertheless, some analogs of Proposition 15, showing the Lipschitz ex-
tendability of mappings into infinite-dimensional spaces, can be proved under
certain “finiteness” assumptions on the domain of the mappings. In particu-
lar, this is true either if Sy is finite, or if S is a (subset of a) finite-dimensional
normed space—see [16] and the references therein.

Finally, retracts that are absolute but not Lipschitz (in the sense defined
above) are also of interest; we now use the previous results to exhibit some.
Let S be a pseudometric space and fix x, € S. We consider the Banach space
Lip(S, X) of all Lipschitz mappings from S into X equipped with norm

11z = L+ Fx0)-

COROLLARY 19. Let X be a finite-dimensional Banach space, let F: S —
C(X) be a Lipschitz mapping, and let & be the set of all Lipschitz selec-
tions of F. Then there is a Lipschitz retract R: Lip(S, X) — F that satisfies
the consistency conditions (Rf)(x) =(Rg)(x) whenever f(x)=g(x) and
(Rf)(x) = f(x) whenever f(x) e F(x).

Proof. In the notation of Corollary 12, we set (Rf)(x) = s(Ty F(x)). (Re-
call that s denotes the Steiner point of a finite-dimensional compact convex
set.) The first consistency condition is now clear, and the rest is obvious.

O
Of course, this F is an absolute retract by the remarks at the beginning of
Section 2. We cannot conclude that & is a Lipschitz absolute retract, since
Lip(S, X)) is not (in general) a Lipschitz absolute retract.

To see this, note that if a dual Banach space Y is a uniform absolute re-
tract then it is injective (i.e., the range of a continuous linear projection on
any superspace). For Y will be a uniform retract on some space {(I'), so the
work of Lindenstrauss [18] implies that Y ** will be isomorphic to a comple-
mented subspace of the injective space ¢.(I')**. As a dual space, Y is com-
plemented in Y ** and hence injective. (See also [25, p. 118] for more details
of this type of argument.)

Now let S be the Hilbert cube. Johnson showed in [15, Prop. 2.2] that
Lip(S, R) is not injective, and in {14, Cor. 4.2] that Lip(S, R) is a dual space.
Hence Lip(S, R) is not a Lipschitz absolute retract, nor even a uniform ab-
solute retract.
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