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1. Introduction

Two standard references for the theory of automatic groups are the book {12]
and the paper [2]; each contains numerous examples of automatic groups.
Perhaps the “canonical” class of automatic groups is the class of word hy-
perbolic groups of Gromov et al. [15]. As we shall see in Section 3, any build-
ing whose underlying Coxeter group is word hyperbolic is itself hyperbolic
in the word metric. In particular, any finitely generated group acting co-
compactly with finite stabilizers on such a building is word hyperbolic and
thus automatic. Hence, from the viewpoint of automatic groups, it is nat-
ural to look next at actions on affine buildings.

The first result in this direction is provided by Gersten and Short [13], who
prove that a finitely generated torsion-free group that acts co-compactly dis-
cretely by isometries on a Euclidean building of dimension 2 is automatic. It
has often seemed likely that the restriction on dimension could be lifted. In
this paper, we prove this for finitely generated groups that act simply tran-
smvely (and in a type-rotating way) on the vertices of a thick building of
type A,. We call such groups A,-groups. In fact, we will show more. We
shall see that these groups are bi-automatic. The structure in question is a
symmetric automatic structure [12]. (The term “fully automatic” is used in
[8] and in early versions of [12].) In particular, this implies that A,-groups
have solvable conjugacy problem [14]. Further, the structure consists of geo-
desics, and thus these groups have rational growth functions. It is shown
in [7] that for n = 2 and for any prime power g there are examples of A,,-
groups that are arithmetic lattices in PGL(n +1, F,((X))). This result gener-
alizes earlier work for small » in [5] and [6]. For n = 2, 3 and for some small
primes p, there are examples of A,-groups that are arithmetic lattices in
PGL(n+1,Q,) (see [6; 7; 21]).

The paper is organized as follows. Section 2 defines hyperbolic groups and
reviews some basic background information, most of which can be found
in [1]. In Section 3 we show that a building is hyperbolic (in an appropriate
sense) if and only if its underlying Coxeter group is hyperbolic. Section 4
defines A ,-groups and reviews the necessary background from [5]. Section 5
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gives the proof that finitely generated A,-groups are bi-automatic. Sections
4 and 5 require no knowledge of buildings; Section 3 uses elementary results
that can be found in [3, IV.3].

2. Hyperbolic Groups

We say that a metric space (X, d) is a geodesic metric space if, for every
X,y € X, there is a path from x to y that realizes their distance. Such a path
is called a geodesic. Following [15], we say that a geodesic metric space is
0-hyperbolic if, whenever P is a point on side « of a geodesic triangle with
sides a, 8, and v, there is a point Q on U+ such that d(P, Q) < 6. We say
that (X, d) is hyperbolic if it is 6-hyperbolic for some 4.

Given any connected graph I', there is a natural metric in I'. Take each
edge of ' to be isometric to the unit interval and take the path metric that
this induces on I'. Further, given any finitely generated group G, the choice
of a finite generating set G = {a, ..., a;} turns G into a directed labeled con-
nected graph I' =T'¢. The vertices of I' are the elements of G and the edges of
I' are {(g, ga)| g € G, ae G}. We direct the edge (g, ga) from g to ga and label
it with a. We assume that G is closed under inverses and identify (g, ga) with
the inverse of (ga, g). I is called the Cayley graph of G with respect to G.

We say that G is hyperbolic if T =I'g is hyperbolic. While this appears to
depend on G, in fact only the particular value of 8 depends on G.

We will want a standard fact about hyperbolic metric spaces. Given a path
o in X and given 0 < A <1 and 0 < ¢, we will say that o is a (A, €)-quasigeo-
desic if, for every decomposition ¢ = a3y, the endpoints of 8 are separated
by at least Af(3)—e. (Here ¢(8) denotes the length of §8.) If X is a 6-hyper-
bolic metric space then there exists an N = N(6, A, €) such that, if o is a (A, €)-
quasigeodesic and 7 is a geodesic with the same endpoints, then o and 7 lie
in the N-neighborhood of each other [1, 3.3]. Geodesics are simply (1, 0)-
quasigeodesics, and thus there is an N = N(§, 1, 0) such that all geodesics
joining common endpoints live in an N-neighborhood of each other. We call
a pair of geodesics with common endpoints a bigon.

From this one can construct a proof that any geodesic metric space that is
quasi-isometric to a hyperbolic space is itself hyperbolic, and that, in par-
ticular, hyperbolicity of a group is independent of the generating set. It is
a standard result (see e.g. [4]) that if a finitely generated group G acts co-
compactly by isometries and with finite stabilizers on a geodesic metric space
(X, g), then every Cayley graph of G is quasi-isometric to X. In particular,
when X is hyperbolic, so is G.

We have seen that the definition of a hyperbolic metric space requires
checking that geodesic triangles are “thin”, that is, that no side of a triangle
is ever far from the union of the other two sides. Papasoglu [17; 18] has
shown that in graphs it is only necessary to check bigons. Note that the end-
points of geodesics (and hence the endpoints of bigons) need not be vertices
of T
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THEOREM (Papasoglu). Suppose that I' is a graph and that there is a con-
stant K such that if o, ¢’ is a bigon then ¢ and ¢’ lie in a K-neighborhood of
each other. Then T' is hyperbolic.

Notice that the hypothesis is equivalent to the a priori stronger hypothe-
sis that there exists a K’ such that if ¢ and ¢’ form a bigon then, for all ¢,
d(a(t),0'(t)) = K'. For suppose that o(¢) is within K of ¢’(¢’). Then the fact
that these are geodesics emanating from a common point allows us to use the
triangle inequality to see that [f—¢’| < K. Hence, taking K'= 2K, we have
d(o(t),0’'(t)) <K'

3. Hyperbolic Buildings

In [16] Moussong constructs actions of Coxeter groups on non-positively
curved geodesic metric spaces. An account of this metric can be found in
[10]. The metric spaces in question are locally Euclidean or locally hyper-
bolic complexes, and can be made negatively curved if and only if the Coxe-
ter group in question is word hyperbolic. The actions are co-compact, by
isometries and with finite stabilizers. As a scholium of his construction, one
knows exactly which Coxeter groups are word hyperbolic.

THEOREM (Moussong). Let (W, S) be a Coxeter system. Then the follow-
ing are equivalent.
(1) W is word hyperbolic.
(2) W has no ZXZ subgroup.
(3) (W, S) does not contain an affine sub-Coxeter system of rank = 3, and
does not contain a pair of disjoint commuting sub-Coxeter systems

whose groups are both infinite.
2

Charney and Davis [9] have pointed out that by using Moussong’s metric of
nonpositive curvature one can give a building a metric of nonpositive curva-
ture, and that the metric on the building is negatively curved if and only if
the Coxeter group is word hyperbolic. (Construction of the metric on the
building can be done along the lines of [3, VI.3].)

We give a similar characterization in terms of graphs. Given a building A,
there is a metric on the set of chambers of A, and we will want a path metric
space that reflects this metric. To do this we let A’ be the graph dual to A.
That is to say, the vertices of A’ are the barycenters of the chambers of A.
Two such vertices are connected by an edge when they lie in chambers with
a common face. As usual, A’ is metrized by considering each edge as iso-
metric to the unit interval. Nonstuttering galleries of A correspond to edge-
paths in A’. The decomposition of A into apartments induces a decomposi-
tion of A’ into apartments that are isometric as labeled graphs to the Cayley
graph of (W, S), the Coxeter system of A.

THEOREM 1. Suppose A is a building whose apartments are the Coxeter
complex of a word hyperbolic Coxeter group. Then A’ is hyperbolic.
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REMARK. The converse is also true. That is, if A’is hyperbolic, the aséoci-
ated Coxeter group is word hyperbolic. This follows immediately from the
fact that the embedding of the Cayley graph into A’ is an isometry.

COROLLARY. Suppose A is a building whose apartments are the Coxeter
complex of a word hyperbolic Coxeter group, and suppose that G is a fi-
nitely generated group that acts simplicially, co-compactly with finite stabil-
izers on A. Then G is word hyperbolic.

Proof. G acts on A, and the natural embedding of A’ into A is equivariant
with respect to this action. This induces an action of G on A’. Since there
are finitely many G-orbits of chambers of A and finitely many G-orbits of
codimension-1 faces, the induced action on A’is co-compact. Now G carries
edges of A’ to edges of A’ and thus acts by isometries of the graph metric.
Since the action of G has finite stabilizers, the (setwise) stabilizer of each
chamber and codimension-1 face of A is finite. These are the stabilizers of
the vertices and edges of A’. Hence, as we have outlined in Section 2, G is
quasi-isometric to A’ and thus word hyperbolic. O

Proof of Theorem 1. To prove the theorem, we consider a bigon o, ¢’. It suf-
fices to show that there exists a K such that, if C is any point of o, then C is
within K of ¢’. We distinguish three cases depending on whether both, one,
or neither of the endpoints of this bigon are vertices.

Case 1: Both ends of the bigon are vertices. Given any two chambers of
A, there is an apartment X containing them both. Any geodesic gallery in A
connecting these two chambers lies in £ (see {3, p. 88]). It now follows that
o and ¢’ lie in a common apartment of A’, and by the hyperbolicity of the
underlying Coxeter group, we are done.

Case 2: The geodesics o and o’ begin at a vertex, but do not end at a ver-
tex. We let x and x’ be the beginning and endpoints of our bigon. We let y
and z be the last vertices of ¢ and ¢’, respectively, and let 7 and 7’ be the ini-
tial segments of o and ¢’ ending at y and z, respectively. It now follows that
¢(7) = £(7’) and that x’is the midpoint of an edge e. If y = z then 7 and 7’ lie
in a common apartment, and we are done by Case 1. Thus we may assume
y # z. Now 7 and 7’ cannot lie in a common apartment. For if this were so,
rer’ ~! would label a relator of odd length in the underlying Coxeter group,
and this is impossible.
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Let X be an apartment containing ¢. We consider C = ¢(¢) and may suppose
that this is a vertex lying on 7. We let p = py, ¢ be the retraction onto X cen-
tered at C (see e.g. [3, IV.3]). Now d(), p(z)) <1, and since p does not in-
crease distance we have

n—1=<d(x,p(z))<n,

where n = £(7). Now consider the path p(7’). This may not be an edgepath,
as some edge of 7" may be folded by p. However its length as a path is still n.
We thus have a path of length » whose endpoints lie at distance at least n —1.
It follows that p(7’) is a (1, 1)-quasigeodesic. Since p(7’) lies in X, it now fol-
lows from the hyperbolicity of X that p(7’) lies close to 7. We can thus find
C’=17'(t’) such that p(C") lies close to C. Since p = py ¢ preserves distance
from C, C’ lies close to C and we are done.

Case 3: Neither end of the bigon is a vertex. In this case we let ¢ and &
(resp. a’ and b’) be the first and last vertices of o (resp. ¢’), and let 7 (resp.
7’) be the segment of ¢ (resp. ¢’) connecting these first and last vertices. If
a =a’or b= b’or both then we are reduced to previous cases, so we can as-
sume a # a’ and b # b’. We let e be the edge from a to a’ and let e’ be the
edge from b to b’. It is easy to check that {(7) = £(7’). We take n = £(7). Thus
d(a,b’) is either n—1, n, or n+1. We let u be a geodesic from a to b’

Case 3

If d(a, b’) = n—1then pe’~! and 7 form a bigon whose ends are the vertices
a and b. Likewise, e”'u and 7’ form a bigon whose ends are the vertices a’
and b’. Applying Case 1 twice takes care of this situation.

If d(a,b’) = n, we let y and y’ be the midpoints of e and e’. We then have
a bigon whose ends are @ and y’ and whose sides consist of 7 and u, each
with a half of e’ appended. Similarly, we have a bigon with ends b’ and y and
sides u~! and 7/ ! with the halves of e appended. Now we can apply Case 2
twice.

Finally, if d(a, b’) = n+1 then p and 7e’ form a bigon, as do u and e7’;
once again, we can apply Case 1 twice.

4. Review of A,-Groups

A ,-groups were introduced for general n = 2 in [5], after earlier work on the
case n=2 in [6]. (One-dimensional buildings are trees, and are thus hyper-
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bolic.) Recall that a building is a labelable complex—that is, each vertex v
of a building A of type A4, has a type 7(v)€ {0, 1, ..., n}, with each chamber
having one vertex of each type. If g is an automorphism of A, and if there is
an integer c such that 7(gv) = 7(v)+c¢ (mod n+1) for each vertex v, then g
is called type-rotating. Such automorphisms form a subgroup of index at
most 2 in the group of all automorphisms of A.

If X is a field with discrete valuation, then there is a thick building Ag of
type A, associated with K (see [19, Sec. 9.2] or [3, Sec. V.8]), and the group
PGL(n+1, K) acts transitively and in a type-rotating way on Ag. A group
is said to be an A,-group if it acts simply transitively on the vertices of a
thick building of type A, in a type-rotating way.

We now describe A,-groups. Let II be a projective geometry of dimension
n=2 (see e.g. [11, p. 24] or [20, p. 105]). Fori=1,...,n, let II;={xeIl:
dim(x) = i}. To avoid unnecessary abstraction, the reader may assume that II
is the set II(V) (partially ordered by inclusion) of nontrivial proper subspaces
of an (n+1)-dimensional vector space V over a field &k, and that dim(x) re-
fers to the dimension of the subspace x of V. For when n = 3, or when n =2
and II is desarguesian, II must be isomorphic to II(V) for some V ([11, pp.
27-28] or [20, p. 203]). Let A: II = II be an involution such that A(II;) =
I,,,_;fori=1,...,n, and let 3 be an /'in-triangle presentation compatible
with A. This means that J is a set of triples («, v, w), where u, v, weIl, such
that:

(A) given u,vell, we have (u, v, w) e 3 for some w e Il if and only if A(u)
and v are distinct and incident;

(B) if (u,v,w)e 3, then (v, w, u) e 3J;

(C) if (u,v,w;)€ J and (u, v, w,) € 3, then w; = w,;

(D) if (u,v,w)e J, then (A(W), A(v), A(u)) € 3J;

(E) if (u,v,w)e 3, then dim(u)+ dim(v)+dim(w)=n+1o0r 2(n+1); and

(F) if (x,»y,u)e 3 and (x’, ', A(u)) € I, then for some w € Il we have that
(v, x,w)ed and (¥, x’, A(w))e J".

Here 3’ denotes the “half” of J consisting of the triples (u#, v, w) € 3 for which
dim(u)+dim(v)+dim(w)=n+1. If u,vell, then (i, v, w) e 3’ for some we Il
if and only if A(u) 2 v. We also write 3” for 3\ J'.

We form the associated group I'; with a generating set indexed by II:

I = {@,}ven| (1) arpy = a; " forall vell,

(2) a,a,a,, =1 for all (u,v, w) e 3).

It was shown in [5] that the Cayley graph of I'y with respect to the generators
a,, vell, is the 1-skeleton of a thick building A5 of type A,,. Clearly, I'; acts,
by left multiplication, simply transitively on the set of vertices of A;. Con-
versely, if I' is a group of type-rotating automorphisms of a thick building
A of type A,,, and acts simply transitively on the vertices of A, then I = I;
and A = A, for some A,-triangle presentation 3. These results generalized
earlier work [6] on the case n = 2.
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In this paper, II is assumed to be finite. The number of x eIl, incident
with any given y eIl, is denoted g+1, and is independent of y. Here ¢ is
called the order of II, and when II =II(V), g is the number of elements in
ttle field k. It is shown in [7] that, for every n = 2 and for any prime power g,

A ,-triangle presentations exist when II = II(V).
Let L denote the set of all strings u;u,---u, over Il such that

A(u,-)+u,-+1 =V fori= 1, ...,f'—l.

(The notation assumes that II = II(V), but in general, “A(u;)+u; .=V is
interpreted as “there is no x € Il such that A(«;) C x and u;,, C x”, where we
write y C x if x and y are incident, and dim(y) < dim(x).) Theorem 2.2 in [5]
states that u = uy---uy,~d = a,,-+-a,, is a bijection L — I';. Moreover, in the
notation of [12], each string u,---u, € L is geodesic, and so the number { is
the word length |g|of g =u. If geT'y, ue L, and g =i, then u is called the
normal form of g. We shall also refer to strings in L as being in normal form.
When g is the identity element 1, its normal form is the empty word, and its
word length is 0, by definition. We write d(g, g’) for |g"g’|, the distance
from g to g’ in the word metric.

5. Finitely Generated 4,-Groups Are Automatic

Throughout this section, let I' = I'; be a finitely generated A ,,-group.

We start by showing that L is a regular language. We can define a finite
state automaton M accepting L as follows: The set S of states of M is II to-
gether with an initial state sy (not in IT) and a single failure state s; (not in
I1, and distinct from s;); the alphabet of M is IT; the transition function u of
M is given by u(sgy, x) =x and u(s;,x) =s; for xeIl, while for x, yell we
set u(x,y) =y if A(x)+y =V and u(x, y) = s; otherwise; the set Y of accept
states of M is IIU{sy}. Clearly L = L(M).

Note that II is a set of semigroup generators for I'y that is closed under
inversion (as ay) = ay 1. Moreover, L has the uniqueness property (i.e.,
u~ i is a bijection L — I'y), is obviously prefix-closed, and is symmetric (i.e.,
u;---upe L implies that A(u,):--A(u;) € L). This last property of L and our
Theorem 2 below imply that I'y is bi-automatic, and in fact symmetric auto-
matic or fully automatic.

If u=u;---u;e L let u(0) be the identity element 1 in ', and for1 < ¢ <?
let u(¢) denote the element a,, ---a, of I'. For t > ¢, let u(¢) =a,,---a, =i
Let xell, and let v;---v; be the normal form of #x =a, ---a,a.. By [12,
Thm. 2.3.5], to show that I'; is automatic it is enough to show that, for some
k (independent of u and x), d(u(t),v(t)) < k holds for each integer ¢ = 0.
This property is called the k-fellow traveler property [2]. In fact, we show
this property holds for k = 1.

Now let u = u;---u, € L, and let x € II. The main work below is to describe
the normal form v =v,---v; of a, --a, ay. The description of this normal
form is complicated by the fact that, given u, x € Il, there are five mutually
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exclusive cases to consider: A(u) =x, A(u)+x=V, A(u) 2 x, Au) G x, and
(finally) A(«) and x are distinct and nonincident, with A(u#)+x # V.

We start with a lemma that concerns the last of these cases. In this lemma
and in what follows, we consistently identify a string # over II with its image
# in I'y, sometimes writing “u in I';” for emphasis, when thinking of « as .

LEMMA 1. Suppose that u,x €ll, that A(u) and x are distinct and noninci-
dent, and that A(u)+x = A(s) (#V). Thus we can write (s,A(u),x’Ye 3 and
(s, x,A(V))e T for some x’,vell, and ux=x'v in I". Then x'v is in nor-
mal form. That is, A(x’)+ v =V. Conversely, if two triples (s, A(u), x’},
(s, x,A(v)) € I are given, with A(x’)+v =V, then A(u) and x must be distinct
and nonincident, with A(u)+x = A(s).

We illustrate this lemma with a diagram in the Cayley graph of I';.

Proof. First, A(x’) # v. Otherwise, x’= A(v), and so Axioms (B) and (C)
imply that A(u#) = x, contrary to hypothesis. We shall henceforth use Axioms
(A)-(E) in the definition of an A ,-triangle presentation without comment,
but refer to Axiom (F) when it is used. Next, suppose that A(x’) # v, but that
A(x’) and v are incident. Thus (x’,v, w)e 3 for some well. If (x’,v,w)e T,
then (w, x’,v)e J, (s, x, A(v)) € ¥, and Axiom (F) together imply that

x,w,y)ed and (x',s,A(¥))ed for some yell.

Thus y = u. But then (u, x, w) € 3, so that A(«) and x are incident, contrary
to hypothesis. If (x’, v, w)e 3%, then (s, A(u), x’) e J, (A(W), A(v),A(x")) € T,
and Axiom (F) imply that (A(v), s, y) € 3’ and (A(u), A(w), A(»)) € 3’ for some
yell. Then y = x, and so (x, w, u) € 3", so that again A(«) and x are incident,
contrary to hypothesis.

Suppose that A(x’) # v, that A(x’) and v are not incident, and that

AX)Fv=A(s")#V.

Thus we have that (s, A(x’),x")e 3 and (s’,v,A(v’)) € 3 for some x”,v’eIl.
Now (s, A(u),x")e J, (x”,s’,A(x’))e J, and Axiom (F) show that (s’, s, 2)e
3 and (A(u), x", A(z))e J for some zell. Similarly, (A(v’), s’,v)e 3 and
(s, x, A(v)) e 3’ imply that (x,A(v’),2’)e 3 and (s, 5, A(z’)) € 3’ for some z’e
II. Thus A(z’) = z. Hence (A(u), x”,A(z))e 3’ and (x, A(v’), A(z)) € TJ, so that
Z D AMu), x. Hence z D A(u)+x = A(s). But (s', 5, z) € 3’ implies that z & A(s).
This contradiction completes the proof of the first part of the lemma.
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Consider the converse part. First, A(#) and x must be distinct, for other-
wise x’= A(v) must hold, which is impossible because A(x’)+v =V. Next,
Alu) ?t x cannot hold. For otherwise (#, x, y) e 3’ for some y € II. This, Axi-
om (F), and (A(u), x’, s) € 3’ then imply that (s, x,z) € 3’ and (y, x, A(2)) € J
hold for some z € II. Thus z = A(v), so that (y, x’,v) € ¥, which implies that
A(x’) D v, again a contradiction. Similarly, A(u) g x leads to a contradiction.
Finally, the hypotheses imply that A(u) +x C A(s). If A(u)+ x # A(s) then
write A(u)+ x = A(s’); we can then find x”, v’ € Il such that (s’, A(u), x”),
(s, x,A(v")) e J. But then x’v = ux = x"v’, and both x’v and x”v’ are in nor-
mal form (by the hypotheses, and by the first part of the lemma, respec-
tively). Uniqueness of normal forms now shows that x” = x’, so that s’ =3,
a contradiction. This completes the proof. O

LEMMA 2. Let uy, u,,x€ll, with u,u, in normal form. In deriving the nor-
mal form of u,u, x, we have the following five possibilities.

(1) If A(uy)+x =YV, then u,u, x is in normal form.
(2) If A(u,) = x, then the normal form of uyu,x is u,.
(3) If A(u,) 2 x, then (uy,x,A(w))e d for some well, and the normal
Jorm of uu, x is uyw.
4) If A(u,) g X, then (uy, x, A\(w)) € 3" for some w € I1. Thus uu x = uw
in T'. There are now the following possibilities: either
(@) A(uy)+w =YV, in which case the normal form of uu,x is u,w; or
(b) A(uy) 2w, in which case (u;, w,A(w'))€d for some w’ell, and
the normal form of u,u,x is w’; or
(c) A(uy) and w are distinct and nonincident, with A(u;)+w#V. Then,
writing A(u)+w = A(S’), there exist unique w', v, €Il such that
(s, A(uy), w)e I and (s',w,A(vy))e J, and the normal form of
Ujuy X is w'uy.
(5) If A(uy) and x are distinct and nonincident, with A(u,)+x #V, then,
writing A(u,)+x = A(S), there are unique x’, v, € Il such that
(5,A(u3),x"Yed and (s,x,A(vy))ed.
Thus ujuy x = u1x'vy in T'. There are now the following possibilities.
either
(@) AMu))+x’'=YV, in which case the normal form of uyu, x is u;x'v,;
or
(b) A(uy) 2 x’, in which case (u,,x',A(w')) € 3’ for some w’ell, and
the normal form of uyu,x is w'v,; or
(c) A(uy) and x' are distinct and nonincident, with A(u;) + x’#V.
Then, writing A(u,)+x'= A(s’), there are unique x", v, eIl such
that (s, A(u1),x")e 3 and (s',x’, A(v,)) € I, and the normal form
of uyu, x is x"v ;.

We illustrate the more complicated cases as follows.
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w Uu2z = w'y;

1 Uy U UL

Case 4(c)

s UIU2T = WV,

Uy U9 Uy ta
Case 5(b)
" uiz' = z"vy

s UjUoT = 'V

1 731 Uilg

Case 5(¢)

Proof. The assertions in (1) and (2) are obvious.

Let us consider the situation in (3). Here (u,, x, A(w)) € 3’ implies that
w D u,. Thus A(uy)+w D A(u;)+u, =V, and so u;w is in normal form.

Let us consider the situation in (4). In this case, again w # A(u;). For other-
wise, (uj, X, U;) = (u,, x, A(w)) € 3", contradicting the hypothesis that u,u, is
in normal form. Also, A(u;) S& w cannot hold; otherwise, (A(w), A(u;), w')ed’
for some w'elIl. Now (A(x), A(u,), w)e F, (A(uy), w, A(w)) e J, and Axiom
(F) imply that (w’, A(x), ¥) and (A(u5), A(u;), A(p)) are in 3’ for some y eIl.
This again contradicts the hypothesis that u;u, is in normal form. We are
left with the three possibilities 4(a), 4(b), and 4(c). The assertions in 4(a) and
4(b) are obvious; in 4(c), that the word w’v, is in normal form is immediate
from Lemma 1.

Let us consider the situation in (5). In this case, A(«,) cannot equal x’. For
otherwise (s, A(u3), A(u;)) = (s, A(uy), x’) € J’, contradicting the hypothesis
that u,u, is in normal form. Also A(u;) & x’ cannot occur. For otherwise,
(A(x"), A(uy), w) e 3’ for some w’eIl. Now Axiom (F) together with the fact
that (s, A(u,),x’)e 3’ and (A(u;), w/,A(x’)) € 3’ imply that (w’, s, y)e I’ and
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(A(uy), A(uy), A(¥)) € 3 for some y eIl. This last result again contradicts the
hypothesis that u;u, is in normal form. We are left with the three possibili-
ties 5(a), 5(b), and 5(c). The assertion in 5(a) is obvious, by Lemma 1.

Consider the situation in 5(b). Note that (x’, A(w’), uy), (x’, s, A(u;)) e I’
and the converse part of Lemma 1 imply that A(w’)+s = A(x’). Because
(s, x, A(v,)) e 3, we have v, D s, and so

AW+ v, =AW )+s+uv, =A(x")+ v, =V,

the last equality holding by Lemma 1. So w’v, is in normal form.

Finally, consider the situation in 5(c). First observe that A(v;)+s = A(x’).
This follows from the converse part of Lemma 1, because (x’, A(v;),s’) and
(x’, s, A(uy)) are in 3’ and because, using (s’, A(u;), x”) € 3, we have that
A(s)+uy D A(uy)+u, =V. Now (s, x,A(v3)) € J, so that v, D s. Hence

)\(Ul)+ Uy = A(Ul)+5+ Uy = A(X’)+ Uy = V,

the last equality holding by Lemma 1. Lemma 1 also shows that A(x")+v, =
Y, and so x”v,v, is in normal form. O

REMARK. Inlater work, we shall need a converse to Lemma 2. Let us write
x+'y =z for x,y,zell if x, y are distinct and nonincident, with x+y = z.
Then, by the converse part of Lemma 1, we have A(w’)+’A(x) = A(w) in part
4(b), A(v))+ A(x) = A(w) in part 4(c), A(w')+'s =A(x’) in part 5(b), and
A(v1)+'s = A(x’) in part 5(c). Provided these conditions are added, the con-
verses of parts (4) and (5) hold. In 5(b), for example, if uy, u,, x, s, x’,v,, w'e
IT and triples (s, A(u,), x'), (s, x, A(vy)) € 3" are given with A(w’)+'s = A(x’)
and A(w’)+v, =V, then u,u; is in normal form and A(u#,)+'x = A(s). The
first of these is immediate from Lemma 1, as (x’, A(W’), u;), (x', s, A(u;)) € J..
To see that A(u,)+'x = A(s), observe that A(x")+v, D A(w')+v, =V and so
the converse part of Lemma 1 is applicable.

The Normal Form v,---v; of ux

We can now describe how to obtain the normal form vy---v; of ux =a,,---
a, a given uy---up€ L and x € I1. When A(u)+x =V, this is obviously u;---
ugx. If A(u,) = x, then the normal form of #x is clearly v+« -4, _1. If A(1y) 2 x
then (u,, x, A(w)) € 3 for some w € Il, and the normal form of #Xx is then
up---uy_w, by part (3) of Lemma 2.

If A(up) and x are distinct and nonincident, with A(u,)+x # V, then, writ-
ing A(up)+ x = A(s;), we have (sp, A(uy), x;) € 3’ and (s¢, X, A(v,)) € 3’ for some
X1, vpeIl. Then uy---upx =uy-+-u;_1 X0, in I'. This situation may be repeated
several times, with A(#,_;) and x, distinct and nonincident, with A(u,_;)+ X, #
Y, and so forth. Suppose this situation is repeated exactly i/ times. Then we
find s;_,,x,+1,0,_, €Il for v =0, ...,i—1 such that A(x,_,)+x, = A(s;_,),
(Se—ys A(Up_,), x, 1) €T, and (sp_,, X,, A(v,_,))€ T for v=0,...,i—1 (writ-
ing xo = x). Then in I" we have
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Up = UpX = Uy Up_ i XjVp_jy1°* " Up. (5.1)

Then, by part (5) of Lemma 2, either the word on the right in (5.1) is in nor-
mal form or A(u,_;) 2 x;, in which case (¥;_;, x;, A(w)) € 3’ for some well
and the normal form of uXx is

UpssUp_j—WUp_jy1° " Up. (5.2)

Finally, if A(14,) G x, then (1, x, A(w)) € 3" for some w e II. Thus u;- - - upx =
u;---up_w in I'. A sequence of exactly i = 0 steps such as led to (5.1) may
now occur, so that we find elements s,_,, w,,v,_, for v =1, ...,7 such that
/\(uf—y)+w -1 =/\(S(’—v)s (Sl’—w A(uf—v)’ W,,) € 3" and (Sg_.,,, Wy—15 A(vt'—v)) ey
forv=1,...,i (writing wo = w). Then in I" we have

Ups s UpX = Uy~ Up_j WiUp_;* V). (5.3)

By parts (4) and (5) of Lemma 2, either the word on the right in (5.3) isin
normal form or A(u,_;_;) 2 w;, in which case (4,_;_;, w;, A(w’)) € 3 for some
w’e Il and the normal form of uXx is

Up Up_j W= Vp_1. : (5.4)

We are now ready to prove the fellow traveler property.

THEOREM 2. Let Ty be a finitely generated A,-group. Let u = u,---u;eL,
let xell, and let v,---v, € L be the normal form of ux = a, ---a,ay. Then
Jor each integer t = 0, we have d(u(t),v(t)) < 1. That is, either a, ---a, =
ay,-+a, Or ay-+-a, =da,---a, ay for some x,€lIl. Thus Iy is an automatic
group.

Proof. Let us discuss the most complicated case in detail, leaving the other

cases to the reader. Suppose that A(#,) & x, and that the normal form v of
uxis (5.4). For0<t=</¢-i-2, we have a, ---a, = a, --a,. Now

v(l—i—-l)=ay;--a, , =a, a, , ,a,
= aun' : .au[’—!—-Zauf-—i—-lawl
=u(f{—i—1a,,
and w;eIl. For 1 =» <1, we have
v(f—v)= Ay Ay, 0wy, Ay,
= aul. ) ‘a“r—i—za“r—i—lawiavr—, T 'aUr—u

=@ty Qi Ay Ay Ay, Aw

=u(l—v)a,, _

v—I1
1

and w,_; €Il. For t = ¢, v(t) = ux = u(t)a,. This completes the proof. [l
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