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Introduction

A motion of a link consists of an isotopy of the link through its ambient
space that ultimately returns the link to itself. By reducing this notion to the
classical dimension, a classical braid can be considered the trace of a motion
of a point set in a plane.

The set of motions of a link naturally forms a group, called a motion
group. It is not easy to describe the motion group explicitly for a given link;
Goldsmith [Gl; G2] calculated motion groups for a trivial link and torus
links in the 3-sphere. One might conjecture that the motion group of a trivial
link of n-spheres in S”*2 would have the same structure as that in the classi-
cal dimension. In this paper, we give a result (Theorem 2.2) on motions of a
trivial link of two components in general dimensions that might support its
motion group structure.

Using our result on motions of a trivial link, we can define an invariant of
ribbon presentations of knots. A ribbon presentation is geometric informa-
tion defining a knot to be a ribbon, which is introduced and studied in [M2],
[M3], [NN], and [Ya]. Specifically in this paper, we treat 1-fusion ribbon
presentations—that is, a description ® of a knot as obtained from the trivial
link of two n-spheres in $”*2 by connecting them with a pipe. Then the cen-
terline of the pipe links two components of the trivial link, and we can nat-
urally assign a word w in two letters by reading off the linking of the cen-
terline and the trivial link. Associated with this word w, we define a certain
equivalence class W(®) in two leters, and show that this turns out to be an
invariant of 1-fusion ribbon presentations (Theorem 4.1).

A ribbon knot possibly has distinct ribbon presentations. We construct
a ribbon knot having arbitrarily many different ribbon presentations of 1-
fusion in general dimension (Theorem 4.4), and we use our invariant W(®)
for distinguishing those ribbon presentations. The first example of a knot
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having two different ribbon presentations is constructed in [NN]; examples
in higher dimensions are given in [ Ya]. We show that our invariant can work
for distinguishing those examples. Another invariant for a ribbon presenta-
tion is shown [M3] to work for examples in [NN] and [ Ya], but our invariant
is slightly easier to calculate than in [M3]. We also apply our result to study
handcuffs (Theorem 5.1).

1. Notation

Throughout this paper we work in the piecewise linear category, but all our
results hold in the smooth category as well. We assume that every manifold
is orientable, and a fixed orientation is given. Any submanifold is presumed
to be locally flat.

By a pair (M, N) we mean a manifold M and a submanifold or subcom-
plex N of M. Given a manifold P, PN(M, N) is the pair (PNM, PNN). If
N is also a manifold, we define d(M, N) = (oM, dN).

Let f be a map from M to M, and let N C M. Then f fixes N if the restric-
tion f|y is the identity map of N. Let f; be orientation-preserving homeo-
morphisms from an oriented manifold M onto itself such that f; fixes N.
Then f; and f, are similar rel N if there exists an ambient isotopy {g,] of M
connecting f; and f, such that each g, fixes o, that is, an isotopy {g,} of M
such that:

(i) go is the identity and g,°f; = f»; and
(ii) each g, fixes N, 0 <t < 1.

Let L =(S"*?,K,UK,) be a link of oriented n-spheres K; and K, em-
bedded in an oriented (7 +2)-sphere S”*2. The link L is a trivial n-link, or
simply trivial, if one can find two disjoint (n+1)-disks in $”*2 each bound-
ing K, and X,.

Let o be an oriented arc in $”*2 connecting K; and K, such that o does
not intersect K; or K, except at the endpoints of the arc. Then we call « an
arc spanning L, and we denote the set of all arcs spanning L by A(L). If any
confusion does not occur, we may regard an arc as a map from the unit in-
terval I = [0, 1] into its ambient space. We remark that an arc spanning L is
not necessarily simple.

For two arcs «; and o5 in A(L), the arcs are homotopic rel L, denoted

= a5 rel L, if there exists a homotopy {A,} connecting «; and «; such that
each A, is also an arc spanning L for any ¢. We define @(L) =A(L)/(=rel L).

Given a link L = (§"*2, K,UK)), let f be an orientation-preserving ho-
meomorphism of S”*2 that fixes K;UK,. We then have the well-defined bi-
jective map f* from @ (L) onto itself by defining f*([«]) = [f(a)], a € A(L),
where [ ] denotes an equivalence class in @(L).

The following lemma is easy, so we omit its proof.

LeEmMA 1.1. Given a link L = (8"*%, K, UK,), let f; be an orientation-
preserving homeomorphism of S"*? onto itself that fixes K\UK,. If fl and
f> are similar rel(K,UK3), then fi' = f5': @Q(L) - Q(L).
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2. Motions of a Trivial Link

The motion group of a link in a space is, roughly speaking, the set of mo-
tions of the link, each of which consists of an isotopy of the link through the
total space that ultimately returns the link to itself, under certain equivalence
relations among motions [G1]. In [G1], the motion group of a trivial link in
S3 is completely determined, as Proposition 2.1 states specifically in the case
of two components. The authors conjecture that the proposition holds in
the case of trivial links in higher dimensions.

ProrosiTioN 2.1 [Gl]. The motion group of a trivial link of two compo-
nents in S* is generated by the following types of motions:

(1) turning a component over;
(2) interchanging two components;
(3) pulling one component through the other component.

We then prove (in Section 3) the following theorem.

TueoreM 2.2. For a trivial link L = (8”2, K,UK,) and any orientation-
preserving homeomorphism f of S"*? onto itself that fixes K\UK,, the map
f*: @(L)— Q(L) is the identity.

3. Lemmas and Proof of Theorem 2.2

Throughout this section, L = (§"*2, K;UK,) denotes a trivial link of two
n-spheres K, and K, in $”*2. We remark that K, and K, are given suitable
orientations.

Let A, and A, be disjoint (n+1)-disks in $”*2 bounding K, and K,, re-
spectively, and let o be an arc spanning L. We may then assume that « is
simple and intersects A; and A, transversely except at the endpoints of the
arc. We give an orientation to « as running from «(0) € K to a(1) € K,. Give
orientations to A; and A, coherent with those of K, and K,. For each inter-
section of o with A; or A,, we assign a local intersection number, +1 or —1,
and a letter x/*! according to the local intersection number at A;. Reading off
this assignment from «:(0) to «(1) sequentially, we obtain a word w(a; A;, A5)
in letters x; and x,, which is an element of the free group F(x,, x,) on x; and
X,. We may assume that w(a; A, A,) represents a reduced word in the free
group F(x, x,), by doing reductions in the free group if necessary. In fact,
a cancellation xZ'xF! of consecutive letters in F(x;, X,), if it occurs, can be
realized by a homotopic deformation of the arc rel(K,UK}).

Deforming « isotopically if necessary, we assume that the disk which «
meets first is not A,; that is, there exists s, 0 < s < 1, such that «((0, s)) does
not meet any disks and «(s) € A,. We assume also that the last disk the arc
meets is not A,.

For a word w in F(x, ), let w = uf!---us" be the reduced representation of
the word, where n is the length of the word, each u; is one of the generators
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x,Y, and ¢; € {+1, —1}. Then we call u#; and u,, the initial and terminal letters
in w. We define F*(x;y) to be the set of words of F(x, y) consisting of the
trivial word 1, along with all those words whose initial letter is x and whose
terminal letter is y. We remark that F*(x; y) does not form a group, and that
F*(x;y) # F*(y; x).

The word w(a; A;, A,) constructed above defines an element of F*(x3; ;).
Let A ={A,, A,}, and define the map ¢,: Q(L) = F*(x;3; x;) by eal(la]) =
w(a; A). Then the following lemma is easy.

LEMMA 3.1. The map ¢,: Q(L)— F*(x,; x,) is well-defined and bijective.
Using Proposition 2.1, we show the following.

LEMMA 3.2. Let f be an orientation-preserving homeomorphism of S* on-
to itself that fixes K{UK,, and let o be an arc spanning L. Then o ([a])=
ea([f(a)]), where [] is an equivalence class in Q(L) and f(«) is given the
orientation induced from that of «.

Proof. Any orientation-preserving homeomorphism of S is isotopic to the
identity, and this isotopy gives a motion of the trivial link K, U K,. This mo-
tion is obtained as a composition of fundamental motions of types (i), (ii),
and (iii) in Proposition 2.1. Motions of types (i) and (ii) do not cause any
changes in the intersections of o and A.

Consider S3 to be the one-point compactification of R* = {(x;, x5, Xx3)|
x;€ R}. Then we may identify K, with the x; axis. A motion of type (iii)—
for example, pulling K, through K;—corresponds to a 2« rotation about the
X5 axis, and this motion does not change the intersection of « and A (after a
suitable isotopy that keeps K;U K fixed).

The observation above shows that there exists an orientation-preserving
homeomorphism g similar to f rel(K;UK,) such that w(a; A) = w(g(a); A).
By Lemmas 1.1 and 3.1, we have ¢,([a]) = oA([ f(a)]) for a € A. |

A manifold pair homeomorphic to
(D"x 1%, D"x(1/2}x {1/3}UD"x {1/2}x{2/3}))

is called a trivial disk pair, where I is the unit interval [0, 1]. An (n+1)-
sphere S’ in S"*2 is an equator if there exists an (7 +2)-disk in $”*2 bound-
ing S’. Let L’'=(S’, K{UK3) be a trivial (n—1)-link. Then L’ is equatorial
for L if: S’is an equator of S"*2; S’ separates L into two trivial disk pairs
B = (B, b;Ub,) and 6 = (D, d;Ud,) that are symmetric about S’; and L'=
ap = adé.

Assume n = 2, and take a base point e in B—(b,U b,). Choose an element
[x]e @(L), and assume thereby that the arc o« C B—(b,;Ub,)—e. We then
take a projection p: B—e — 3B such that p(«) is also an arc spanning L'.

LEMMA 3.3. The projection p above induces a bijection p*: Q(L)— Q(L’)
that is defined by p*([a]) = [p(a)] for € A(L), and we have o = p(x)
rel( K;UK5).
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Proof. Let aje A(L),i=1,2. Deform a; and «, to be in B—(b,U b,)—e, by
moving homotopically rel(K;UK,) if necessary. Assume o; = o, rel(K; UK>).
We can then realize this homotopic deformation in B, that is, the trace of
homotopy between «; and a, does not intersect D. Deform this homotopy
so that the projection of the homotopy gives a homotopy between p(«;) and
p(ay) rel 3(b,U b,). Thus the map p* is well-defined, and it is trivial that p*
is surjective. A homotopy between arcs in dB naturally gives a homotopy in
S"+2 and hence p* is injective.

The last part of the lemma is shown from the fact that the projection p
gives a homotopy between « and p(«). O

LEMMA 3.4. Let L'=(S’, K{UK3) be an equatorial trivial link of the trivial
link L. Let f be an orientation-preserving homeomorphism of S"*? fixing
K\UK, such that f(S’) = S'. Then the following diagram commutes,

(L) &> a(L)
o dler|
QL) L a(L),

where p is the projection chosen in the above.

Proaf. It follows from the assumption f(S") = S’that (f|S’)*: Q(L")—> Q(L’)
is well-defined. Let « € A(L). By Lemma 3.3 we have a = p(a) rel(K;UK,),
and thus f(a) = fep(a) rel(K;UK5). By Lemma 3.3 again, we have f(a) =
p(f()) rel(K,UK,). Hence [ fep(a)] = [pef(a)l € R(L). Both arcs fop(a)
and pef(a) are in S’, and both span L’. Therefore, we have [ fop(a)] =
[pef(a)]e R(L’) by Lemma 3.3. d

Take two disjoint (#+1)-disks A; and A, in S”*2? such that K; =944, i =1, 2.
Let o be a simple arc in $”*2 such that w(a; A;, A,) = 1. Then we call « a
trivial arc spanning L. It is easy to see that any two trivial arcs spanning L
are isotopic, keeping K,UK, fixed.

LEMMA 3.5. Assume n=2. Let o be a trivial arc spanning L, and let f be
an orientation-preserving homemorphism of S"*? that fixes K,UK,. Then
there exists an orientation-preserving homeomorphism g of S"*? similar to
frel(K\UK,) such that g(a) = a.

Proof. We give only an outline of a proof for the lemma, which is essen-
tially the same as that given in [M1].

Thickening the trivial arc o, we have a trivial ribbon n-knot K” of 1-fusion,
and « is a core of the band of K”. More explicitly, construct an embedding
b: B"x I— S"*? such that:

(i) b(B"XINK;=b(B"x{i—1}),i=1,2;
(ii) an orientation of b(B" x I) is compatible with those of K;, i =1, 2;
and

(iii) b|xs) = o, where O eint B".
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From the uniqueness of regular neighborhoods and a simple observation (see
e.g. [RS, pp. 67fF]), it follows that b(B" x I') is unique up to isotopy of S”"*+2,
keeping K;UK,U« fixed. Then K" = (K,UK,—b(B"xdI))Ub(dB"xI)is a
ribbon n-knot of 1-fusion, which defines a trivial knot. Hence the knot f(X")
is also trivial, which is a ribbon zn-knot of 1-fusion, f(«) being a core of the
band of f(K"). The fundamental group m;(S"*2—f(K")) is a one-relator
group, and the relator can be described by using the linking of f(«) and
K, K,. From a result of one-relator groups (see e.g. [MKS, p. 261)]), it fol-
lows that the centerline of the band of f(K”) is homotopically trivial, keep-
ing K, and K, fixed; that is, f(«) is a trivial arc. O

THEOREM 3.6. Let L'=(S’, K{UK}3) be an equatorial trivial link of L. Let f
be an orientation-preserving homeomorphism of S"*? that fixes KUK,
Then there exists an orientation-preserving homeomorphism g of S"+2 simi-
lar to f rel(K,UK,) such that g(S’')=§".

Proof. Take an (n+2)-disk Bin $”*2, bounding S’, and a trivial arc a span-
ning L whose regular neighborhood in $”*2is B. First, from Lemma 3.5, we
may assume that f(a) = a. Next, from the uniqueness of a regular neigh-
borhood, we can deform f isotopically, keeping K,Ua UK, fixed, to obtain
g such that g(B) = B. This g is the required one. O

Proof of Theorem 2.2. We prove the theorem by induction on the dimen-
sion n. First, assume that n = 1. Let f be an orientation-preserving homeo-
morphism of S° onto itself that fixes K; UK, and let « be an arc spanning L.
Then it follows from Lemmas 3.1 and 3.2 that [«] = [ f(x)].

Assume the theorem holds when n» = m — 1. Then choose a trivial link L' =
(S, K{UK3) that is equatorial for L. From Lemma 1.1 and Theorem 3.6, we
may assume that f(S’) = S’. From Lemmas 3.3 and 3.4 and the inductive
assumption, we have that f* is the identity for n = m. O

4. Ribbon Presentations

A I-fusion ribbon presentation ® = (K", b) is a pair of an n-knot K” and an
embedding b: B"x I — S"*2, called a band, such that
(1) b(B"XI)NK"=b(@B"xI) and
2) (K"—b(@B"xIY)Ub(B"xdaI) is a trivial link of two embedded #-
spheres in §"*2.

Two 1-fusion ribbon presentations ®; = (K[, b;), i =1, 2, are equivalent if
there exists an orientation-preserving homeomorphism f: $”"*2 - $"*2 such
that f(K{)= K3 and feb;(B" xXI)=b,(B" xI). (We can define m-fusion
ribbon presentation as well, and equivalence among these ribbon presenta-
tions, which we call simple equivalence in [M2]. We are describing defini-
tions of “ribbon presentation” and “equivalence” that are slightly different
from those in [M2] for the sake of avoiding unnecessary complexity in this
paper, but there are no essential differences.)
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If a 1-fusion ribbon presentation ® = (K", b) is given, K" is obtained from
a trivial link of two n-spheres Sy and S in S"*2 by connecting them with a
pipe using the band b. We may assume that b(B"XI)NS] = b(B"x0) and
b(B"XI)NS) = b(B"x1), and that orientations of Sy and Sy are coherent
with that of K. Let L = (S"*2,S7US}) and o = b(0 X I'), where 0 € int B".
Then L is a trivial link, and we have [a] € G@(L). Choosing disjoint disks A,
and A, spanning Sy and Sy, respectively, we get a map ¢5: Q(L) = F*(y;x)
defined in the previous section, where A = {A}, A,}.

We now introduce an equivalence relation ~ on F(x, y) that is generated by

(i) inversion in F(x,y),
(ii) interchanging the symbols x and y, and
(iii) replacing both x and y by their inverses.

We define F, , to be the quotient of F(x, y) by the equivalence relation ~.
We define W(Q®) to be the equivalence class of p([«]) in F, ,, and call
W(®) the ribbon invariant of ®&. In fact, we prove the following result.

THEOREM 4.1. The class W(®) is invariant under equivalence among the
presentations.

Proof. Take another set A’ of spanning disks of the trivial link Sy USJ. There
exists an orientation-preserving homeomorphism f of $”*2 that fixes S7'U Sy
and maps A to A’. Then, from the definition of ¢,, the following diagram
commutes:

Q(L) 2> F*(x3;x)

| H

QL) 2% F*(xy; x)).

From Theorem 2.2, f* is the idenity map. Hence ¢, = ¢, that is, ¢a([a])
does not depend on the choice of A.

Thus the word w(x, y) = oa([]) depends only on orientations of the arc «
and the original knot K”, and on the labeling of x and y. Reversing the ori-
entation of a changes w(x, y) into w(x, y)~!; another choice of the orienta-
tion of X makes w(x, y) into w(x ™!, y1); exchanging the labels x and y de-
forms w(x, y) into w(y, x). These do not cause any changes for W(®).

From Theorem 2.2 again, two 1-fusion ribbon presentations that are equiv-
alent define the same class W(®R). O

REMARKS. (1) In[Ya], Lemma 1.4 is described without proof. Theorem 4.1
gives a supplement for this insufficiency.

(2) In general, W(®) has eight different representatives. That is, if p5([c])
is a word w(x, y), then w(x, y) ~ w(u, v)°, where {u, v} = [x¢, ¢}, |6| =|e| =1.

COROLLARY 4.2. The correspondence ® — W(Q®R) gives a bijection from the
set of 1-fusion ribbon presentations of an n-knot onto F, ,, if n> 1. In the
case of n =1, the map is surjective.
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Proof. From Theorem 4.1, the correspondence is a well-defined map.

For any word w(x, y)e F*(y; x), we can easily realize an arc spanning a
trivial link Sy U S}’ in any dimension #, and then construct a ribbon presenta-
tion having the ribbon invariant with a representative w(x, y). This gives the
surjectivity of the correspondence.

The arc above is uniquely determined up to homotopy, and hence up to
isotopy in the case of n > 1. Using the same argument as in the proof of
Lemma 3.5, we can prove that the ribbon presentation is unique up to equiv-
alence. This gives the injectivity if n > 1. O

We use the notation ® = (K", b) and A,, A, introduced earlier in this section.
Let S be the (n+ 3)-sphere o_btained by capping two (n+ 3)-disks D, and D_
on 8"*2x{—2,2]. Thatis, § = D_U(§"*?x[-2,2])UD,, where

D.N(8"*2x[~2,2]) =3D, = 8" "2 x {+2]}.

Let A, =A,X[—2,2]and A, = A, X[—2,2] be embedded (n+2)-disks in S,
where S7+2 is identified with S"*2 x {0} C S. We define an embedding b:
(B"x[—1,11)xI— S8 by b((x,s), t) = (b(x, t),s), where xe B", se[—1,1],
and re . Let K be the (n+1)-knot in S obtained from dA,UdA, by the fu-
sion with the band b. That is, K is an (n+1)-knot with the 1-fusion ribbon
presentation ® = (X, b). We say that ® is associated with ®. From this con-
struction, we have W(®R) = W(QR).
Using Corollary 4.2, we have the following.

CoRroLLARY 4.3.  For 1-fusion ribbon presentations of n-knots, ® = gg if
and only if ®; =®, in the case of n> 1. In the case of n=1, & =R, if
011 = (Rz.

THEOREM 4.4. For any positive integers m > 1 and n, there exists a ribbon
n-knot with at least m inequivalent 1-fusion ribbon presentations.

Proof. Choose m distinct positive integers p,, ps, ..., Pm- Take a trivial link
of m+1 oriented n-spheres, labeled x,, x4, ..., X,,, in S n+2 Call the n-sphere
labeled x; the ith sphere. Connect the Oth sphere and ith sphere using a tube,
called the ith tube, to get a new #n-sphere. Choosing m such tubes as shown
in Figure 1, we obtain an n-knot K,,; in the figure, each box in which p; is

Figure 1
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filled means that the ith connecting tube links with the (i —1)th sphere p;
times, as shown in Figure 2. In the case of n =1, we choose such tubes to
have no self-twist.

Consider the band b; associated with the ith tube of the knot. This gives
a 1-fusion ribbon presentation ®; = (K", b;) so that the fission of the knot
along b; results in a trivial link of two components.

For simplicity of argument, we assume that n > 1. Then the knot group
71(S" T2 —K") is generated by x,, Xy, ..., X,, With relations

xl — x’l?;lx’;;pl
X, = x{2x0x1 P2

X3 =x{3x9x; 3

X = X | Xo X, P,

where x; is a meridianal loop of the ith sphere. First, deform K” by pulling
the jth sphere along the jth tube to get a new n-sphere, which is made from
a fusion of the Oth and jth spheres. Make this deformation for each j, j # i,
consecutively. Then the resulting knot appears to be two spheres connected
by the band b;, which shows a 1-fusion ribbon presentation ®; = (K", b;) of
K". Reading off the linking of the core of b; and the two spheres, we can de-
scribe W(Q®,).

The geometrical deformation above can be interpreted as an algebraic
modification of the knot group with the presentation above, which eliminates
each generator x; (j # i) by substituting one relation into the others. Apply-
ing the modification, we (finally) get a new group presentation with two gen-
erators X, X; and one relation x; = w; xow; !, where w; xow; ! is a reduced word
in the free group F(xy, X;), and w; € F*(xy; x;). Then the word w; represents
a core of the band b;, and is a representative of the invariant W(QR;).

We now demonstrate the validity of the above procedure in the case of
i = 1. The following can be shown by a simple calculation.

SUBLEMMA. Let x;_; = uxou™!, xj=x}’_1x0xj"_”l, and j= 3. Assume that
uxou~' is a reduced word, and that the initial and terminal letters of u are

x1. Then there exists a reduced word uV such that x; = uVxo(uVv)™.
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If m =2, then a representative of W(®,) is x§'x{2, and x§'x?2 for W(®,).
From Corollary 4.2, two ribbon presentations ®; and ®, are inequivalent.

Assume m = 3. First, we have x3 = uxqu™, u = x{2xE3x P2, Next, apply-
ing our sublemma repeatedly, we obtain a reduced word V such that

Xm = XP2x§3xP2VxgV “\xP2xyPax P2,

By substituting this relation into the first relation x; = x2'xx,,,”' to delete
the generator x,,, we obtain a single relation

— -1
X1 = w(Xg, X1)XoW(xg, X1) ",
where
W(X(), xl) = xlpzxé’sxrpz .. .xlpzxo—}’sxl—ﬂz_

Taking a conjugation of the above relation by xf2, we deform it to derive a
new relation
— -1
Xy = wi(Xo, X1 )XW (Xg, X1) ™,
where
w1 (X0, X1) = x6’3xl—P2 .. .xlpzxa‘psxl—Pz

is a reduced word in F*(xy; x;). This conjugation can be realized by an iso-
topic deformation that changes ®, into another ribbon presentation equiva-
lent to ®R,. We therefore have a representative w;(x,, x;) of the ribbon invar-
iant W(®R)).

The calculation above can be applied to the case of general ®;, yielding a
representative w;(x,, x;) of the ribbon invariant W(®;) such that

Wi(xo, xl) — xé’i+2xi_pi+l .o .x'_Pi+1x0—Pi+zxi—Pi+1,

where subscripts for p should be taken as m+1:=1, m+2 := 2. Therefore
all W(®;) are shown to be different, and thus all ®; are inequivalent.

In the case of n =1, given the ribbon presentation ®; = (K, b;), we get
a ribbon presentation ®; = (K2, b;) of the ribbon 2-knot that is associated
with ®;. From the result above in the case of n = 2 together with Corollary
4.3, the theorem in the case of n =1 is proved. Hence the 1-fusion ribbon
presentations we constructed are inequivalent in any dimensionn>=1. 0O

REMARK. A suitable choice of { p;} shows that the knot K” constructed in
the proof of Theorem 4.4. cannot be obtained as the spun knot of any clas-
sical knot—for example, by calculating an Alexander polynomial.

In [M3], a polynomial invariant is studied for distinguishing certain 1-fusion
ribbon presentations that is effective for examples in [NN] and [Ya]. Using
Theorem 4.1, we can distinguish those ribbon presentations much more easily.

NAKAGAWA-NAKANISHI EXAMPLE. Nakagawa and Nakanishi [NN] con-
struct two 1-fusion ribbon presentations ®; and ®, of a 1-knot, which are
deformed to give Figures 3 and 4. In the figure, a thin part means a band of
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a ribbon presentation. These two ribbon presentations define the same 1-
knot, which is not very easily seen from the figures in [NN] and [M3].
Let

wi(x,») = yxy ~x 7y xyxyx Ty Tl

wa(x,¥) = yxy~'x yx "y Txyxy Ty
Then, reading off the linking of the centerline of the band and the two circles
in each figure, we can show that w;(x, y) is a representative for the ribbon
invariant W(®;). The labels x and y are assigned with orientations as shown
in the figures, and the centerlines of the bands are oriented as running from
S} to S;. From Theorem 4.1, two ribbon presentations ®, and ®, are in-
equivalent.

YasubA ExaMpPLE. In [Ya)], Yasuda constructs two 1-fusion ribbon presen-
tations of the spun n-knot of a 2-bridge knot.
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Let k be a 2-bridge knot of type (p, g) in S3, and let {x, y |y =wxw™!) be
the Wirtinger presentation of the knot group that is naturally obtained from
the knot diagram of 2-bridge type (p, q) [Sc). The spun n-knot X" of k is
shown to be a ribbon n-knot of 1-fusion, and the ribbon presentation ®R(p, 4
is naturally constructed from the 2-bridge knot structure. Then it is verified
that the word w is a representative of the ribbon invariant W(Q®,, 4)) of the
spun knot.

Choose a 2-bridge knot k having two different 2-bridge presentations ( p, )
and (p’,q’), that is, gg’=1mod 2p and q’'# +gq; the 5,-knot provides an
example (see Figures 5 and 6). In Figure 5, the left picture shows a 2-bridge
presentation of the 5,-knot, while the right picture shows the ribbon presen-
tation of its spun 2-knot naturally obtained by the left one. Figure 6 shows
another 2-bridge presentation of the knot and ribbon presentation. Thus the
spun n-knot K" has two, seemingly different, ribbon presentations ® and ®’
that are constructed from the regular projections of 2-bridge types (p, q)
and (p’, q’) respectively. From [Fu], it is shown that W(®) = W(®R’), and
hence these ribbon presentations are distinct. The method stated here to dis-
tinguish ribbon presentations is essentially the same as that in [Ya].

i
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¥

i

Figure 5

(=t
f(\\_\\f \\Jjﬂgj

Figure 6
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5. Handcuffs

An n-dimensional handcuff C = K;Ua UK, consists of two n-spheres K,
and K, and a connecting simple arc « of X; and K,, embedded in S"*2. We
call the two spheres of the handcuff bases, and the connecting arc a string.
A handcuff is simple if bases form a trivial link of two n-spheres in $”+2.
Two handcuffs are equivalent if there exists an orientation-preserving ho-
meomorphism of S”*2 that maps one handcuff to the other.

Given a simple n-dimensional handcuff C = K,UaUK,, we get a trivial
link L = (S"*2, K;UK,) by giving suitable orientations to bases of the hand-
cuff. Introducing an orientation on the string « of the handcuff, and taking
a family A = {A}, A,} of two (n+1)-disks that span the bases of C, we can
define the word ¢A([«]) in F*(y; x) in the same manner as in Section 4.

We next introduce an equivalence relation ~’ on F(x, y) that is gener-
ated by .

(i) inversion in F(x, y),
(ii) interchanging the symbols x and y, and

(iii) replacing x by x~!, or y by y ..
We define Fy , to be the quotient of F(x, y) by the equivalen_ce relation ~’.

Using the word ¢,([a]) constructed above, we define W(C) to be the
equivalence class of ¢a([«]) in Fy ,. We can prove the following theorem
by the same argument used in the proof of Theorem 4.1.

THEOREM 5.1.
(1) W(C) is invariant under equivalence among simple n-dimensional
handcufjs.
(2) If W(C) =W(C’), two simple handcuffs C and C’ are equivalent after
deforming the string of a handcuff homotopically, that is, allowing
the string to have self-intersections during the deformation.

We remark that a handcuff cannot give the unique orientations to its bases,
and that the words w(u, v)° define the same equivalence class W(C) in Fy, ,
where {u, v} = (x9, ¥}, |8]| =|e&;| =|ea| = 1.

In [K1], Kinoshita gives an invariant of an embedded 1-dimensional com-
plex in terms of elementary ideals of the complementary space, and calcu-
lates the invariant of the handcuff in Figure 7. Using our invariant, the hand-
cuff is directly shown to be inequivalent to the trivial one.

r._)

Figure 7
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6. Final Remark
As mentioned previously, we posit the following.

CoONJECTURE. Motions of a trivial link in higher dimensions are generated
by Goldsmith’s generators (see Proposition 2.1 or [G1]).

The following question is related to this conjecture.

QuesTiON 1. Can a nontrivial link be obtained by gluing two trivial disk
pairs along their common boundary?

In the case of classical dimension, the answer to this question is clearly No.
Consider a 2-bridge knot, for example. The knot is constructed as two trivial
arc pairs, and indeed any classical knot may be obtained by such a gluing
with a suitable number of arc components. The answer to Question 1 is af-
firmative in the case of 2-dimensional embeddings in dimension 4 [Ka, Lem-
ma 1.6]. However, the authors do not know about the other dimensions.

QuEsTION 2. Does there exist a ribbon knot having infinitely many 1-fusion
ribbon presentations?

Among two or more fusion ribbon presentations, equivalences are discussed
in [M2]. In fact, the ribbon presentations we constructed in the proof of
Theorem 4.4 are shown to be stably equivalent under the definition in [M2].
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