On Virtually Projective Groups

Ipo EFRAT

1. Introduction

Denote the maximal pro-2 Galois group of a field K by G(2). Fields X for
which Ggy=1)(2) is a free pro-2 group were studied by various authors (see
e.g. [ELP; Er; W1; W2; W3; El1]). The approach in these works is, to a large
extent, arithmetical—leaning heavily on (among other things) properties of
quadratic forms. The objective of the present note is twofold: In Sections
2-4 we extend the structure theory of such fields and, moreover, generalize
some of their Galois-theoretic properties into a purely group-theoretic set-
ting. Next we deal with the following (known) structure theorem: Ggy=)(2)
is a free pro-2 group if and only if G = Gg(2) is a free pro-2 product (in a
natural sense) of groups of order 2 and of a free pro-2 group. This deep fact
has been proven by ErSov [Er] and Ware [ W3] using field-theoretic tools. It
was generalized by Haran [H4] to an arbitrary pro-2 group G (under a mild
assumption arising from Artin-Schreier theory). The proof in [H4], how-
ever, uses heavy machinery: a cohomology theory for the category of the
so-called Artin-Schreier structures, and the study of projective resolutions
of profinite G-modules (these tools are also partly developed in [H2] and
[H3]). Our second goal is thus to give a simplified proof of this fundamental
fact, using only standard methods of Galois cohomology. This is done in
Section 5, using the results of the previous sections.

Our approach is to explore the cohomological connections between a pro-
finite group G and its real core N; that is, N is the closed subgroup generated
by all the involutions in G. For G as above (or, more generally, when G is
virtually projective of real type; cf. Sections 2-3) we obtain a short exact se-
quence relating N to the Bockstein operator of G (Corollary 3.4). Combined
with an approximation property for H'(G, Z/2Z), this is used to show that
G/N is projective—that is, has cohomological dimension < 1 (Theorem 4.5;
see also Remark 5.3(2)).

This latter fact is of particular interest in studying the structure of the
absolute Galois group Gq of @. Indeed, denote the field of totally real alge-
braic numbers by @,,, let @, be the maximal pro-abelian extension of @,
and let @,;, = @,, NR = @,, NQ,,. Our results then imply that Gal(Q,,/ Q)
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is projective (Cor. 4.6). We remark in this connection that Fried, Haran,
and Volklein [FHV] have proved that Gq_is a free profinite product (in a
natural sense) of groups of order 2 indexed by the Cantor space {0, 1}“. An-
other proof (and of a more general result) has later been given by Pop. On
the other hand, the Kronecker-Weber theorem implies that Gal(@,, /@) =

Zy X1 poad Zp-

2. Groups of Real Type

Denote the set of all closed subgroups of order 2 of a profinite group G
by D(G). The topology of G induces in a natural way a topology on D(G).
We write H(G) for the Galois cohomology group H(G,Z/2Z), with G
acting trivially on Z/2Z. Thus H'(G) is the group of all continuous homo-
morphisms G — Z/2Z. (For all unexplained notions in Galois cohomology
we refer, e.g., to [Ri].)

Although our approach will be purely group-theoretic, it is motivated by
Galois-theoretic arguments. In fact, our main results are not valid for arbi-
trary profinite groups, but only under the following four conditions, which
reflect fundamental properties of canonical Galois groups of ordered fields
(as explained below).

DEerFINITION 2.1. We say that a profinite group G has real type if there exists
8 € H'(G) such that:

(i) Ker(d) is torsion-free;
(ii) foreachT'e D(G), I'={oe G| =T};
(iii) if G'= G and T, Ve H(G’) are contained in the same open subgroups
of G’ of index < 2, then they are conjugate in G’; and
(iv) for any G’'< G and ¢ € H(G"), y U +Resg 8) =0 in H*(G").

REMARK 2.2. Suppose that G is a profinite group of real type.

(1) Condition (i) implies that the torsion in G consists only of involu-
tions.

(2) By (i), 1is not an accumulation point of involutions in G. Therefore,
the set of involutions in G is closed. It follows that this set—and hence
also its homeomorphic copy D(G)—is a Boolean space (i.e., is Haus-
dorff, compact, and totally disconnected).

(3) D(G) has a compact system of representatives for its conjugacy classes:
this follows from the Booleanity of D(G) and from (ii) by means of,
for example, [Mel, (5.1)] or [H1, Lemma 5.2].

(4) A closed subgroup of a profinite group of real type has real type.

We now explain the Galois-theoretic motivation for Definition 2.1. Let P be
a collection of prime numbers with 2 € P. Let /K be a Galois extension with
char K # 2 and suppose that, for any p e P, { has no proper finite Galois
extensions of p-power order. For example, when P is the collection of all
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prime numbers we can take { to be the separable closure K, of X or its
solvable closure K, and when P = {2} we can take  to be the maximal
Galois 2-extension K(2) of K. Set G = Gal(Q2/K). Becker proved in [Be,
Chap. II, Sec. 2] that the complete analog of the Artin—-Schreier theory holds
also in this relative context; namely, for any ordering P on K there exists a
relative real closure in  (i.e., a maximal ordered-field extension of (K, P)
inside Q) that is unique up to a unique K-isomorphism. (Becker makes the
constant assumption that X is formally real, but this is not needed for the
results quoted here.) Moreover, the relative real closures of X in {} are pre-
cisely the subfields K of 2/K such that Gal(Q/K) = Z/2Z, and this is the
only possible torsion in G. Denote the set of all orderings on K by Xy. Note
that K induces Pe Xk (i.e., P=K?NK) if and only if Va € K for allae P.

Also, the cohomology exact sequence corresponding to the short exact se-
quence

1— {21} — Q% 2 0% — ]

of G-modules together with Hilbert’s Theorem 90 give the Kummer isomor-
phism K*/(K*)? = HY(G). Explicitly, a(X*)? corresponds under this iso-
morphism to the homomorphism (a)x € H'(G) given by o~ a(Va )/Va for
o€ G. For ay,...,a,e K> let (ay, ...,a,)) be the Pfister form (1, a;)®---
®{1, a,), and let I(K) be the fundamental ideal of the Witt ring W(K') of K.
A conjecture of Milnor [Mi] says that for any 7 = 0 there is a well-defined
isomorphism
IK)Y™/I(K)Y"*! = H™(G),
((ab seey am>>+I(K)m+l i (—'al)KU e U(—am)K‘

(In fact, Milnor conjectured this only for the extension K,/K; hpwever,
since Q is quadratically closed, this statement already implies that () =0
for all i and hence Inf: H™(G) - H™(Gg) is an isomorphism [Ri, Cor. 5.4,
p. 177}). Milnor’s conjecture has been proven in many cases, including m < 4
(see [Ar; Mer; MS; JR; Ro]).

(*)

ProrosiTioN 2.3. In this set-up and notation, G has real type with 6 =
(—1k.

Proof. For (i) of Definition 2.1, note that Ker(8) = Gal(Q/K(v/~1)) and
that Xy =) =#0. Conditions (ii) and (iii) reflect the fact that, for any sub-
extension K € L € (2, any two real closures of L in Q with respect to Pe X,
are L-isomorphic in a unique way (observe that P is a union of cosets in
L*/(L*)? and that these cosets correspond to open subgroups of Gal(Q/L)
of index < 2). Finally, (iv) says that for every subextension K < L < { and
every a € L* we have (a); U (—a); = 0. To verify this (well-known) equality,
use for example that ({(—a, a)) = 0in W(L) and the existence of an isomorph-
ism I(L)Y¥I(L)3 = H*(G’) as in (*). O

REMARK 2.4. When char K =2 we have Xx =4, so G is torsion-free. As
remarked earlier, H*(G) = H*(Gx) = H*(Gk(2)) via the inflation maps.
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Theorem 3.3 of [Ri, p. 256] now implies that H%(G) = 0. Therefore condi-
tions (i)-(iv) of Definition 2.1 hold with 6 = 0.

REMARK 2.5. In this set-up, the real core N of G is Gal(2/L), where L is
the intersection of all real closures of K in Q (and L = Q if Xg =0). There-
fore [Be, Thm. 7, p. 81] shows that G/N is torsion-free, and is in fact the
largest torsion-free quotient of G.

3. An Exact Sequence for Virtually Projective Groups

DEFINITION. A profinite group G will be called virtually projective if it
contains a projective open subgroup.

REMARK 3.1. Suppose that G is virtually projective of real type, and let 6
satisfy condition (i) of Definition 2.1. Then Ker(d) is projective. Indeed,
take a projective open subgroup U of G. Then UNKer(d) is projective [Ri,
Prop. 2.1, p. 204]. Since Ker(6) is torsion-free, a theorem of Serre ([Se];
see also [H2]) implies that cd(Ker(6)) = cd(UNKer(d)) <1, as claimed. Of
course, if Ker(d) is projective then it is torsion-free [Ri, Cor. 2.3 & 2.4, pp.
208-209]. Consequently, G is virtually projective of real type if and only if
there exists & € H(G) such that cd(Ker(8)) <1 and conditions (ii)-(iv) of
Definition 2.1 hold.

By a well-known theorem of Artin, an element x of a field X is positive with
respect to all orderings if and only if it is a sum of squares in K. The latter
condition can be restated as follows: For some # = 0, the (n+ 1)-fold Pfister
form {({(—x,1,...,1))is 0 in W(K). Thus, in the spirit of Section 2, Proposi-
tion 3.3 (to follow) with m =1 is a group-theoretic generalization of Artin’
classical result (see (*)). For the proof we will need a technical lemma.

LEMMA 3.2. Let G be a profinite group, n=0 and 0 # y;€ H*(G), i€l
Then there exists a closed subgroup F of G that is minimal with respect to
the conditions Resg y; # 0, i€ 1. Moreover, F is pro-2.

Proof. For the first claim it suffices, by Zorn’s lemma, to show that the col-
lection C of all closed subgroups F of G such that Resg y; # 0 for everyiel
is closed under intersections of chains (with respect to inclusion). Indeed, let
F;, jeJ, be achainin C and let F' = ¢ ; F;. We have

H™(F) =lim H"(F/FN\ M) = lim H"(FM/M),

with M ranging over all open normal subgroups of G, and likewise for each
F; [Ri, Cor. 4.2, p. 114]. But for each such M there exists a j € J such that
FM = F; M. We conclude that F e C.

The second assertion follows using a standard restriction-corestriction
argument (cf. [Ri, Cor. 6.9, p. 141}). O

For any group I' of order 2, we clearly have H!(T") = Z/2Z. Let 6 be the non-
zero element of H!(T"). Then the cohomology ring H*(T') = @, H"(T)
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is isomorphic as a graded ring to the polynomial ring Z/2Z[T] graded by
the usual degree map, with &, being mapped to T {Sn, Thm. 3.9, p. 18]. In
other words, H"(I") = Z/2Z (as additive groups) for any » = 0, and under
these isomorphisms the cup products H"(I') x H™(I") - H"*™(T") corre-
spond to multiplication in the ring Z/2Z. For a profinite group G, for d €
HY(G) and for n = 0, we write " =8U---Us e H"(G).

ProposiTION 3.3. Let G be a profinite group, let N be its real core, and lei
6 € H(G) satisfy conditions (i) and (iv) of Definition 2.1. Then, for every
¢ € H™(G), we have Resy ¢ =0 if and only if ¢US" =0 for some n = 0.

Proof (cf. [AEJ, Lemma 2.2}). Suppose that ¢ U§” =0 for some n=0.
Then, for every I'e D(G), we have (Resp ¢) U(Resy 8)” = Resp(eUd"™) =0
in H™+*"(I"). Also, condition (iv) with G’=T and with ¢ being the non-
zero element of H'(T") implies that Resy 6 # 0. Therefore Resp ¢ = 0. Since
I' e D(G) was arbitrary, Resy ¢ = 0.

Conversely, assume that ¢ U6” # 0 for all = 0. Lemma 3.2 yields a closed
subgroup F of G that is minimal with respect to the conditions Resg(¢U6") #
0, n = 0. Furthermore, F is pro-2. Suppose that rank(F) = 2. Then H(F)
has at least four elements [Ri, Thm. 6.8, p. 237]. Therefore we can find
0, Resg 6 # ¢ € H'(F). Thus F’=Ker(¥) and F” = Ker(y + Resg 8) are open
subgroups of F of index 2. The minimality of F yields » =0 such that
Resg(pUS") =0 and Resg-(0US") =0. By [Ar, Satz 4.5], the following
two sequences are exact:

Hm+n—l(F) U‘/’l Hm+"(F)E>Hm+"(F');

Hmn () 2YARSeD, pminpy Res, prman(pry,
Therefore,
Resp(pUds") e H™ "~ {F)Uy;
Resg(oUd") e H™ "W (F)U (Y + Resg §).

Taking cup products with ¥+ Resg 6 and ¢, respectively, and using condi-
tion (iv) of Definition 2.1, we have

Resp(oU8")U (Y +Resg 8) = Resp(pUSMUY =0.

By subtracting we obtain Resg(¢U8"*!) = 0, a contradiction.
Consequently, rank(F) < 1. But F cannot be 1 or Z,, since in these cases

H?(F)=0[Ri, Thm. 6.5, p. 235], implying that Resz(¢ U8) = 0. By Remark

2.2(1), F=Z/2Z, whence F < N. As Resg ¢ # 0, also Resy ¢ # 0. O

Define Bg: H'(G) - H*(G) (the Bockstein operator of G) by Bs(p) = ¢U .

COROLLARY 3.4. Let G be a virtually projective profinite group of real type,
and let N be its real core. Then the following sequence is exact:

0— HYG/N)Y 2 H'(G) 2o H2(G) — 0.
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Proof. Take 6 € H'(G) as in Definition 2.1. If § =0 then G is projective
(Remark 3.1); hence N=1 and H%(G) =0, so the assertion is in this case

trivial. Assume that 6 # 0 and consider again Arason’s exact sequence [Ar,
Satz 4.5]:

oo —> H"(Ker(6)) S H(G) E5 H"(G) B B+ (Ker(5)) —> ---.

Since cd(Ker(8)) <1, the map U é: H"(G) » H"*Y(G) is surjective for n =1
and bijective for n = 2. For ¢ € H'(G) we therefore obtain from Proposi-
tion 3.3 that Resy ¢ = 0 if and only if ¢ U6 = 0. By condition (iv) of Defini-
tion 2.1, this is equivalent to 85(¢) = 0. The assertion now follows from the
exactness of the sequence [Ri, Cor. 5.4, p. 177]:

0— HY(G/N) 5 HY(G) B HY(N). 0

4. Virtually Projective Groups Modulo the Real Core

Let G be é profinite group, and suppose that & is a compact system of
representatives for the conjugacy classes of D(G). For each ¢ € H(G) set
A(X, o) = {I'e X | p(T') = 0}.

ExampLE. Consider the field-theoretic setting of Section 2. Then there is a
bijection between & and the ordering space Xk, where I' = Gal(2/K) e
corresponds to P e Xy if and only if X induces P. For a € K* we thus have
ae P if and only if Va €K, or (equivalently) the homomorphism (a)g is
trivial on I'. Therefore A(X, (a)x) may be identified with {Pe Xg|a e P}.
Thus, part (b) of the following lemma is a group-theoretic version of the
strong approximation property (in the sense of [Pr]) for virtually projective
groups of real type.

LEMMA 4.1. Let G and X be as above and let C be a clopen subset of X.

(a) If G satisfies condition (iii) of Definition 2.1, then C is a finite Bool-
ean combination of sets of the form A(, ¢), ¢ € H'(G).

(b) If G is virtually projective of real type, then C = A(X, ¢) for some
o€ HY(G).

Proof. (a) Let I"e C. By assumption, {I'} is an intersection of sets of the form
A(X, ¢). Since these sets are closed in & and since I \C is compact, some
finite intersection A(C, ;)N ---NA(X, ©,), @1, ..., on€ H(G), to which T’
belongs is fully contained in C. Thus, the compact space C is covered by
such intersections. Since they are open, C is the union of only finitely many
of them.

(b) By (a), it is enough to show that the family of sets A(C, ¢), ¢ € HY(G),
is closed under finite unions and complements. So suppose that ¢;, ¢, € H(G)
and take ¢3€ H'(G) such that ¢;U¢, = B5(¢3;) (Corollary 3.4). For each
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I'e D(G), (Resp 1) U(Rest ¢,) = Br(Resp ¢3). As By is an isomorphism,
A(X, 01) UA(K, ¢;) = A(X, ¢3). Also, for € H'(G) as in Definition 2.1, we
have X\ A(X, ¢;) = A(X, ¢, +9). O

For the next lemma, again let G be a profinite group, let € H'(G), and sup-
pose that Ker(6) is torsion-free. Also let &C be a compact subset of D(G). Let
Hpegr HY(I') be the subgroup of the direct product ITrcq H(I') consist-
ing of all elements (¢1)req such that {I'e X | ¢ = 0} is clopen in X. (Since
H\(T') = {0, Resy 8} for T'e X, this also coincides with the terminology of
[El, Sec. 2].)

LEmMMA 4.2. Let G and X be as above, let N be the real core of G, and let
¢ € H'(N). Then (Resr @)reg € Ilrea H'(T).

Proof. Since Ker(y) is the intersection of all open subgroups U of G con-
taining it, there exists such U with Ker(¢) = UN N. Therefore

TeX | =0}={TFeX | < U}

is clopen in 9, as required. O

LEMMA 4.3. Let G be a virtually projective group of real type, and let X
be a compact system of representatzves for the conjugacy classes of D(G).
Then Res: H'(G) —r]_'IpEgCH (T") is surjective.

Proof. Take (qap)pegceﬁpem HI). Thus, C=([T'e X |¢r =0} is clopen
in %C. Lemma 4.1(b) yields ¢ € H(G) such that C = A(X, ¢). Then ¢ =
Resp ¢ for all 'e X. 4

Combining the previous observations, we obtain the following.

ProrosITION 4.4. Let G be a virtually projective group of real type, and let
N be its real core. Then:

(a) Res: HY(G)— HY(N)C is surjective;
(b) Res: H*(G) — H?(N) is injective; and
(c) H*(G/N) =

Proof. Let L be a compact system of representatives for the conjugacy
classes of D(G) (Remark 2.2(3)). To prove (a), take ¢ € H(N)°. Lemma
4.2 and Lemma 4.3 yield ¢ € H'(G) such that Resy ¢ = Resp ¢ for all 'e .
For each o e G we trivially have ¢ ° = ¢, and (by the assumption on ¢) also
¢° = ¢. Hence o(I"%) = ¢(I') = Y(I') = Y(I'°). Since N=(T'?|T'e X, 0 € G),
we get ¢ = Resy ¥, as required.

Next consider the following commutative diagram, whose row and col-
umn are exact (by the Hochschild-Serre spectral sequence [Ri, Cor. 5.4, p.
177] and Corollary 3.4, respectively):
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0

|

HYG/N)

Infl

0 — HYG/N) 2 HYG) RS HU(N)C S HAG/N) 25 HX(G). ()

3Gl lBN

HG) =% H*N)

|

0

By Corollary 3.4 again (applied to NV instead of G; see Remark 2.2(4)), 8y:
HY(N)— H?*(N) is an isomorphism; hence By: H(N)® - H*(N) is injec-
tive. We conclude from (1) that Res: H?(G) — H?(N) is injective, as asserted
in (b).

Finally, the exactness of the row in (1) together with (a) implies that Inf:
H?*(G/N)—- H*G) is injective. The composition of this monomorphism
with the monomorphism of (b) is, however, trivial (by definition). There-
fore H*(G/N) =0, as claimed in (c). O

THEOREM 4.5. Let G be a virtually projective group of real type, and let N
be its real core. Then G/N is projective.

Proof. Fix a prime number p. We need to show that cd,(G/N) < 1. Replac-
ing G by a subgroup G, containing N such that G,/N is a p-Sylow subgroup
of G/N, we may assume that G/N is a pro-p group (see Remark 2.2(4)).
Thus, it is enough to prove that H2(G/N, Z/pZ) = 0 [Ri, Cor. 4.2, p. 220].
Proposition 4.4(c) shows this for p = 2. For p odd, let 6 be as in Definition
2.1. Then cd,(G) = cd,(Ker(6)) = 1, by [Ri, Prop. 2.1, p. 204] and Remark
3.1. Therefore H*(G,Z/pZ) = 0. Furthermore, since N is generated by in-
volutions while Z/pZ has no invelutions, H'(N, Z/pZ) = 0. By the Hoch-
schild-Serre spectral sequence again, the sequence

H\(N, Z/pZ)°¢ ¥+ H*(G/N, Z/pZ) ™ H*(G, Z/pZ)
is exact. Therefore H*(G/N, Z/pZ) = 0, as required. O

COROLLARY 4.6. Gal(@,./Q,,) is projective.

I_’roof. By [Ri, Thm. 8.8, pp. 302-303], Gq,, is projective.~Since (@,
@Q.,]1 =2, Proposition 2.3 (with  being the algebraic closure Q of @) thus
implies that Gg_, is virtually projective of real type. By Relnark 2.5, the real
core N of Gg,, is generated by the subgroups Gg, with K ranging over all
real closures of @,;,. Furthermore, since all real closures of @ are isomorphic
and Gal(Q,,/Q@Q) is abelian, the unique ordering on @ has a unique exten-
sion to @,;,. It follows that the real closures of @, are just the real closures
of Q, so N=Ggq, . We conclude from Theorem 4.5 that Gal(Q,,/ Q,p) =
Gg,,/Gao, is projective. U
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Let £, be the free profinite group of rank K,.
QuEstioN 4.7. Is Gal(@,,/@,,) = F.?

It is suspected that Gg_, is a free profinite product (in a natural sense) of
groups of order 2 and of F, (this is a strengthened version of the celebrated
conjecture of Shafarevich, stating that Gg_, = 13;,). If so, then the following
observation would answer Question 4.7 affirmatively.

ProposiTION 4.8. Let G be a profinite group with real core N, let D be a
closed subgroup of G that is generated by involutions, and let F be a closed
subgroup of G with F = F,. Suppose that G is the free profinite product
G=DxF. Then G/IN=F,.

Proof. Let F,, be the maximal pro-abelian quotient of F, and let 7: G =
D*F — F,, and 0: G — G/N be the natural projections. Since F is torsion-
free, [HR, Thm. A] or [Mel, Prop. 4.9] implies that any involution in G
is conjugate to an involution in D. Hence, since w(D) =1, also w(N) =
1, so w breaks through an epimorphism #: G/N — F,;,. We conclude that
rank(G/N) = rank(F,;) = 8,. On the other hand, 8(D) =1, so G/N=0(G) =
0(F), implying that rank(G/N) = R,.

Now let «: B— A be an epimorphism of finite groups, and let ¢: G/N— A
be a continuous epimorphism. By a result of Iwasawa [FJ, Cor. 24.2] it
suffices to find a continuous epimorphism 8: G/N — B such that ¢ = a+3 on
G/N (note that this latter property with A =1 implies that every finite group
is a quotient of G/N). Since F is free, we can find a continuous epimor-
morphism By: F — B such that ¢ o0 = a3 on F. The universal property of
G = D F yields an epimorphism 8: G — B extending 3, such that 3(D) = 1.
Then <8 =« on G. Since B(N) =1, 8 factors through an epimorphism
B: G/N— B with 8 = 0, implying ¢ = o= . O

5. Connections with Real Projectivity

Let & be a collection of closed subgroups of a pro-2 group G. We say that G
is a free pro-2 product of X if every continuous map Urco I' = H, where
H is a pro-2 group, that induces a homomorphism on each I'e & uniquely
extends to a continuous homomorphism G — H. Using the preceding results,
we now obtain the following version of (the difficult part of) [H4, Thm. A].

THEOREM 5.1. Let G be a virtually projective pro-2 group of real type, and
let N be the real core of G. Then G is a free pro-2 product of X U{F} fora
compact system X of representatives for the conjugacy classes of H(G) and
for a free pro-2 closed subgroup F of G satisfying F = G/N.

Proof. By Theorem 4.5, G/N is projective and hence a free pro-2 group.
Consequently, there exists a closed subgroup F of G that is mapped iso-
morphically onto G/N by the natural projection G — G/N [Ri, Prop. 3.1,
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p. 211]. Choose X as in the statement of the theorem (Remark 2.2(3)). In hght
of [El, Prop. 4.3], we need to prove that Res: H(G) —» H'(F) XHresr H\I)
is bijective and that Res: H%(G) - I1req HX(T') is injective (observe that
H*(F) =0).

The injectivity at H' follows from the fact that G = FN = (F,T?|T'eX,
o € G). To prove surjectivity at H', consider the commutative diagram

HYG/N) 5 HY(G) 2% HY(N)
N @
H'(F)
with exact upper row [Ri, Cor. 5.4, p. 177]. Let

yeH'(F) and (xp)rex€llrex HYT).

Take x € H'(G) such that Resy x = xp for all 'e X (Lemma 4.3). Also take
¥1€ HY(G/N) such that «(y,) = ¢ —Resg x. For ¢ = Infy;+x we have

Resp o = (Y1) +Respx = .
Furthermore, for each I'e O we have
Resr(Inf ;) = Resp((Resy°Inf)(y¥;)) =0,

hence Resp ¢ = xp. We conclude that Res: H(G) » H'(F) X I Ipeq H'(T) is
indeed surjective.
In light of Lemma 4.2, we have the commutative diagram

0 — HYG/N) 2% HY(G) LIEN HYG) —0
Rcle l Res
H'(N)YO B [T HY(T) P0res, 70 o HA(D).

By Corollary 3.4, its upper row is exact. The right lower horizontal arrow is
an isomorphism at each factor, and hence is injective. Since N =(I'’|T'e X,
o € (), the left lower horizontal arrow is also injective. We conclude from
this and from the exactness of the row in (2) that the right vertical arrow is
injective. O

We say that a pro-2 group G is a real-free pro-2 group if it is a free pro-2
product of a collection L U{F}, where X is a compact subset of D(G) and
F is a free pro-2 closed subgroup of G. Then D(G) ={I'?|T'e X, 6 € G} [E2,
Lemma 5.3], so D(G) is compact. Recall that a profinite group G is real pro-
Jective (cf. [HI]) if:

(1) for any epimorphism «: B— A of finite groups and for any contin-
uous homomorphism ¢: G — A there exists a continuous homomor-
phism 8: G — B such that ¢ = a8, provided that for each I'e D(G)
there exists a homomorphism Bp:I' > B such that ¢ = a8y on I';
and

(ii) D(G) is compact.
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Thus, a profinite group G is projective if and only if it is real projective and
torsion-free. Also, a pro-2 group is real projective if and only if it is a real-
free pro-2 group [HI, Prop. 4.2].

COROLLARY 5.2. A profinite group is virtually projective of real type if and
only if it is real projective.

Proof. Suppose that G is a virtually projective group of real type, and let
G, be any p-Sylow subgroup of G. By Remark 2.2(4), G, is virtually pro-
jective of real type. If p = 2, then G, is a real-free pro-2 group, by Theorem
5.1. If p is an odd prime then, by Remark 2.2(1) and [Ri, Prop. 2.1, p. 204],
G, is projective. Therefore, in both cases G, is real projective. Proposition
5.5 of [H1] now implies that G is real projective.

Conversely, if G is real projective then G is the absolute Galois group of
some field K of characteristic 0 [HJ, Thm. 10.2]. Then Ggy=) is projective,
by [HJ, Cor. 10.5] and by Artin-Schreier theory. We conclude from this and
from Proposition 2.3 that G is virtually projective of real type. (It is also
not difficult to give a purely group-theoretic proof of this fact, using the
methods of [HJ].) O

REMARK 5.3. (1) Suppose that G is virtually projective and that there exists
a 6 € H'(G) for which only conditions (i) and (ii) of Definition 2.1 are satis-
fied. By [H4, Prop. 2.2] and [HJ, Thm. 10.2], G = Gk for some field K of
characteristic 0. Proposition 2.3 implies that G has real type. Thus, one can
find 6 € H'(G) for which conditions (iii) and (iv) of Definition 2.1 also hold.
However, I do not know a direct proof of this.

(2) As observed by Pop, it is easy to derive Theorem 4.5 when the assump-
tion that G is virtually projective of real type is replaced by the assumption
that it is real projective. Indeed, let 7: G — G/N be the natural epimorphism
(N being the real core). Let a: B— A be an epimorphism of finite groups
and let ¢: G/N — A be a continuous homomorphism. By [Ri, Prop. 3.1, p.
21], we need to find a continuous homomorphism vy: G/N — B such that ¢ =
aey. Corollary 6.2 of [HJ] yields a finite group B’ such that H(B’) =0 and
for which there exists an epimorphism 6: B’ — B. As (¢ ° 7)(D(G)) = {1}, the
real projectivity assumption yields a continuous homomorphism 8: G — B’
such that po 7 = a°8+3. By the choice of B’, 3(D(G)) = {1}, whence B(N)=
1. Therefore 8 =fB-n for some continuous homomorphism 3: G/N— B’
We conclude that ¢ = o=, as desired.
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