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1. Introduction

In this paper, we shall study the extension problem of an analytic function
satisfying growth conditions on an analytic variety of codimension 1 to an
entire function on C” satisfying the same kind of growth conditions, where

V=r"10):={teC": f(¢) =0}

defined as the zero set of an entire function f in a given weighted space. If
each analytic function on V with growth conditions has such a global exten-
sion, V is then called an interpolating variety (defined below).

The above interpolation problem has been studied by many authors (see
e.g. [Be, De, Oh, Sk]) and is related to harmonic analysis (cf. [BT3]). An
open problem [ BT 2] is to find geometric interpolation conditions that depend
only on the geometry of varieties. When n =1, it has been shown that V is
an interpolating variety for 4, (resp. Ag) if and only if

N(¢L&V)=Ap(H)+B, (eV, (1.1)

for some A, B> 0 (resp. N([¢], & V) = of{p($)}, $ eV, §— ) (see [BL, BLV,
Sql), where N([¢],§ V) is the counting function of V and p is the given
weight (defined below). The advantage of this condition is that one can de-
termine whether V is an interpolating variety by estimating the geometric
quantity N(|¢[, & V'), which depends only on the “value distribution” of V.
Note that the counting function is one of the most important quantities in
studying value distribution of holomorphic mappings in one and several com-
plex variables (see e.g. [Gr]). It is a natural goal to consider whether it could
give geometric interpolation conditions in the higher-dimensional case. The
paper is concerned with this problem. We shall prove that (1.1) can still be
used to give a sufficient interpolation condition. However, a counterexam-
ple shows that (1.1) is no longer necessary for interpolation in the higher-
dimensional case.
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We arrange the paper as follows. In Section 2, we give some preliminaries
and state our main results. Theorem 2.4 uses the counting function of V to
give a sufficient interpolation condition, and Theorem 2.7 uses the counting
function of slices of V' by complex lines to give a sufficient interpolation
condition. We note that, given V, these conditions can be verified by a direct
calculation, since the counting functions depend only on the geometry of V.
We shall see from the proofs that the hypotheses of Theorem 2.4 imply the
well-known analytic sufficient condition on the lower bound on the gradient
of the defining function, and thus V is interpolating. The hypotheses of The-
orem 2.7 do not imply this gradient condition but instead have V interpolat-
ing uniformly along each slice and thus interpolating by passing from slices
to the variety. Theorem 2.9 and 2.10 give the corresponding results for the
space Ag. The proofs of the above results will be given in Section 3. Finally,
in Section 4 we shall present a class of interpolating varieties defined by ex-
ponential polynomials.

The authors would like to thank the referee for valuable suggestlons

2. Interpolating Varieties

First of all, let us fix the notation to be used throughout this paper: {=
({1 -+-» &) is @ point in C"; |¢|* = 27_|&;|? is the square of its modulus; and

— dd°|¢t = S dendf
= dalef = o 3 dtyn

is the standard Kéhler form on C”, where d =3+ and d° = (8 —d)/4i are
defined in the usual way. Denote V = f~1(0), where f is an entire function.
Using the form ¢, one defines the function

1 -1
V)= iy |, o

(counted with the multiplicity of f) and the counting function

N, V) =f0' ni, V’:”(O’V) di+n(0,V)logr,

where
B, :={teC": |§‘| <r}.

In the same way, one can define the functions n(r, {, V') and N(r, , V') with re-
spect to B(¢, r), the ball with the center at { and radius r. Note that n(0, ¢, V)
is the Lelong number of V at {. Clearly, when n =1, n(r, {, V') is the number
of points of V in B(¢, r).

For any {, £; denotes the line through { and the origin and N(r, {, VN £)
is the counting function corresponding to the function n(r, {, VN £;), which
denotes the number of points of VN L, in the ball B({, r) (counted with mul-
tiplicities).
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DEFINITION 2.1. A plurisubharmonic function p: C"— [0, ) is called a
weight (function) if it satisfies the following three conditions:

log(1+[¢]%) = O(p(£)); 2.1)
o< = p(©); (2.2
p(28) = O(p($)). 2.3

Here (2.2) means that p is radial.

DEerFINITION 2.2. Let A(V) be the ring of all analytic functions on V, where
WV is a subset of C”. Then

Ap(V) = {fe A(V):| f($)] = Aexp(Bp(¢)) for some A, B> 0}
endowed with the inductive limit topology and
Ap(V) = {fe A(V): Ve > 0, sup;c o[ f(§)] e P < o)

endowed with the topology of the projective limit. In the case when V = C”,
we simply write A, = A,(C") and A) = A)(C").

A basic example of such weight function is p({) =|{|, corresponding to the
space A, of all entire functions of order <1 and finite type as well as the
space AY of all entire functions of infraexponential type.

DEFINITION 2.3. Let V' be as before. Define the restriction map p: 4, -

Ap(V) by sending ge A, to g|y, the restriction of g to V. Then V is said to
be an interpolating variety for A, if the restriction map p is onto from 4,
to A,(V). Similarly, we say that V is an interpolating variety for A0 if the
I'e(S)tI‘lCtl()Il map po: Aj— Ap(V) sending fe A to f|y is onto from AY to
AS(V).

Clearly, that V' is an interpolating variety for A, (resp., A p) means that any
analytic functionin 4,(V') (resp., AO(V)) has an extension to an entire func-
tion in 4, (resp., A )

Now let us state our results, whose proofs will be given in the next section.
We denote Vf = (9f/3¢3, ..., f/3¢,), the gradient of f, and assume that p is
a weight.

THEOREM 2.4. Let V = f7'(0) for fe A,(C") withVf #0on V. If
N(¢|, & V)= ApR)+B, {eV, (2.4)

Jor some constants A, B > 0, then |Vf| = e exp(—Cp) on V for some e, C > (
and thus V is an interpolating variety for A,(C").

REMARK 2.5. We note that condition (2.4) alone, without assuming Vf # Q -
on V, does not imply the lower bound of the gradient of f in the conclusion
of the theorem. An easy example may be given by considering the function
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S() = f(51, £2) = g(§1), where g is an entire function in A,(C) whose zero
set V satisfies the condition (1.1) and some of whose zeros are of order > 1.
For example, let g(z) = (cosz)% Then, for f(§1, &) = g(f) = (cos &)?, it is
easy to check that (2.4) holds with p({) =|{|; however, Vf =0 on f~1(0).

REMARK 2.6. As pointed out earlier, condition (2.4) is not necessary for
the variety V to be interpolating in cases of dimension > 1. Let us look at the
following counterexample. Set

p) =[¢|: C*—>[0,00) and V=,7Y0),
where
sin {7 sinAf
$1
and A is a Liouville number (i.e., A = X(10)~"4, where {n,} is a sequence in-
creasing to infinity sufficiently fast). Then clearly Vf({) # 0 for { eV, and it

is known ([BD] or [BT2]) that V is an interpolating variety for 4,. How-
ever, one can verify that (2.4) does not hold.

fGn) =

THEOREM 2.7. Let V= f"1(0) for fe A,(C"). If
N, & VNLY = Ap(5)+B, ¢eV, (2.9)

Jfor some constants A, B > 0, then V is an interpolating variety for A,(C").

REMARK 2.8. In Theorem 2.7, we did not assume that Vf # 0 on V. We note
that (2.5) does not imply a lower bound of the gradient of f, and that the
gradient of f may vanish on V; this can be shown by using the same exam-
ple in Remark 2.5.

For the corresponding results in the space Ag, we have the following results.

THEOREM 2.9. Let V = f71(0) for fe AY(C") with Vf #0on V. If
N(¢|, & V) =olp(D), eV, {—ox, (2.6)
then V is an interpolating variety for AS(C").
THEOREM 2.10. Let V = f1(0) for fe AY(C™). If
N(¢[, VN L) =0o{p(§)), eV, (oo,
then V is an interpolating variety for Ag(C").

3. Proofs of the Results

In the sequel, we shall use A and B to denote positive constants that de-
pend only on the dimension » and may vary in value from one occurrence 10
the next.
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Proof of Theorem 2.4. First of all, for the sake of convenience, we can
assume that f(0) = 1 (otherwise we need only make an obvious modification
in the following proof).

For any ¢ = (&, ..., £9) e V, since Vf($,) # O the set

P = (e C": (Vf({o), §—$o> =0}
is an (n —1)-dimensional complex hyperplane through the point ¢, with nor-
mal vector Vf({,), where

af (o) oy, L 9f(50)
5%, (=) + -+ 3,

It is easy to see that there exists a point wye B(0,|{|/2) with |wy| = 3¢
such that

(Vf(§o)s E— o) = ) (En—5D)-

B(Wo, |§‘0|/8)ﬂP;0 = 0.

(In fact, the complex line through the origin and perpendicular to Py, will
intersect the sphere dB(0, 1| {o|) at two points. At least one of them can serve
as wy.) Now let C;, be the cone formed by all lines through {, and all points
w € B(wq, |$]/8). Then Cy N Py, = (o). This implies that, for {e C, — (o},

(VS (o), E—$o> # 0. (3.1)
It is readily seen that, for any we B(wy, |{o|/16), we have
B(W, If()l/l6) C B(Wo, |§—0|/8).
Therefore, for any such w and ¢ € B(w, |{,|/16), it holds from (3.1) that

(Vf($o), §—$o> # 0.
Let £, denote the line through the { and {,. Then, by the Jensen formula,

27 .
N(E— %ol 0, VN £15) = 3‘; fo log| f(§o+ (¢ —to)e™)| db

<‘7f (£ |§_:§Zl>

Clearly, the right-hand side of the above equality is a plurisubharmonic func-
tion for { € B(w,|{,]/16). By the mean value inequality for plurisubharmonic
functions we thus obtain that, for we B(wy, |{|/16),

N(|w—"%ol, S0, VN L10g,)
1
<
vol(B(w, [$0]/16)) Vg, |1,1/16)

1
1716)27 N(¢—¢ols S0, VN L )6 (£).
(I50l/16)" J:9(w.l§o|/16) (18=Sol. %o t) 97 (5)

Note that for any we B(wy, |{o|/16),

—log

N([§=%ols S0, VN L) " (5)

1
w=sol= 5ol (wol+ 520 = L
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and, for { € B(w,|{,]/16),

11
6= tol =[50l + 50 Kol = Ly

16
We deduce that

1 16 \2" ‘ (11 )
N6l o, VN Ee ) < [ -2 Nl =180, t0, VO Loe 678
(16“‘0' g.O g'(,) (lﬁ)l) fB(g—o'l]lg—ol/g) 8 'g.OI (0 $$o ¢~(g‘)

Let w = dd° log|¢|* be the pull-back to C"— {0} of the form ¢ on the projec-
tive space P"~! of lines through the origin in C”. It is then easy to check that

¢"(§—5o) = n|¢— [P P =G AdE =Sl AdC | — ol

We next apply Fubini’s theorem to the above integral by first integrating over
the ball B({y, 11/$5|/8) and then over the set of all the lines £ through ¢,
i.e., the space P71, In view of the fact that on the line

dIs=oP nd?IE 5o = 5= ls — oA — ) Ad (G~ Fo),

we deduce that

11
N(Elgbls (0: Vn"ew;'o)

16 \*" 11 _
= n(—') f N(—Ifol,g‘o, 1 48 £§-§-o)w" !
|$ol pr-l 8

x [ L g to2" A — o) Ad(— )
B(%o, 11]5,|/8) 4T

(16 V1, 11 n—1
—n(w) <§|§'o|) J‘Pn_]N(—t;‘lfolsi'OsVn*’crs“o)"’

= n(zz)z"N(%ls“ol, $os V).
Here we have used the known equality that
- N(r,VNLYw" 1 =N(r,V)
for r > 0, where the integral is taken over all the lines through the origin (see

e.g. [Gr]).
It follows from the hypothesis (2.4) that for any w e B(w,, |{o]/16),

N(—%lfol,fo, Vﬂoﬁw;o)SAp(s“oHB- (3.2)

Now consider the restriction g(z) = f(z(wo/|wy|)) of the function f to the
line

W
fu={r=peeec)
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Then g(0) = f(0) =1 and log|g(z)| < Ap($o) + B for |z]| < 2e|{o|. Recall the
following minimum modulus theorem (see [Le]): For a function F holomor-
phic in |z| < 2eR with F(0) =1,

IOgIF(Z)|> —Cn 10gmax|z|=2eR{IF(Z)“

inside |z] =< R but outside a union of circles the sum of whose radii < 49R (n
is a constant with 0 <y < 3e/2.) Applying this theorem to the function g,
we obtain that, in |z| < |{,| but outside a union of circles the sum of whose
radii < |{]/32,

log|g(z)| = —=Ap($o) —B. (3.3

Thus, there exists a o with |{]/4 < @ < 5]¢|/16 such that for |z| =g, (3.3)
holds. Take zo = g and set w* = zo(wy/|wy|). Then

log| f(w*)| = log|g(ze)| > —Ap(§o) — B. (3.4
Note that

|w* = wo| = zo—|wo| = z0~@<(16 4),;,_&1

This implies that w*e B(wy, |{o]/16) and thus that, from (3.2),
11
N(‘glfol,fo,Vnoew*;o)SAp(i'o)‘l'B- (3.5)

w*—{o
(o IW*—(ol).

Sw*)

Next, let

G(z) =
Then
Jw*)
fw*y
Applying again the above minimum modulus theorem to G(z) in
|z=|w*~{ol| = de(|w*— o)),

we deduce that, inside |z—|w*—{o|| = 2|w*—{| but outside a union of cir-
cles the sum of whose radii < |w*—¢{,|/84,

log|G(z)| > —Ap(So) — B.
Therefore there exists a @* with |[w*—{,|/42 < o* <|w*—{p|/21 such that
min|,- ,+{log|G(z)[} > —Ap(&) — B. (3.6)

Now by the Jensen formula we have

G(lw*—&)) =

* 1 2 ] ’
N(@"s§0, VN ) = 5= f log|G(o*e™)| d6 —1og|G(0)).
0

It is immediate to check that
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—§ 5
< P80 < o = o (ol = 52
and
w
<Vf(§'0), = _sf;’l)
G'(0) = .
© S(w*)
It thus follows, in virtue of (3.4), (3.5), and (3.6), that
log <Vf(§'o), e _?I) = —Ap({o)—B.
—$o
However,
<Vf(§'o), §-0> <| f(fo)l =|Vf($o)|.
|w* =l | l
Hence we have proved that, for any ¢y€V,
log|Vf({o)| = —Ap($o) — B. (3.7
The proof is then concluded by the result in [BT2] that V is an interpolating
variety if (3.7) holds on V. O

From the proof of Theorem 2.4, we see that if (2.4) holds only for { € V with
sufficiently large modulus, then (3.7) holds for { € V' with sufficiently large
modulus and thus holds for all { € V because, for any R > 0, in the intersec-
tion VN B(0, R) (which is a compact subset of C") the function log|Vf({)|is
continuous and thus attains its minimum modulus. This shows that Theo-
rem 2.4 is still valid in this case.

Proof of Theorem 2.7. There is no loss of generality in assuming that f(0) =
1. For any fixed { eV, let

=705 and  g(z) = f(E+z87), (3.8)

where z € C. Then by the assumption there exists a kK € N such that g(‘(f,)’ 0
for j < k and g‘¥)(0) # 0. Also, g(—|¢|) =f(0) = 1. Using the minimum mod-
ulus theorem for g in

|z+[¢] = 4el¢],

we deduce that inside |z+|¢]| < 2|¢| but outside a union of circles the sum of
whose radii < (|,

log|g(z)[ > —Ap($) - B.
Therefore there exists a n with 0 < 5 <|{| such that
min,-,{|g(z)|} > —-Ap({) —B. (3.9)
Now, by the Jensen formula, :

g%(0)
k! ’

1 2x ;
N, & VN ey === [ loglgtne®)|do —log
0
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where £; denotes the line through the origin and the point {. It follows from
(2.5) and (3.9) that

g%“(0)
k!

where A4, B > 0 are two constants independent of {. Now let
dy = min{1, dist({, V;\[{D;

G(z) = £2.
Z

log

>—Ap(§)—B, (3.10)

Then on |z| =1 and thus |z| < 1, by the maximum modulus theorem we have

G(2)] < Aexp(Bp($)).- (3.11)
Therefore, the function
G(z)—G(0)
2Aexp(Bp({))

satisfies that G;(0) = 0 and |G,(z)| < 1in |z| < 1. By the Schwarz lemma (see
e.g. [BGl)), |G\(2)| =|z| in |z] < 1. In particular, letting a # 0 be any zero
of g in |z| < 1, by (3.10) we then have

G(z):=

G(0)
al=|G(a)| =
1= Gl '2Aexp(3p(§))
(k)
g (0)/k!
= = ¢ exp(—c p({))
l2Aexp(Bp(s“)) rexp(=ap(§
for some positive constants ¢;, ¢; (¢; < 1) independent of {. This shows that
d; = e, exp(—c, p({)) :=d;. (3.12)

Applying the Carathéodory inequality to G(z) (see e.g. [Le, p. 19]), we have

thatin |z| < d;/2,
_2Xd/2 ( [ })
————log| max

o 'G(Z) G(2)
G(0) d;—d;/Z |z)=a,\] G(0)

and so, by (3.10), (3.11), and the fact that G(0) = g*(0)/k!,
|G(2)] = €; exp(—c, p(£)),

where ¢,, ¢, are positive numbers independent of {. For |z| = d{/2, in view
of (3.8) and (3.12), we thus have that

| f(§+28*] =|8(2)]| = |2¥G(2)| = e exp(—cp({)) (3.13)

for two constants €, ¢ > 0.
Now let

Up= (e £, |E—¢| = d}f/2)
S(f, £56,¢) = (e L1 | f(8)| < eexp(—cp(§))},
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and let W; be the component of S(f, £;; €, ¢) containing {. Then obviously
(3.13) holds for £ € U, and thus

W, C U;. (3.14)

To show that V is interpolating, we take any analytic function A on V (we
need to prove that it has a global extension to the space A,). Then there exist
two constants C and D such that

A(§) = Cexp(Dp(£)) (3.15)
for all £ e C”. For the line L := £, through the origin and ¢{, we define

A (E) = AE) if (eW,TeVNL;
P71 0 0 if Ee S, Lie, NUsevns Ws.

By (3.14), the function A; is well-defined and analytic on S(f, L; ¢, ¢). Clear-
ly, Ap satigﬁes (3.15) on S(, {,; €, ¢). This implies that there exists an analytic
function A; on L such that A; = A on the intersection VN L and

|AL(§)| = Aexp(Bp(%)), tel,

for constants A, B > 0 independent of the choices of the line L by the semi-
local-to-global extension theorem and its proof in [BT1].

Next, let £ be the family of all the lines through the origin. Then £ is
almost analytic parallel and f is slowly decreasing in the sense of Berenstein
and Taylor ([BT3, Thm. 7.1]) that there exist constants ¢;, C;, K;, K, > 0 such
that, for each L € £: the set

O=0(L,e,C)) ={EeL:|f(§)| < erexp(—Cip(£))}

has relatively compact components; and if £, w are in the same component
of O then p(¢) = K, p(w)+ K,. We can now conclude our proof by recalling
the following theorem in [BT3, Thm. 5.6]: Let F be slowly decreasing with
respect to an analytic almost parallel family of lines £, and let w be an ana-
lytic function on V' = Z(F). Assume that for some constants 4, B> 0 and
for every line L € £, there exists a function &;, analytic on L, such that

|@,(8)| < Aexp(Bp(£)), EelL,

and the restriction of &; to VN L is equal to the restriction of w to VNL.
Then there existsaAe 4 psuch that & restricted to V coincides with w. Apply-
ing this result to our case with F = f and w = A, we see that A has a global
extension to the space A, and thus V is an interpolating variety.

The proof is thus complete. O

Proof of Theorem 2.9. By Riesz’s convexity theorem ([BGl, 4.4.27]), (2.2)
and the subharmonicity of p(z) imply that p(e”) is convex and p(r) is in-
creasing.

Also, by [BMT, 1.7 & 1.8], for any continuous and increasing function 3(r):
if B(r) satisfies (2.1) and (2.3) and B(e”) is convex then, for any function g:
[0, o) — [0, co) satisfying g(r) = o(B(r)) as r — o, there exists an increasing
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function g(r): [0, ) — {0, ) such that g(r) also satisfies (2.1) and (2.3) and
g(e") is convex, and moreover g(r) = o(q(r)), g(r) = o(B(r)) as r - . By
(2.6), there exists a sequence {C,,} (m e N) of positive numbers such that
{eVand {— o,

1
N(|¢], & V) < min [—n;p(r)+0m} =o{p(D)}.

meN

Therefore it follows from the above result with 8 = p that

N(¢, & V) = olg(s]), (3.16)

where g(r): [0, ) — [0, ) is a function that satisfies (2.1) and (2.3). More-
over, g(e”) is convex and g(r) = o(p(r)) as r — oo, By the fact that hAou is
subharmonic if 4 is convex increasing and « is subharmonic [BGl, 4.4.18],
we deduce that g(|¢]) = g(e™¢l) is subharmonic. Therefore, it turns out that
q is also a weight.

Now for any function ¢, analytic on V and satisfying that for any ¢ > 0
there exists an A, > 0 such that

¥ ()] = A explep(£)),

there exists a sequence {D,,} of positive numbers such that

1
V()| = eXp(—P(i')+Dm)-
m

Therefore, by the same argument as before, we can find a weight g, with
q1(r) = ol p(r)} as r - such that

¥ ()] < exp(g($)) < exp(g($) +q()).

Since (3.16) implies that V is an interpolating variety for 4, , (by Theorem
2.4), there exists a function ¥ € 4,4, C Ag such that ¥ |,, = . This shows
that V is an interpolating variety for Ag by Definition 2.3. The proof is thus
complete. O

Proof of Theorem 2.10. The proof is similar to the one for Theorem 2.9.
O

4. Interpolating Varieties Defined by
Exponential Polynomials

In this section we present a class of interpolating varieties defined by expo-
nential polynomials. An exponential polynomial is an entire function f in
C" of the form

N
=% pj(§)ev, (4.1)
=

where p; are polynomials in C”, called the coefficients of f; ;e C" are called
the frequencies of f; and ;- { is the bilinear product of «; and {. We assume
nonzero p; and that the «; are distinct (cf. [BY]).
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In the 1-dimensional case, it is known (see [BG2] and [BT1]) that V=
S7H0) = [z4} (ke N) is an interpolating variety for A,, p(z) =|z|, if the
zeros of f are well-separated in the sense that

|zj—zx| = € exp(—C1p(24)), Jj#Kk,

for two constants ¢; > 0 and C; > 0. This is equivalent to saying that there
exist € > 0 and C > 0 such that, for ¢, = e exp(—Cp(2;)),

Neg, 2, S 7H(0)) < Ap(zy) +B

for some constants A, B > (0. We will see that this result is also true in the
higher-dimensional case. That is, we have the following.

PROPOSITION 4.1. Let V = f~1(0) with f as given in (4.1) and Vf({) #0
on V. Then V is an interpolating variety for A,, where p({) =|¢|, if

N(E(§), & V)< Al¢|+B, (eV, (4.2)

Jor some A, B> 0, where e({) = e exp(—Cp({)) and e, C are two fixed posi-
tive constants.

Proof. Let {, be a point in ¥ and let
L=[{=H+azzeC)

be a line through {,, where @ € C” is a unit vector. Then, for almost all such
lines £ except a lower-dimension set (i.e., a subset of the sphere 82”1 of
lower dimension), we have that

LNVNB(, 1)

for r > 0 has finitely many points. Consider

N
fle =3 pj(§o+az)es oD,
J=1

the restriction of f to the line £, and write
o; = (aili seey ar{);
a=(ay,...,a,);

o= &)
Then

aj-(fo+az) = (afar+ -+ ana)z+ (@l f’ + - +anty).  (4.3)
Recall [BG2] that for any exponential polynomial

N
F(z) =3 gj(z)e??

J=1
in C and z5e€ C,

4Q
n(r, 2o, Z(F)) < 2d°F+ —L r,
T
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where d°F = m;+ --- + my + N—1 with m; being the degree of g; and
Qr = max, < j<n{|B}|: B; the frequencies of F}.

Applying this result to the function f|¢, we obtain

4Q
n(r, 0, VN L) < 2d%f | g+ —L= 1,
T
where
d0f|£ s=m+--+ny+N-—1:= dof
with n; being the degree of p;({), and that, by (4.3),
Q/), < max < j<nllafa + - +aja,))
< max<j=ni|af|+ - +|ai]} == Q.
Therefore, for r = 0,
4
n(r, $o, VN L) < 2d°%+—Lr.
T

Notice that

n(r o, V) =n(0,80, V) = [ n(r 0, VN 8",

where the form w = dd®log|¢|, and that fP,,_lw""l =1 (see e.g. [Gr]). We
therefore have

n(r, g-O, V)—n(O’ g.Os V) = 2d0f+4—9i'r’
T
and so, by (4.2), that
N(|¢ols $0s V)

[$ol —
=N(E(§'0),§'0, V)+ n(rs g-(): V) n(O, §'O9 V)

r

dr+n(0, £, V') log| &
€($o)

49
< Alo|+ B+ 2 (16— e (o)) + 20 Tog 2L 1 10g]co]
T f(fo)

= A|§0|+B.

It follows from Theorem 2.4 that V is an interpolating variety for 4, p({) =
|51 O

An easy example of a variety defined by an exponential function satisfying
condition (4.2) is a union of parallel planes ®; given by V = f~1(0) = U; @
with

dist(®;, @) = e exp(—Cp({)), J#Kk,

for some ¢, C > 0. Of course, this example can also be reduced to the single-
variable case. The corresponding result for arbitrary functions of exponential
type is false [BT1].
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To conclude this section we note that, by using the same method, it can be
shown that Proposition 4.1 also holds for the so-called pseudo-polynomials

N .
f= z} j}'(g‘ls seey g‘n—l)fr{s (4-4)
Jj=

with
N

J
=18 = 3 pixes
=1
exponential polynomials, ¢’ = (¢, ..., {,—1). That is, we have our next result.

PROPOSITION 4.2. Let V = f~1(0), with f given as in (4.4) and Vf({) #0
on V. Then V is an interpolating variety for A,, where p({) =|¢|, if

N(e(§), 5 V)< Alf|+B, {eV,

Jor some A, B > 0, where ¢({) = e exp(—Cp({)) with e, C two positive con-
stants.

Proof. Just as in the proof of Proposition 4.1, let {; be a point in ¥ and
L={{=¢+az:zeC}

be a line through ¢{,, where a = (a’, a,) € C” is a unit vector. Consider the
restriction f | ¢ of the function

NN, -
f=32 3 (picHes )y 4.5)
i

to the line £, which is clearly an exponential polynomial in one variablg,
and write

Qj g = (alj’k, ceey a,{’.’fl);
a=(ay,...,a,);
So=(s s 0
Then
o - (fo+az) = (af “a+ -+ + oK@,z + (e O+ -+ o b0, (4.6)

where ({+ az)’ denotes the first n—1 coordinates of ({y+ az). We then have
that

n(r, &, VN L) < 2d°fl£+%ﬂf|£r,

where d°f | ¢ and Q). are defined similarly as in the proof of Proposition
4.1. By (4.5), it is easy to check that

N N, N
d’f|g =< Zl kEl(n,-,k+j)+§ N;—1:=d°%
}= —3

with n; , being the degree of p; 4, and that by (4.6)
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bk Sk
Q). = max;gj<ymax i<y bl @+ +aylia, |}
» k ik 1y .
< max; <<y MaX <x =, {|of |+ + a2y} == Q.

Therefore, for r = 0,
49
n(r, o, VN L) <2d°f+—Lr.
™

Next, by the exact same reasoning as in the proof of Proposition 4.1, we
deduce that

N([¢ol, $0, V) = A[$o] + B.

It then follows from Theorem 2.4 that V is an interpolating variety for A,

p) =t U

We note that similar results for exponential polynomials and pseudo-poly-
nomials corresponding to Theorems 2.7, 2.9, and 2.10 also hold. We omit
the details here.
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