On the Equivalence of
Holomorphic and Plurisubharmonic
Phragmén-Lindel6f Principles

UwWE FRANKEN

There are several papers in recent years which studied partial differential
operators P(D) on classes of infinitely differentiable functions on convex open
sets in R™ or C" in terms of Phragmén-Lindel6f type estimates for pluri-
subharmonic functions on algebraic varieties. In the early work of Hor-
mander [7] it is shown that the surjectivity of P(D) on the space of all real
analytic functions on a convex open set in R” is equivalent to Phragmén-
Lindel6f conditions on the tangent cone at infinity of the variety V(P) :=
{ze CN|P(z) = 0}. Later Zampieri [13], Braun, Meise, and Vogt [3; 4], and
Braun [1] made similar investigations for classes of ultradifferentiable func-
tions. Kaneko [8] proved that Hartogs problems for partial differential op-
erators P(D) can be characterized by Phragmén-Lindel6f conditions on
V(P). To treat the problem of existence of continuous linear right inverses
for partial differential operators, Meise, Taylor, and Vogt [9], Momm [11],
and Palamodov [12] also used Phragmén-Lindel6f conditions. In most of
the aforementioned cases one first derives the Phragmén-Lindel6f condi-
tions for all plurisubharmonic functions # = log| f|, where f is a holomor-
phic function on V(P). Meise, Taylor, and Vogt {10] proved a general result
which shows that the conditions for all plurisubharmonic functions of type
u = log| f|, where f is a holomorphic function on V(2P), hold if and only if
the conditions hold for all plurisubharmonic functions on V(P). The idea is
to write the plurisubharmonic function u as an upper envelope of functions
log| f|- More precisely, they have shown that for each 0 < 6 < 1 and for each
plurisubharmonic function u on the variety V(P) with u(z) <|z|, and for
most of the regular points { € V,(P), there exists a holomorphic function
S on V(P) such that

log| f(z)| = sup{u(¥)||z—y| <=1} + Clog(2+|z|), zeV(P)
and

log| f($)| = Ou($) — Clog(2+(¢)),
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where C is independent of u. In the present paper we show that § =1 can be
achieved if one modifies the proof of Meise, Taylor, and Vogt [10] appropri-
ately. The motivation for doing this comes from the article by Franken and
Meise [5], in which holomorphic Phragmén-Lindel6f conditions APL(K, Q)
and APL/(K, Q) (see Definition 9 below) are used to characterize when zero-
solutions of P(D) on a given compact and convex set K C R" can be ex-
tended as zero-solutions to a larger compact and convex set Q C R”. The es-
sential difference with [10] is that we use a modified version of their Lemma
3.4, given as Lemma 2 of the present paper. In order to prove our main re-
sult, applying Lemma 2 we use the growth estimates of the function « at one
more place in our proof. At the end of the paper we show the equivalence of
the holomorphic conditions APL(X, Q) and APL'(K, Q) to the plurisubhar-
monic conditions PL(K, Q) and PL'(X, Q) (see Theorem 10).

I wish to thank Professor B. A. Taylor for helpful discussions on the topic
of this paper.

1. LeMMA. Let h be harmonic in D := {ze C||z| <1} and continuous on
D. Then

|h(z1) — h(22)| = 256(max g |A(E))|z1— 22|, |z1]s|2z2| =172,

Proof. We use Poisson’s integral formula
2
hz) = o . Il;_'—zllz—h@)da(s), 2] <1.
For |zy],|z2] = 1/2 and |§| =1,
1-|z*  1-]z)
|E—z1| |2,
- I(1"|Z1|2)|«‘E—Zz|2'—(1—'|Zz|2)|f“le2
B 1§ —z1|*|& =22
< 16|(1— |z )€ — 2P — 1=z H)|E — 21|
+(1—|zP)E -z - A=z E -z
< 16((1—|2P)||& = 22— |& — 21| +[E — 2|l —]22*))
< 256z, — 23] '

This proves Lemma 1. O

2. LEMMA. Let u be subharmonic on a neighborhood of z € C, where |z| <
sand 0 < s < 1. Suppose also that (1/21r)fmss Au($)dX(¢) < 1. Then there
exists a number C > 0, independent of u and s, such that forall 0 <r=<1/2,

1

m t|<sr e—u(f) d)\(g') = Cexp[Cr(mi)glu(g)ojle_u(o)‘

Proof. 1t is no loss of generality to take s = 1. Then we can write u = h+ p,
where 4 is harmonic in |z] < 1 and equal to « on |z| =1; p is the function
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-
p) = log l du(z), |§|<]1,
2 jz|<1i 1 - f I |
where du(z) = Au(z) dA(z). With Lemma 1 we get
1 —Uu
— e () d)\(;')
[Sl=r
— __1__. e—h(0)+h(0)—h(§')—p(§') dA({)
I$l=r
< _1_2 e P +PO) g (¢) exp [Ser( ISElllpllu(E)l)]e‘u(O).
[t|=r =

Therefore it suffices to show that there exists a number C = 1 such that, for

all0O<r=<1/2,
_1_5 e—p(§)+P(0) d)\(f') <C. (1)
e Jig|=r

To show this claim (1) set @ := (1/27) [|;<1 du(z) < 1. We get the estimate:

L ermoams [ [ e 2 g
T s lg1=r “lzl<tl $7
|z|° 1-{z ]du(z)
- "ax
f]z[<1[7fr frl<r {2 ©

By the proof of Meise, Taylor, and Vogt [10, 3.4], the following two esti-
mates hold:

Izl"f 1-{z|° |z|" 2V3
dA 2“+1 2|z|'~92r
el W s AR e
20+4
=3 v3 for |z|=2r;
™
a 1__" a 2a+1 2r)9
wre Jig=rl $—2 —a wr
22a+132—a
=:——?£::;—— f0r|Z|§;2r.

Thus we have established the claim (1). If we choose C = 512, the proof is
complete. |

3. PrOPOSITION. There exist constants A, C > 0, depending only on the di-
mension n, such that for all plurisubharmonic functions  on | —z| < & with

1

I vree dX(§) =< A,
1B(z,0)] B(Z,a)tﬁ(s“) ) =vy()+

one also has
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1
|B(2z,r8/2)| Jpz. ror2)

Sforall0<r=<1/2.

e"z‘/’(“d/\(g')sCexp[Cr( sup |1Iz(£)|>]e"2‘“2)
|£—z|=6/2

Proof. The proof of Proposition 3 is word-for-word the same as the proof
of Meise, Taylor, and Vogt [10, 3.3], except that in the last inequality one
uses Lemma 2. O

Let Q be an open subset of C» and let y be a plurisubharmonic function in €.
For ze C" and € > 0 we set B(z,€):= (£ e CV||z—£| < €}. Then |B(z,¢)| =
7"e2"n!. If zo€ Q and 0 < e < dist(zg, CV\Q), then let

1 -1/2

A(zg,€) = e{————— e V() d)\(;)} .
|B(20, €)| JB(z,,¢)

In the proof of the main result we use the following proposition, which can

be proved using the standard arguments in Héormander [6, Chap. 4].

4, ProposiTION. Let @ C CN be pseudoconvex. Then there exists a constant
C > 0 such that, for each zy€ 2 and 0 < e < min(dist(zo, CV\Q), 3(1+|z0|)),
there exists a function fe A(Q) with

(i) S(z0) = A(2g, €).

Moreover, f satisfies the following estimates:

. | f(2)|2e~2¥@ 5
(ii) J;) EEDEE dxz)=C
and
(iii) | /()] = Ce (1 +|z])*"* expl¥(z, )],

where J(z, €) := max{y(z+{) ||¢| < €}.
We recall some notation from Meise, Taylor, and Vogt [10].

S. SpPeEcIAL COORDINATES. In order to formulate the main result of this
paper, we introduce special coordinates in C”. In the sequel we denote by V
a pure k-dimensional algebraic variety in CV. Let Py, ..., P, be a set of gen-
erators of the ideal I(V) in C[z, ..., Z5] associated with the variety V. We
define |P(z)|*> = |Py(z)|*+ - - +|Py(2)|%, z€ C™. After a real linear change of
coordinates, we can assume that, for the coordinates z = (s, w) e CN ¥ x C#,
the following holds:

Vciz=(s,w)eC"||s|= C1+|w|)}

for some constant C > 0. Moreover, there exists a polynomial D(w) in the w
coordinate so that the projection map onto the w coordinate is an m-sheeted
covering over the set {we C* | D(w) # 0}; that is, we have
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V=1{(sj(w),w)|1=j=m]}.

The functions s;(w) are all distinct when D(w) # 0. After a further real lin-
ear change of coordinates we can assume that, for we C* with D(w) # 0,
the polynomial D has the form
D(w) = 1];((1r1(sj(W)) — w1 (s (W),
J#
where 7, denotes the first coordinate function of #. For 6, C > 0 we set
So = So(8, C) == {z = (s5,w) e CV || D(w)| < 6(1+|w])~}. )
Moreover, for A, B; > 0 we define the set
Q:=0(A4, B) = (2= (5, W) €CN | g4, 5(2) <0, D(W) £0}, (3

where the function ¢4 g is defined by

_ 1
®a,, B(2) = 10g|P(Z)|+A1{IOg(—‘—‘_I D)

6. DEFINITION. Let V be an analytic variety. A function u: V> RU [—oo} is
called plurisubharmonic if u is plurisubharmonic in the regular points V.,
of V and locally bounded on V. In order that # be upper semicontinuous on
the singular points Vg, of ¥, we set

u($) = limsup u(z), € V-

V|-ggSZ"§'
From Meise, Taylor, and Vogt [10] we recall the following proposition.

7. PROPOSITION. There exist constants 6, C, Ay, By > 0 such that the fol-
lowing six conditions are satisfied when Sy and Q2 are defined as in (2) and (3).

(i) Q is pseudoconvex and @ DV N{z = (s,w) e CN | D(w) # 0}.

(i1) For each z = (s,w) in Q there exists a unique number jeN with 1 <
J =< m such that |s—s;(w)| < ming ;|5 —sg(w)]. ‘

(iii) The map p: @ — QNOV given by p(s, w) = (s;(w),w), wherej is as in (ii),
is a holomorphic retract of Q into V.

(iv) If u is plurisubharmonic on V, then forallze VN S,

u(z) < max{u()| eV \S,, |t—z|=1}.
(v) There are numbers €, C; > 0 such that for all z= (s;(w),w)eV\S,
and €(z) = e;(1+|w|)~C:
(@) z(1) =(s;(w+7),w+7),w+71)eQ for all |7| < 8e(2);
(b) B(z(7),8¢(z)) C 2 for all |7| < 8¢(z); and
() |z(r)—z| <1 for all |7| < 8¢(2).
(vi) There exist constants C,, Cy > 0 such that:
(@) o(W)=C,llog|D(w)|+ C;log(2+|w|)} =0 whenever zeV\S,, (s,w)€
B(z(7) e(2)), and z(7) is as in part (v); and
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(b) if fe A(Q) and [qo|f|?e 2 dX < o for some function u, locally
bounded on Q, then there exists an entire function F on C" such that
Fly=fand F=0o0nVN{zeCN|D(w)=0}.

We introduce some more notation. For a point z = (s;(w), w) € ¥\ S, we de-
fine, with ¢(z) as in (v) of Proposition 7,

B = B(0, e(z)) = {re C¥||7| < e(2)}. 4)

Now we can formulate the main result of this paper.

8. THEOREM. There exists a constant C4 > 0, depending only on V and the
choices of the constants in Proposition 7, such that for each plurisubhar-
monic function on the regular points V.., of V satisfying |u(z)| < L|z|, and
Jor all z = (s;(w),w) e V\Sy, there exists a subset E of B, where B is defined
as in (4), with

(i) |E| = |B|max(1, L)(1+(z])7%;

furthermore, for all 7€ B\E there exists an entire function f, on C" such
that

(ii) log|f;(z())| = u(z(1)) — C4log(2+|z(7)|) with z(7) as in part (v) of
Proposition 7, and

(iii) log|f,($)| = max{u(¢’)|$'eV, | —¢'| < 13+ Cylog(2+|¢|) Sfor all
teV.

Proof. Let 0< 8, C, Ay, B;, C,, C3,2 C CV with p as in Proposition 7. We
define, for zeQ,

Y(s,w) = uep(s, w) + C,{log| D(w)|+ C; log(2 +|w|)}.

Now let z = (s;(w), w) e ¥\ S, be arbitrarily given. Set r:=3(2+|z|)~". We
use a number 0 < é < ¢(z)/4 which will be fixed at the end of the proof. For
7€ B, we denote by f,e€ A(Q) the holomorphic function given in Proposi-
tion 4 which satisfies Proposition 4(i) at z(7). Because of Propositions 4(ii)
and 7(vi)(b), the function f, extends to a holomorphic function on C¥. Let
A > 0 be the number in Proposition 3. Let E denote the set of all points (=
z(7) in B not satisfying the estimate

1
= dA =< + A.
46 = T |, VOO =4

Let C’> 0 be the constant in Proposition 3. By Propositions 3 and 4(i),
log| f;(z())|

= logA(z('r), ’:2—6>

zlog@)—%logw')—";r(l15 S(u)f)_alzhb(if)l)+¢(z('r))- ©)
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In order to estimate the supremum of ||, let £ =(s;, w;) € CNwith |£ —z(1)|=
6/2 and let 7, = w;—w. Then

|7e| < |7|+|7—7:| S (2)+6/2 < e(2)(1+1/8) = 2e(2).

There exists a number E; = 1 such that, with Propositions 7(v)(c) and 7(vi)(a),
the following holds:

[¥(§)| < |uop(£)|+ C,|{log| D(w)|+ C; log(2+|w|)}]
= |u(z(r))|+ E;log(2 +|we|) < L|z(7)| + E| z(7;) |+ E;
< (L+E)(|z|+|z—z2(r)|+1) = (L+E)(|z]|+2).

This implies with the definition of r that

L+E
reosup  [Y(E)|=——. (6)
|E—z(r)|=8/2

By (5) and (6) there exists a constant C” > 0, independent of u and z, such
that

log| f-(z(T)| = ¥(z(7)) + 10g< c”. Q)

L)_
1+|z(7)|
From the proof of Meise, Taylor, and Vogt [10, 5.1], we get

|E| < max(1, L)|B|(1+]z])~
whenever
_ €(z)
T C"(1+]z])3

for a sufficiently large number C” > 0. This implies (i). With the choice of §
we obtain from (7) that (ii) holds with a sufficiently large number C4 > 0. By
Propositions 4 and 7(iv) and the definition of Sy we get (iii). This completes
the proof of Theorem 8. O

0

Next we apply Theorem 8 to certain kinds of Phragmén-Lindel6f conditions.

9. DerINITION. Let O, K C R™ be compact and convex sets with K C Q.

Moreover, let V' C C" be an algebraic variety. The support function Hy of
the set K is defined by

Hg(y) :=sup({x,y), yeRN
xekK
(a) We say that V satisfies the Phragmén-Lindelof condition PL(K, Q) if
for each k = 1 there exist / = 1 and C > 0 such that, for all plurisubharmonic
functions # on V, the conditions (1) and (2) imply (3), where:

(1) u(z) < Hx(Im(z))+O(log(1+]z))), z€V;
(2) u(z) = Hp(Im(z))+klog(1+|z|), zeV; and
(3) u(z) < Hg(Im(z))+/log(1+|z|)+C, zeV.
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The algebraic variety V satisfies APL(K, Q) if the above implications hold
for all plurisubharmonic functions u =log|f|, where f is a holomorphic
function on V.

(b) We say that the variety satisfies PL'(X, Q) if for each / = 1 there exist
k =1 and C > 0 such that, for each plurisubharmonic function # on V, the
conditions (1) and (2’) imply (3’), where:

(1") u(z) = Hg(Im(z))—jlog(1+|z|)+O(1), zeV, for all j = 1;

(2) u(z) = Hg(Im(z)) —k log(1+|z|), z€V; and

(3") u(z) < Hy(Im(z))—1!log(1+|z|)+C, z€V.
V satisfies APL/(K, Q) if the above implications hold for all plurisubhar-
monic functions # = log| f|, where f is holomorphic on V.

10. THEOREM. Let V be a pure k-dimensional algebraic variety in CV and
let K C Q CRY, be compact sets with nonempty interior. Then we have

(a) PL(XK, Q) is equivalent to APL(K, Q) and
(b) PL(K, Q) is equivalent to APL'(K, Q).

Proof. The idea of the proof of Theorem 10 is the same as in [10, 2.3]. To
show (a), assume that APL(X, Q) holds. Moreover, let ¥ be a plurisubhar-
monic function on V satisfying Definitions 9(1) and (2). Because of the esti-
mate in Proposition 7(iv), we need only prove the estimate of Definition 9(3)
at points z = (s;(w),w) e ¥\ S,. Let €(z), B and z(7) be defined as above. By
the subaveraging property for plurisubharmonic functions,

u(z) < l%l fB 1w(z(r)) dA(7).

We write the integral as a sum of the parts in E and in B\ E; E is the excep-
tional set in Theorem 8 satisfying | E| < |B|max(1, L)(1+]z|)~2 Since u sat-
isfies the condition of Definition 9(2), we can choose a number L =1 with
Hy(Im(v)) + k log(1+|v|) = L|v| for ve C". Without loss of generality we
may assume that ¥ = 0. Then

u(z) < I—-I—L(1+|z|)+sup{u(z(1'))|TEB\E}. (8)

Because of the estimate for |E|, the first term of the right-hand side of (8)
does not exceed L2 For re B\E, let J; be the function in Theorem 8. The
estimate in Theorem 8(iii) implies that log| f,| satisfies Definitions 9(1) and
(2) with some larger constant £’ = 1. Consequently there exist constants /’ = 1
and C’> 0 such that Definition 9(3) holds for log|f,|, where /” and C’ are
independent of 7 and u. By Theorem 8(ii) there exist / =1 and C” > 0 such
that

u(z(7)) < Hx(Im(z(7))) +/log(1 +|z(7)]) +C”, 7€ B\E. 9)

From Propositions 7(v)(c) and 7(iv) and inequalities (8) and (9), we get a
constant C > 0 such that
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u(z) < Hg(Im(z)) +/log(1+|z|)+ C, zeV.

For (b), let / = 1 be arbitrarily given. Let C4 > 0 as in Theorem 8 and set
I'=1+4+C,. Choose constants k’=1 and C’> 0 such that Definitions 9(1")
and (2’) imply (3’) with the constant /’ for all plurisubharmonic functions
u =log| f|, where f is a holomorphic function on V. There exists ¢ > 0 with
B®(0,¢):={ze C"||zj|<e, 1= j=< N} CK. It is well known that there ex-
ists a subharmonic function v and a number D =1 such that

—D+[z] = v(z) < ¢|Im(z)|-[z], zeC

(see Braun and Meise [2, Prop. 5]). Obviously there exists a number D; =1
such that

N
v)(2) == Y v(z)) < Hg(Im(2)) —k log(1+|z|) + Dy, zeCN.
j=1

Now let u be a plurisubharmonic function on V satisfying Definitions 9(1’)
and (2') with the constant & := k'+1. We let

U(z) == max(u(z), v1(z) —Dy), zeV.

By the definition of U there exists a constant L = 1, independent of «, such
that

|U(z)| < L|z|, zeCN.

Because of Proposition 7(iv), we need only prove the estimate of Definition
9(3’) at points z = (s;(w),w) € V\§;. Choose B and z(7) as above. As in
part (a), we get

u(z) < L*+sup{u(z(r)) | 7€ B\E}. (10)

In order to evaluate the second term of the right-hand side of (10), we again
use Theorem 8. For each 7€ B\E, let f, be the holomorphic function in
Theorem 8 for the plurisubharmonic function U. There exists a constant
E, =1, depending only on Q and &, such that log| f,|— E| satisfies the condi-
tions of Definition 9(1’) and (2’) with the constant k’= 1. By hypothesis,
log| f;| — E; satisfies Definition 9(3’) with the constants /’and C’. From Prop-
osition 7(v)(c) and Theorem 8(ii) we get a number E, = C;+ E,+ C’ such
that

U(z(7)) < log| f,(z(7))|+ C4log(1 +|z]|) + C4
< Hy(Im(z(7))) — (I'= Cy) log(1+|z(7)|) + C4+ E, + C’
< Hg(Im(z))—/log(1+|z|) + E,.
This, together with (10), implies that
U(z) = Hg(Im(z)) —!log(1+]z|)+ C,

where C:= E,+ L? Therefore u < U satisfies Definition 9(3’) with the con-
stants / and C.



172 UwWE FRANKEN

11. REMARK. InFranken and Meise [5], Theorem 10 is used to characterize
those linear partial differential operators P(D), with constant coefficients
and a compact set K C RY with nonempty interior, having one of the fol-
lowing properties:

(a) For each C* Whitney jet on K (resp. f € D'(K)) satisfying P(D)f =
0, there exists a global zero solution F of P(D) in C*(R") (resp.
D’(RN)) which extends f; that is, Whitney’s extension theorem holds
for the zero solutions of P(D) on K.

(b) For each fe C®(RY) (resp. fe D'(RY)) satisfying f|K = 0, there ex-
ists g € C(RY) (resp. g € D'(RY)) satisfying P(D)g = f and g | K = 0;
that is, the equation P(D)g = f can be solved preserving the lacuna K.
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