Point Evaluations for P/(u) and
the Boundary of Support(u)

JoHN AKEROYD

1. Introduction

Let G be a bounded, simply connected region in the complex plane C, and
for 1 < ¢ < oo let p be a finite, positive Borel measure with support in G such
that each function in P'(p), the closure of the polynomials in L'(x), has an
analytic continuation to G. When can we be assured that there exists A in
dG and r > 0 such that any function in P’(u) has an analytic continuation
beyond G to GU{z:|z—A|<r}? J. Brennan has answered this for many
weighted area measures (see [B2, Thm. 4]). In this paper we examine this
question and others like it with very few, if any, restrictions on y, though we
are, almost of necessity, more specific about G. As one might expect, J. Thom-
son’s recent theorem on point evaluations (see [Th, Thm. 5.8} or Theorem
2.1 in this paper) is useful to us here.

If 1 = ¢ <ooand puis a finite, positive Borel measure with compact support
in C, then abpe(P(n)) denotes the collection of analytic bounded evalua-
tions for the polynomials with respect to the L(x) norm, and is the largest
open subset of C to which every function in P’(x) has an analytic continua-
tion. Let G be a bounded, simply connected region and let x have support in
G such that G € abpe(P(n)). Among such measures are those of the form
du = wdm; |+ hdwg, where m, is a 2-dimensional Lebesgue measure on
C, wg = w(-, G, zy) is harmonic measure on dG evaluated at some z; in G,
0<weLl(m,|s), 0 < he LY(wg), and either w is positive and continuous or
[log(h) dwg > —. If Rat(G) € P*(u), where Rat(G) is the collection of ra-
tional functions with poles off the closure of G, then C\ G has bounded com-
ponents and at least one of them, along with G, is contained in abpe(P(y)).
Under these circumstances, if u |55 is small enough, then [Th, Thm. 5.8] im-
plies that (3G) Nabpe(P'(r)) # 0. However, the size of u |5 does not alone
determine whether or not 3G meets abpe(P’(n)). For instance, there are
measures u; and p, having the properties of p described earlier such that
Rat(G) € P'(p) (i=1,2), pilag = p2lac, and (9G)Nabpe(P'(u,)) = 0; in
fact, %
|

[abpe(P (11))I\(@G) = [abpe(P(12))1\(3G)

Received January 20, 1993. Revision received June 29, 1994,
Michigan Math. J. 42 (1995).

17



18 JOHN AKEROYD

and yet (dG)Nabpe(P’(u,)) is large (see Examples 3.3 and 3.4). When look-
ing for “sharp” conditions on p which ensure that (dG) Nabpe(P'(r)) # 9, it
is helpful, if not imperative, to be more specific about G. In this paper we
concern ourselves primarily with crescents, though much of what we do has
application to many regions other than crescents; crescents are among the
simplest regions for which our problem here is nontrivial. Actually, certain
questions concerning abpe(P’(u)) when p is 2-dimensional Lebesgue mea-
sure on some crescent are quite old and were addressed by Brennan in [B2].
Also, in [Al] this author had limited success in determining abpe(P‘(u))
when p is harmonic measure on some crescent.

Let G be a crescent, 1 < ¢ < oo, and u be a finite, positive Borel measure
with support in G such that G € abpe(P'(n)). If Rat(G) € P!(x) then we eas-
ily get that abpe(P’(n)) = G (Proposition 3.1). In the case where Rat(G) ¢
P'(u), we first find conditions on p which ensure that (0G) Nabpe(P’(u)) #0
(Proposition 3.2 and Theorem 3.7). Later we establish a lemma (Lemma
3.8) which is a type of Szegd’s theorem (but which reaches beyond Szegé's
theorem), and we use this lemma, along with some recent results of Olin and
Yang [OY], to find conditions on p which ensure that abpe(P'()) = int(G")
(the interior of the polynomially convex hull of the closure of G—the largest
that abpe(P’(u)) could possibly be; see Theorems 3.11 and 3.13). We also
give examples which show that, if u does not satisfy our conditions, then it
is possible that (dG)Nabpe(P'(n)) =0 even though G < abpe(P!(u)) and
Rat(G) ¢ P'(p) (Examples 3.4 and 3.15).

2. Preliminaries

Let u be a finite, positive Borel measure with compact support in C, and let
1 =<t <. A point z in C is called a bounded point evaluation for the poly-
nomials with respect to the L/(x) norm if there exists a positive constant
¢ such that | p(z)| < c|| p||L,, for all polynomials p; let bpe(P‘(p)) denote
the collection of all such points. Notice that if z € bpe(P'(n)), then by the
Hahn-Banach and Riesz Representation theorems there exists k&, in L°(p)
(1/s+1/t = 1) such that p(z) = [ p() k(&) du($) for all polynomials p. For
z in bpe(P/(w) and f in P'(u) let f(z) := [ () k(¢ du($). It is a straight-
forward exercise to show that f= f a.e. p on bpe(P’(pn)). A point z in C is
called an analytic bounded point evaluation for the polynomials with respect
to the L(x) norm if there exist positive constants M and r such that | p(w)| <
M || p||L for all polynomials p and all w such that |z—w| < r; abpe(P/(p))
denotes the collection of all points z of this sort. Notice that abpe(P'(u))
is a bounded open subset of C, abpe(P’(r)) S bpe(P’(n)), and the compo-
nents of abpe(P!(r)) are simply connected. Also, if fe P'(y), then f is ana-
lytic on abpe(P(n)).
J. Thomson has established the following theorem [Th, Thm. 5.8].

THEOREM 2.1. If u is a finite, positive Borel measure with compact support
in C, then there is a Borel partition {A;}i~, of the support of p. such that
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P'(p) = L'(p |A0)@(@1 P'(u A,)),

where fori =1,
@) P'(p| a,) contains no nontrivial characteristic function,
(b) W;:=abpe(P'(n|,) is simply connected and A; W, (the W;s are
the components of abpe(P'(w))), and
(c) the mapping f ~ f is one-to-one on P'(u| a,)s and under this mapping
the Banach algebras P'(p|a)NL"(p|a,) and H™(W;) are algebrai-
cally and isometrically isomorphic and weak-star homeomorphic.

We now return to the case where G is a bounded, simply connected region
and p is a finite, positive Borel measure with support in G such that G
abpe(P’(n)). If Rat(G) & P'(n), then there must be a bounded compo-
nent Q@ of C\G such that z~1/(z—{) & P(p) for each { in Q. Using a stan-
dard argument, we show that Q € abpe(P(n)). Fix ¢, in 2, and choose g in
L5(p) (1/s+1/t =1) such that [ pgdu =0 for every polynomial p and yet
[8(2)/(z—t0) du(z) # 0. Now, g(¢):=[g(z)/(z—¢)du(z) is analytic on
and not identically zero there. So, for each {’in  there exist positive con-
stants 6 and r such that {{: [{— ¢ < r} S Qand |g({)| = 6 for |{—¢’| =r. No-
tice that if {e€Q and p is a polynomial, then

P80 = [ %“f}‘z—’ d(2).

Therefore, if p is a polynomial and |{—{’| = r, then

1 []p)lg(2)|
(O] = 5 [ P dud)

= const-{|g|Ls¢ [ Pl
By the maximum principle, {’e abpe(P’(n)); we conclude that
Q < abpe(P(n)).

If Q & abpe(P'(1|30)), equivalently z —1/(z—¢) € P/(u|5q) for some ¢ in 2
(this is what we meant in the introduction by u |;5 “small enough”), then by
Theorem 2.1(b), though Q < abpe(P’(n)), it cannot itself be a full compo-
nent of abpe(P'(p)), and so @ # (82) Napbe(P'(w)) S (dG) Nabpe(P(w)).

Let Gy = {z:|z] < B\{z:|z—3| = 3). A crescent is a bounded, simply con-
nected region G in C for which there exists a conformal mapping ¢ from
G, onto G that extends to a homeomorphism from G, onto G; the multiple
boundary point of this crescent G is ¢(1).

3. Point Evaluations and dG

For the rest of this paper, G is a crescent, 1 <¢ < oo, and pu is a finite, posi-
tive Borel measure with support in G such that G € abpe(P'(n)). Also, if U
is a bounded, simply connected region in C and z,€ U, then we let wy or
w(-, U, z¢) denote harmonic measure on aU evaluated at 7. Most of the time
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we opt for the w; notation since our results are independent of the choice
of zyin U; by Harnack’s inequality, (-, U, z;) and w(-, U, z,) are boundedly
equivalent for any two points z; and z, in U.

ProposiTION 3.1.  If Rat(G) € P'(u), then abpe(P'(n)) = G.

Proof. Choose { in C\G. If {ebpe(P'(u)), then there exists ke in L (p)
(1/s+1/t =1) such that p({) = p(z) k¢(z)dp(z) for each polynomial p.
Yet, by our hypothesis, z — 1/(z—{) € P/(n), and so we get the contradiction
that 1 = [ k;(z) du(z) = 0. Therefore, (C\G) Nbpe(P'(y)) =0, which gives
us that G < abpe(P’(1)) € G. Since abpe(P’(u)) is open and G is a crescent,
the proof is complete. D

If G is a crescent, then let d; be the multiple boundary point of G and Q;
be the bounded component of C\G. With y as before, let u®:= pu|ag o> and
p° = pd+ 2 be the Lebesgue decomposition of u° with respect to wg_; pg <<
W and [I.g.l. wog.

ProposITION 3.2.  If Rat(G) & P'(u) and [ log(dpl/dwq ;) dwg, = —, then
(8G)Nabpe(P(pn)) #0.

Proof. By [Gm; Chap. 5, Thms. 8.1 & 8.2], [ log(dpy/dwg ) dwg, = — if
and only if z-1/(z—{) e P'(1°) for some { in Q5. The rest of the proof
follows from the discussion in Section 2. O

Unfortunately, Proposition 3.2 is not very useful. The hypothesis that
[ log(dpl/dwg ) dwg,, = —eo is much more stringent than it needs to be in
many cases; the next example suggests this. Some of the ideas in the next
two examples can be traced back to M. V. Keldysh (see [Me]).

ExaMPLE 3.3. Let E be a crescent such that @z = {z:|z| <1}, and let T be
the outer boundary of E (i.e., the boundary of the polynomially convex hull
of the closure of E). Let p = m, | g+ m, where m, is 2-dimensional Lebesgue
measure and m is normalized Lebesgue measure on {z: |z| =1}. Choose A in
00z, A#dg, and let C = {{:|¢—A| = 3 dist(A, T')}. Now C intersects dQ in
two points—call these points A; and A,, and let f(z) = (z—A;)3-(z2—X,)>
For z in E, let r(z) = dist(z, dE) and A(z) = {{:|¢—z| < r(z)}. If ze E and p
is a polynomial, then

p(z) = W,.Z(Z) ) A(2)

Therefore,
1 f
. dm
7I'I'2(Z) A(Z)I pl 2
1
S —— e
(wr2(z)

- [diam(E))?
rx(z)

|p(2)|=
N2l

) 2l Legy- (3.3.1)
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Similarly, if z€ Qg and p is a polynomial, then using the Poisson kernel for
{Q at z we have

2
|p(2)| < _(1——|z|) ‘||P||L'(“)- (3.3.2)

By (3.3.1) and (3.3.2),
|fp| = const || p|lLi

on C. It follows that Aeabpe(P!(u)), and hence (0Qg)\dg S abpe(P'(n))
(indeed, abpe(P’(p)) = inside(I')). However, u3 = m, and so pJ and wq_ are
boundedly equivalent—clearly, [ log(du®/dwq ;) dwg, > —oo.

One of the objectives of this paper is to modify Proposition 3.2 so that it
applies to examples like the one above. However, we cannot weaken the inte-
gral condition in its hypothesis and expect the conclusion to hold without
adding some new restriction(s); this point is illustrated by our next example.

ExampLE 3.4. Let E and I' be as in the last example, and forn =1,2, 3, ...
let E, = (inside(T"))\{z: |z| = 1+1/n}. Let {6,}—; be an enumeration of the
rational numbers in [0, 27). By Runge’s theorem (for n =1, 2, 3, ...) thereisa
polynomial p, such that | p,([1+1/(n+1)]e”)|=n if LI=k=<n, and | p,(z)|<
lifze E, or |z] < 1. Let {c,}; =, be a decreasing sequence of positive numbers
such that ¢,| p,(z)|’<1forall z in E. Define p on E by u|r =0, p lg, =M |
(m3 is 2-dimensional Lebesgue measure), u|g,, \g) = M2, \E,)> and
t | gz:||=1; is normalized Lebesgue measure. Notice that p is a finite, positive
Borel measure with support in E, E € abpe(P’(n)), and Rat(E) € P'(n).
Furthermore, there is a positive constant M such that || p,||.«,) = M for all
n, and yet max{| p,(z)|:|2—A| < r} - o as n — o for any fixed A in Qg and
any r> 0. Hence abpe(P'(n)) =E U {z:|z| <1} and so (8E) N abpe(P(u)) =
@. Notice, though, that u|,£ is the same here as in Example 3.3.

As usual, let 1 = ¢ < oo, G be a crescent, and u be a finite, positive Borel
measure with support in G such that G € abpe(P’(y)). For z in G (and with
p and ¢ understood), let

M(z) = sup{| p(z)|: p is a polynomial and || p||.,, = 1}.

Example 3.4 suggests that if we want to modify Proposition 3.2 by weaken-
ing the integral condition in its hypothesis, then we need some restriction
on the rate of growth of M(z) as z in G approaches dQ; in order to get that
(dG)Nabpe(P(n)) # 0. It turns out that we need only restrict the rate of
growth of M(z) as z in G approaches certain points in Q. Our first step in
defining a growth condition on M(z) is a description of these points.

Let I' be a Jordan arc or Jordan curve in C. Following [BCGJ], we say
that I" has a tangent at A (or A is a ftangent point of T') if AeT and there
exists 0, 0 < 0 < w, with the property that for each ¢ > 0 there exists r >0
such that whenever ze T and 0 < |z—A| < r, then either |§ —arg(z—A)| < e or
|0+ 7 —arg(z—A)| < e. Asin [BCGIJ], let T be the collection of tangent points
of IT'. It is a straightforward exercise to show that T is an F,; subset of C.
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When it is understood that we are working with a generic crescent G, we
hereafter let T (with no reference to G) denote the collection of tangent
points of Q5. If G is a crescent, Ae T and A # d, then define S(A, G) to be
the collection of segments of the form [a,A]:=={(1—-x)a+xA:0=<x=<1]},
where [a, A]\{A} € G and (1 —x)a+xA approaches A nontangentially in G
as x — 1. Notice that S(G, A) # 0, since AeT and A # dgz. We are now in a
position to give our growth condition on M(z).

As usual, 1 < ¢f< oo, G is a crescent, and p is a finite, positive Borel mea-
sure with support in G such that G € abpe(P'(p)). For z in G, let r(z) :=
dist(z, dG). Suppose that AeT and A # d;. We say that u satisfies the seg-
ment condition for G and ¢ at A, if there exists » = 1 such that

[ togM@yr@)dlal <o
[a, A

whenever [a, A] € S(G, A).

REMARK. Our growth condition on M(z) is not too far from a log-log con-
dition, which is common in the literature (see e.g. [Be, p. 413; B1; Le, Thm.
XLIII, p. 127; KM]). Also, if we are willing to include in S(G, A) certain
continuously differentiable Jordan arcs that have tangential approach in G
to A, then the n that appears in our growth condition can be made depen-
dent only on the arc over which we are integrating; at present, n evidently
depends on A.

PROPOSITION 3.5. Let 1 <t <o and let G be a crescent. Define u on G by
dp =wdmy|g+hdwg, where m, is 2-dimensional Lebesgue measure, 0 <
we L\ (m,|g), and 0 < he LY wg). If either [log(h) dwg > — or w=|F|,
where 0 # F is analytic on G, then p satisfies the segment condition for G
and t at every Ain T (A # dg).

Proof. Let us first consider the case where [log(#) dwg > —o0; we may as-
sume here that 0 < A <1 and that w=0. Since0 < h <1 and flog(h) dwg >
—oo, there is a bounded analytic function f on G such that f-¢ is an outer
function (¢ is a conformal map from D := {z:|z| <1} onto G) and |f|=
h a.e. wg. Let [a, A] be a segment in S(G, A). Since Ae T and A # dg, by an
argument involving [AKS, Lemma 2.8], there is a positive constant ¢ such
that |z—/\|2d|z| < cdw(z, G\la, A}, wp) on [a, A]. Therefore, since f is ana-
lyticon G and | f| =1,

0= f log(|£(2)|) rX(z) d|z]
[a, Al

>c. f log(]f(2)|) do(z, G\a, Al, wg) > —o. (3.5.1)
[a,A]

For z in G, wg := w(-, G, Zp) and w(-, G, z) are boundedly equivalent; in fact,

dw(-, G,z)

< exp[z- L d|5‘|] where r({) = dist(¢, G)
d(:JG

y ()
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for any rectifiable arc y: [0, 1] = G with y(0) = z5 and (1) = z (see the Ap-
pendix for this estimate). So, if ze G and p is a polynomial, then

dw({, G,
p@ /@] = [Ip@0)/©Olde(, 6,2 = [ lp(c)l—‘i‘-‘;—zlh(:)dwa(r)
dwg({)
=ew|2- [ s dlri]-el,

Therefore,

r(<) dlfl]

for any rectifiable arc v:[0,1] — G such that v(0) = z5 and (1) = z. Con-
sequently, if [a, A] € S(G, A) (by Harnack’s inequality we may assume that
a = zp), then

M(z) =
(z) = |f( @I exp[

f( Mlog(M(z))rZ(z)dm
= 1 2. d 202 d
f[a,AJ Og(lf(z)l eXp[ f[az} r(©) I“D’ (z)d|z|

=| 1 r2(z)d|z|+2- ( L >2 J
Jon ox{f7y) @ 41 (L e,

(3.5.2)

Since (1 —x)a + xA approaches A nontangentially in G as x — 1, there is a pos-
itive constant M such that r(z)/r({) = M whenever {€|a, z] and z € [a, A].
From this, (3.5.1), and (3.5.2), it follows that

f log(M(z))r*(z)d|z| < =,
[a, Al

and therefore u satisfies the segment condition for G and ¢ at A.

The other case is that w = | F|, where 0 # F is analytic in G; we may assume
here that 7= 0. As before, if ze G then let r(z) = dist(z,dG) and A(z) =
{¢:]¢—z| < r(z)}. Now if ze G and p is a polynomial, then

p(2)F(z) =
So, if F(z) # 0, then

. pEFdm,.
Tr3(z) Jag ?

1
T|F(2)|r2(z) Jac

|p(z)| < | p|wdm,

C
= m 12\l Lipys

where c is a positive constant that depends only on ¢. Therefore,

¢
|F(2)|r3(z)

for all but at most countably many points z in G.

M(z) = (3.5.3)
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Now choose [a, A] in S(G, A), and let [, A] be another segment in S(G, A)
such that [a, A]N[b, A] = {A}; let the angle subtended by [a@, A] and [b, A] in
G be 7/3. Let iy be a Jordan arc in G with endpoints ¢ and b such that I" :=
[a, A]JU[b, A1U v is a Jordan curve, and let ¥ = inside(T"). By [AKS, Lemma
2.8], near A, dwy is boundedly equivalent to |z—A|* d|z| on [a, A] and [b, A).
Using this and slightly modifying the proof of [AKS, Lemma 2.7], we get
that F is in the Hardy space H'(V). Hence log|F|e L'(wy). By (3.5.3) and
the bounded equivalence between dwy and |z—A[]>d|z| on [a, A] near A, we
conclude that

f log(M(2))r(z)d|z| < .
{a, Al

So, once again, n = 2 does the job, and we see that u satisfies the segment
condition for G and ¢ at A. O

LEMMA 3.6. Let1=<t<o,andlet G be a crescent. Suppose that A\ and X,
are distinct tangent points of 0Qg, where A\ #dg # A,, and let T be the
unique Jordan arc in 0Qg that has endpoints A; and A, such that d; ¢T.
If p satisfies the segment condition for G and t at both A\, and \,, and if
Rat(G) & P'(p), then T\{A,, A,} S abpe(P'(n)).

Proof. Our argument here has much in common with the proofs of [Al,
Thm. 7], [Be, Cor. of Thm. D, p. 384], and [Le, Lemma 27.1, p. 135].
Among other things, we construct a certain piecewise smooth Jordan curve
a such that I € inside() and inside(«) has a small angle at both A; and A,.
Actually, this angle requirement on « is at variance with the construction in
{Le, Lemma 27.1, p. 135], where a cusp is needed. Indeed, since dQ; is not
necessarily smooth in a neighborhood of either A; and A,, we lack the free-
dom to produce certain cusps at A; and A,—this is what forces us to adopt a
growth condition on M(z) that is more restrictive than a log-log condition.
Now we return to the proof of the lemma. Since u satisfies the segment
condition for G and ¢ at A; (j =1, 2), there exists n; = 1 such that

f log(M(2))r"(z) d|z| < o (3.6.1)
[a,A]

whenever [a,A;] € S(G, A;). Since A, and A, are in 7, we can find smooth
Jordan arcs v, v,, and ;3 (as usual, we let ; denote both the Jordan arc
and its trace v;([0, 1]1)) such that:

(i) +;has endpoints A; and A, (i =1, 2, 3);

(ii) ’Y]\{Al, Az} € G and ’Y;\{)\l, Az} c QG (I =2, 3);

(iii) in some neighborhood of A; (j=1,2), v, coincides with some seg-
ment in S(G, A;), and likewise +; (i = 2, 3) coincides with some seg-
ment that has nontangential approach in Qg to Aj;

(iv) a:=+v,U~vy, and B := y,U~; are Jordan curves; and

(v) letting V' = inside(a) and W = inside(g8), V forms an angle of 7/(n i+ 1)
at A; and W forms an angle of n/2 at A;, j =1, 2 (see figure).
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A simple conformal mapping argument (see €.g. the proof of [AKS, Lemma
2.8]) shows that dwy is boundedly equivalent to |z—A|™+|z—A;|"2d|z] on
« and that dwy is boundedly equivalent to |z—A||z—A,|d|z] on 8. Choose
{o in Q. Since Rat(G) & P'(u), there exists g in L¥(u)(1/s+1/t =1) such
that [ pg du = 0 for every polynomial p and yet [ g(z)/(z—{o) du(z) # 0. For
e G, let
0 = [ 22 aua).
z2—¢

Notice that g is analytic on Q5 and not identically zero there. Moreover,
there is a positive constant M such that, for any ¢ in W,

. M
EOI= TR

Since dwyy is boundedly equivalent to | —A;||¢—A,|d|{| on B,
1
(E—=AD(E—A2)

is in the Hardy space H'(W). Therefore, 0 # g€ H'(W), and so log|¢|e
L'(ww). Since wy |,, < const-wy, we have that log|g|e L(wy |.,). Now, if
{€ Qs and p is a polynomial, then

P12 = [ L2252 dua).

Therefore, since g is nonzero a.e. wy on v,, v, had nontangential approach
in Qg to A; (j =1,2), dwy is boundedly equivalent to | —A;|™ | —A,|"2d|¢|
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on 7v,, and log|g|e L'(wy |,,), there are positive constants ¢, and c, such that
for each polynomial p,

f log| p(§)] dewy ()
Y2
1 | p(2)||g(2)| )
<| 1 . d
<f og(lg(g_)lf Z—¢] p(2) ) dwy (§)
| p(2)||g(2)]
i d il LA
f °g(| (r)l) “’V“an( lz—¢]

< ci+cllgllLsg | PlLi - (3.6.2)

Furthermore, since dw) is boundedly equivalent to |z—A;|"-|z—A,|"2 d|z]
on v; and since, in a neighborhood of A; (j =1, 2), v, coincides with some
segment in S(G, A;), we get by (3.6.1) that

dM(Z)) dwy ()

f log(M(2)) dwy () < . (3.6.3)
T

By (3.6.2), (3.6.3), and Harnack’s inequality, if p is a polynomial and

oMz =1

then there is a positive number C(v,) (recall that wy := w(+, ¥, vy)) depend-
ing continuously on vy in V such that

log| p(vg)| = floglpldwys C(vy).
It follows that ¥ < abpe(P’(u)), and thus the proof is complete. O

Our next theorem is an improvement upon Proposition 3.2 for those mea-
sures that satisfy the segment condition for G and ¢ at most tangent points of
0. We first introduce some notation. Recall that if 1 < ¢ < oo, G is a cres-
cent, and p is a finite, positive Borel measure with support in G such that G €
abpe(P(n)), then p0:= p |5 _and pl = ,u.a+ uYis Lebesgue decomposition of
p0 with respect to wq_; pd <K wg_ and pd L wq . Let p = pg + 9, be the Le-
besgue decomposition of u with respect to wg; pu << wgand ud, L wg. Let A,
be 1-dimensional Hausdorff measure on C and as before, let 7 be the collec-
tion of tangent points of dQ.

THEOREM 3.7. Let 1 <t <o, G be a crescent, and p satisfy the segment
condition for G and t at A for A-almost all A in T. If Rat(G) € P'(n) and
[log(dy),/dwq ) dwg = —oo, then (dG) Nabpe(P'(r)) # 0.

REMARK. By the “A;-almost all” hypothesis of Theorem 3.7, if A((T) =0
then we do not impose any segment condition here.

Proof of Theorem 3.7. We divide the proof into two cases according to
whether or not A((T) =0
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If Aj(T) > 0, then by our hypothesis there exist two points A; and A, (in
fact uncountably many points) in T \{ds} at which pu satisfies the segment
condition for G and ¢. Applying Lemma 3.6 yields (0G) Nabpe(P!(p)) # 0.

If A\(T) =0, then by [BCGJ, Thm.], wg L wq_. Consequently, pJ = uj.
By Proposition 3.2 we once again have that (0G) Nabpe(P’(n)) # 0. O

Let £ and p be as in Example 3.3. Notice that p?,z = 0 here, and so

dug
1 L) dug, = —c.
fog(dwno) % ”

Since Rat(E) & P'(n) and p satisfies the segment condition for E and ¢ at
every A in d€g not equal to dg (see Proposition 3.5), Theorem 3.7 tells us that
(@E)Nabpe(P'(n)) # 0. However, in Example 3.3 we showed much more
than this; in fact, we showed that abpe(P’(n)) = int(£") (the interior of the
polynomially convex hull of the closure of E’). In general, when can we be
assured that abpe(P!(u)) = int(£")? Our next two theorems give an answer
to this, but before we get to them we lay some groundwork in the form of a
lemma. This lemma can be viewed as an improvement upon Szegd’s theorem.

LeEmMA 3.8. Let D:={z:|z|<1}, A={zeD:Im(z) >0}, B={zeD:Im(z) <
0}, and I = {z:|z| =1 and Im(z) = 0}. Let m be normalized Lebesgue mea-
sure on 0D, n be a finite, positive Borel measure with support in 1UB,
and dy |3p = hdm+dy, be the Lebesgue decomposition of n | sp with respect
tom; 0<heL(m) and ny L m. If [;log(h)dw,y = —oo, then Rat(/UB) <
P'(y) for 1<t <wo; thatis, P'(n) = L'(n|N®P (]| s\-1,1))-

REMARKS 3.9. (1) The harmonic measure w4 given in the statement of Lem-
ma 3.8 has support in d4 and, by [AKS, Lemma 2.8], is boundedly equiva-
lent to |z+1||z—1|d|z| on 3A.

(2) If 5|5 is substantial enough (e.g., weighted area measure on B where
the weight does not decay too quickly near [—1, 1]), then

P =L 0@P'(|p\-1,1))

if and only if [;log(h) dw, = —oo; results along these lines will appear in a
subsequent paper.

Proof of Lemma 3.8. By a standard argument (see the proof of [Gr; Thm.
3.1, p. 144]) we may assume that 5, = 0. Suppose that [;log(k) dw, = —o.
Then there exists k in L!(m) such that k > h a.e. m and [, log(k) dw, = —oo,
and so with no loss of generality we may assume that 2 > 0 a.e. m.

We begin by showing that for any € > 0 there is an outer function F in the
Hardy space H'(D) such that:

(1) |F|'= ha.e. m;
(2) |F(i/2)|" <e; and
(3) |F(z)| = 1 whenever z € B.
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We construct F in two parts (factors). First of all, define 4, on 8D by
ho(z) = max(1, 4(z)), and let F, be an outer function such that |Fy| = Ay
a.e. m. Notice that Fye H'(D). In preparation for the second factor let J=
{z:Zel},and for0<é<llet Iy={zel:6<h(z) <1} and J; ={z:Ze ).
Because f ;log(h) dwy = —c and we may assume that # >0 a.e. m, there
exists 6 (0 < 6 < 1) such that

€
exp[ L log(h)de] < Foi/2)] ;
we may assume that wy := w(-, 4, i/2). Define A, on D by h(z) =1if z¢&
IaUJa, hl(Z) = h(Z) ifze 15\[—1, 1}, and hl(Z) =1/h(Z) ifze Js. Let F be an
outer function such that |F;| = A{’* a.e. m. Notice that F,e H*(D), |F;| =1
a.e. m off I, and |F||'=h a.e. m on I;. Moreover, if —-1<z<1 (i.e., if
ze D and Im(z) = 0), then P,({) = P,({) for all { in dD, where P,(-) is the
Poisson kernel on dD for z; thus, by the definition of 4;,

|F1(z)|" = exp flog(hl(f))Pz(s“) dm(s*)] =1

Therefore,

T -
‘Fl(—l-) =expf log|Fl|’de]
2 34

= exp log(h)de]
L1,
€
< —.
|Fo(i/2)|

Because F) is outer, |F)| =1 a.e. m on J, and |F)(z)| =1 whenever -1 < z <1,
we have also that |F,| = 1 on B. Therefore, F := F,, F; satisfies requirements
(1), (2), and (3).

Now we make use of this outer function. Choose ¢ > 0 and let F be the
outer function corresponding to e that we just constructed. By [Gr; Thm.
7.4, p. 85], there is a sequence { f,,} of bounded functions such that:

(@) |f(2)F(2)|<|F(i/2)|forallzinDand n=1,2,3,...; and

(b) f/,F—F(i/2)a.e. masn— oo,
A consequence of (a) and (b) is that f,(i/2) F(i/2) - F(i/2) and so f,(i/2) — 1
as n—oo (F(i/2) #0). Therefore, letting Hy’ (D) = {f: f is bounded and
analytic on D and f(i/2) = 0}, we have that

inf fl— “dy < lim su f “'d
PRI [1=f|"dn = lim sup ||| dn

< lim sup(f |f,,F|‘dm+f |f,,F|’dn>
ap B

n—co

< e(l+n(§)).
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Since € > 0 is arbitrary, we conclude that infrc yy=p) [|1—f|"dn = 0. Now
P!(y) contains H®(D) (the collection of bounded analytic functions on D)
and i/2 ¢ support(n), so

1

t {
dn(z) < inf dn(z) = 0.

inf ——f(z ——J(Z
feP'p J |2—i/2 /(@) feH=(D)J |2—i/2 /()
The conclusion now follows. O

The next corollary, which we state without proof, is a diversion from our
theme. A special case of this corollary was established by A. Vol’berg [V,
Thm. 1] who used nontrivial methods. An elementary proof follows, almost
immediately, from interpreting Lemma 3.8 under Mdobius transformations
of the form T'(z) = e”- (z—a)/(1 —@&z), where |a| < 1.

CoROLLARY 3.10. Let D = {z:|z| <1}, let S be a nonempty finite subset of
oD, and let U=D\[t{: ¢ € S and 5 <t <1}. Let m be normalized Lebesgue
measure on dD, y be a finite, positive Borel measure with support in dU,
and 1 |3p =n,+7ns be the Lebesgue decomposition of n|sp with respect to
m; dn,=hdm (0<heL(m)) and w, L m. If [,plog(h)dwy = —, then
P'(g) = L'(y) for 1 <t < o. Moreover, if there exists g (0< ge LY wy|p))
such that log(g) € L{(wy |p) and gdwy|p < dn|p, then P'(y) = L'(y) if and

only if [3p log(h) dwy = —o.

QuEsTION 3.11.  Let o be a cross-cut of D := {z: |z| < 1}; that is, «: [0,1] > C
is a Jordan arc such that || <1 and |a(x)| =1 if and only if x is either 0
or 1. Then D\« is the disjoint union of two Jordan domains ¥ and W; let
I' =(@V)N(AD). Let m be normalized Lebesgue measure on dD and let 5
be a finite, positive Borel measure with support in I'UW such that dy|;p =
hdm (0 < he L'(m)). If [rlog(h)dwy = —, do we then have P'(n) =
L't ) ®P'(p|)?

In the next two theorems, we keep the same notation used in Proposition 3.2
and Theorem 3.7.

THEOREM 3.12. Let 1<t <o, G be a crescent, and p be a finite, positive
Borel measure with support in G such that G < abpe(P'(p)). If Rat(G) &
P'(u) and if, for every Jordan arc v:[0,1] - Qg (where v(0) = dg) there
exists x (0 < x < 1) such that

dpd )
log( dwq = —oo,
fv([x. 1) duwq, o

then abpe(P'(p)) = int(G").

ReMARK. If the answer to Question 3.11 is Yes, then we can strengthen
Theorem 3.12 to the following statement: If Rat(G) € P‘(n), and if
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dp®
f Iog(dwﬂac) deG = — 00

Y

whenever y: [0, 1] » dQ is a Jordan arc and y(0) = d, then abpe(P(n)) =
int(G").

Proof of Theorem 3.12. An immediate consequence of our hypothesis is

that
dp’
log( = )dw = —o0,
fana dwg,)

and so, by Proposition 3.2, (dG) Nabpe(P!(n)) # 0. Applying Theorem 2.1,
we have

Pl(p) = L(n]s)DP (1la,),

where P'(u|,,) is irreducible and W, := abpe(P'(n|,,)) = abpe(P/(p)) is a
bounded simply connected region such that GUQg; € W, < int(G"). Since
abpe(P'(u| A)) = abpe(P'(n)), and our only objective here is to show that
abpe(P'(n)) = int(G"), we may assume that P’(x) has no L’(x)-summand.
Hence P'(p) = P'(p|,,), and is therefore irreducible.

Suppose that W, # int(G ") (we look for a contradiction). Then there ex-
ists a Jordan arc « contained in dQ5 such that d; € a (dg may or may not
be an endpoint of «), and W; ={[int(G")]\«. Let ¢ be a conformal map-
ping from D := {z:|z| < 1} onto W}, and let ¥ = ¢~1. By our hypotheses there
exists a Jordan arc +: [0, 1] = « such that y(0) = dg, and for some x and y

<x<y<],
0

dp
lOg( Z )dwg = —00,
fv([x,y]) dwg, ¢

Let I' be a Jordan curve such that y([x,y]) €T € Q5;U~v([x,y]). Now ¢
maps inside(I') conformally onto a Jordan subdomain ¥V of D. Let 8=
(aV)N(aD). Notice that 8 is a closed subarc of dD, ¢ maps 8 homeomor-
phically onto y([x, 1), and BNY(G) = 0. As in Lemma 3.8, let = {z:|z| =1
and Im(z) = 0} and B = {z:|z] < 1 and Im(z) < 0}. Since we have the free-
dom to make adjustments in x, y, and ¢, we may assume that 8 € I'\{—1,1}
and that ¢(G) € B.

By Theorem 2.1(c), there exists ¢ in P’(x) N L®(x) such that = on Wj;
we adopt the ~ notation found in [OY]. By [OY, Lemma 2.2], we may as-
sume that J(dW,) S dD. Let m be normalized Lebesgue measure on 4D, and
let » be the finite, positive Borel measure with support in 7UB given by
n:=poy L. From [OY, Lemma 2.1] and [Co, p. 301] we get that 7 |ap <K m.
Also, by [OY, Lemma 2.5, Thm. 2.6 and its proof] there is a Borel subset £
of dD such that n((dD)\ E) = 0, and ! is defined and equals ¢ on E. Thus
if F is a Borel subset of 8 then

p(P(F)) = p(¢(FNE)) = pn( (FNE))
=n(FNE)
= 9(F).
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Therefore, 7 ]g < pod|g (= p’=d|g). Since 7|g << m and p)o |z is the part
of the Lebesgue decomposition of po¢ |z with respect to m that is absolutely
continuous with respect to m (this can be seen by a change of variables
under ¢ |3'), we conclude that 7|g < pS°¢ |s. Furthermore, since Q5 S W},
there is a positive constant ¢ such that wg_ 3w, = cwy,. Therefore,

dn d(u3°¢ia)>
fﬁ log(d—m) dm < L log( . dm

dul
= log(d a )del = — 00,
y([x, ¥]) Ww,

Since B is a closed subset of I\{—1,1}, m and w, are boundedly equivalent
on 8 (here, A is as in Lemma 3.8). So, by Lemma 3.8, Rat(/ UB) € P!(y).
It follows that bpe(P‘(n)) < B. This contradicts [OY, Lemma 2.1]. There-
fore, W; must be equal to int(G"). O

If 4% = 0, then clearly u° satisfies the integral condition in the hypothesis of
Theorem 3.12. Hence the following corollary is an immediate consequence
of that theorem.

COROLLARY 3.13. Let 1<t<oo, G be a crescent, and p be a finite mea-
sure such that dp = wdm,\|g, where m, is 2-dimensional Lebesgue mea-
sure and w is a positive, continuous weight on G. If Rat(G) & P'(n), then
abpe(P'(p)) = int(G").

THEOREM 3.14. Let 1 <t < and let G be a crescent. Suppose that p sat-
isfies the segment condition for G and t at A for Ay-almost all A in T, and
suppose for any Jordan arc v: [0, 1] - 0Qs (where v(0) = dg) that there ex-
ists x (0 < x < 1) such that [, 1) log(dpy,/dwg ) dwg, = —o. If Rat(G) &
P!(u), then abpe(P'(w)) =int(G").

Proof. 1f abpe(P(r)) # int(G”) then by Theorem 3.7 there is a Jordan arc
« contained in dQg such that d;ea and abpe(P'(p)) = [int(G")]\a. By
Lemma 3.6 and [BCGJ, Thm.], wg|, L wg, |, and so pd, = p2 on a. Now
argue as in the proof of Theorem 3.12 to derive a contradiction. U

COROLLARY 3.15. Let 1 <t <o and let G be a crescent. Define n on G by
dp =wdmy|g+hdwg, where m, is 2-dimensional Lebesgue measure, (0 <
weLY(m;|g), 0=< he L\ (wg), and either [log(h) dwg > — or w=|F|, where
0 = F is analytic on G. If Rat(G) & P'(n), then abpe(P'(u)) = int(G").

Proof. By Proposition 3.5, u satisfies the segment condition for G and ¢ at
each tangent point A of dQ5 (A # d). Since p?,z = 0 here, the result follows
from Theorem 3.14. O

Notice that Corollary 3.15, with A=1 and w = 0, completely answers the
question addressed and only partially answered by [Al]. We finish this paper
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by giving an example that shows the necessity of the integral conditions
found in the hypotheses of Proposition 3.2 and Theorems 3.7, 3.12, and
3.14.

ExAMPLE 3.16. Let I' be the Jordan arc constructed in [A2, Thm. 7] and
let U:=D\T (D := {z:|z| < 1}). Then the polynomials are dense in the Hardy
space H?(U), and so abpe(P*(wy)) = U. Now extend T to a Jordan curve
v so that y\{1} € D. Let V = inside(y), G = D\V, and p = wg+ wy. Notice
that p is a finite, positive Borel measure with support in G (in fact, with
support in dG), and G Uinside(y) € abpe(P?(r)). Furthermore, p satisfies
the segment condition for G and 2 at each tangent point of Qs not equal
to dg (see Proposition 3.5). Now, since G Uinside(y) € U, there is a positive
constant M such that | p||.z,, = M| p|| 2, for any polynomial p. Conse-
quently, G Uinside(y) S abpe(P?(u)) S U. Therefore, Rat(G) & P2 (1) and
yet abpe(P?( p)) # int(G"). Hence we cannot dispense with the integral condi-
tion in the hypothesis of Theorem 3.14 and expect the conclusion to remain
true. For this example, it turns out that p.a Ir = oy |r. We have constructed
an example for P2(y), but of course there is nothing special about =2
here. Similar examples exist for P‘(x) whenever 1<t < . Furthermore,
if the extension of I' to v is pathological enough (like I'), then we have
abpe(P2(u)) = GUV; that is, Rat(G) € P?(p) and yet (0G) Nabpe(P3(p)) =
@. Therefore, the integral condition in the hypothesis of Theorem 3.7 is like-
wise indispensable.

Appendix

The estimate given by the following proposition can be attributed to Beurling
[Be]. An elementary proof based on Harnack’s inequality is included.

ProrositioN. Let U be a bounded, simply connected region, and let wy =
w(-, U, zp). If 2 is any point in U, then wy and w(-,U, 2) are boundedly

equivalent and
dw(-,U,2) -
LD < exple- [ il

where r(¢{) := dist(¢, dU) for any rectifiable arc y: [0,1] - U with v(0) =z,
and y(1) =z.

Proof. Choose z in U, and let vy:[0,1] = U be a rectifiable arc such that
v(0) =z and (1) = z (as usual, we let v denote both the arc and its trace
v([0,1])). Let n be a positive integer, and for k in {0, 1,2, ...,n} let z;,=
v(k/n). We assume that n is large enough so that |z;—z; .| < dist(y, 8U)
whenever 0 < kK < n —1. Thus, by Harnack’s inequality, w(-, U, z;) and
w(+, U, z;+) are boundedly equivalent, and '

dw(-, U, 2k +1) - r(Zg) + |2k = Zie 41|
do(-,Uyzg) — r(zg)—|2x— 241
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Consequently, wy and w(-, U, z) are boundedly equivalent, and

dw(-,U,2) - "“‘(r(zk)+lzk—zk+1|>
r(zx) —|Zx— 2k +1]

,,U’ n—1 + —
log(dw( Z)>Sk2010g(r(2k) |2k Zk+1|)

doy k<o
Therefore,

dwy r(ze) =2k — 2k +1]

- ”"l(l‘(zk)+|2k—zk+1| _1)
r(ze) = |2k — 2k +1|

k=0

Rl Zk—2
=2. 2( I k k+1| )’
K=o\ (Zk) = |2k — Zk 41]

which can be made as close to 2- [, (1/r({)) d| ¢ | as we like with a sufficiently
large choice of n. L
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