Soul-Preserving Submersions

GERARD WALSCHAP

In this note, we investigate the structure of Riemannian submersions «:
M — N from open manifolds M with nonnegative sectional curvature K. By
O’Neill’s formula [5], NV also has nonnegative curvature. In fact, most—but
not all, see Question 2.4—open manifolds N with K = 0 arise in this fashion,
by taking M to be a Riemannian product M’ x P, where P¥ is diffeomorphic
to RX.

The starting point is the observation that if N is open, then the pre-image
of a soul is a totally convex submanifold M’ of M. It follows that if 7 has
compact fibers, then it is soul-preserving. Moreover, the structure of = is
essentially determined by its restriction to the tangent and normal bundles
of the soul X, of M. This is used to derive a classification of the metric fi-
brations of S$” x R* with compact fibers, which turn out to be homogeneous
—that is, generated by the action of a group of isometries—if n # 15. The
curvature of the base is actually indicative of the metric structure of open
manifolds with K = 0 in general: topologically, the base is a nontrivial vec-
tor bundle over the soul with positively curved fibers. This is true for any
complete, noncompact M with K = 0: If every plane orthogonal to X, has
zero curvature, then M splits as a metric product I,,x P/, at least locally.

We mention two further applications. The first is that positively curved
open manifolds admit no metric fibrations. The second is that 1-dimensional
Riemannian fibrations of locally symmetric (open) spaces with K= 0 are
homogeneous, unless perhaps the quotient space is trivial in the sense that it
is isometric to a product of a compact manifold with Euclidean space.

1. Convexity and Submersions

The reader is referred to [1] for facts about open manifolds of nonnegative
curvature that will be used freely. We adopt the notation of [4] for the basic
geometric invariants of Riemannian foliations. Thus, the foliation F on the
(complete) manifold M determines an orthogonal splitting TM = A"@ AY of
the tangent bundle into so-called horizontal and vertical subbundles, where
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AY is tangent to the leaves. The integrability tensor is the 2-form A on A"
with values in A’ given by
AxY =1X, Y] =V, (1.1)

and the second fundamental form of ¥ is the 1-form S on A" with values in
the space of self-adjoint operators of AY, given by

If X is a basic field (i.e., the horizontal lift of a vector field on the local
quotient), then [ X, T'] is vertical for any vertical field 7, so that by (1.1),

h h
VrX =VyT = —A%T, (1.3)

where A% is the pointwise adjoint of Ay.

Let ¢ denote a horizontal geodesic. The horizontal lifts of the local pro-
jections of ¢ yield diffeomorphisms /' from neighborhoods of ¢(0) in the
leaf to corresponding neighborhoods of c¢(¢), called “holonomy displace-
ments” after [4]. For vertical u € M, hiu = J(t), where J is a nowhere-
zero vertical Jacobi field along ¢ with J(0) = u. By (1.2) and (1.3), we have

J'=—A%T—S,J. (1.4)

As an easy application, we have the following generalization of [4, (2.8)] to
the nonconstant curvature case.

LEMMA 1.5. Let Y be a horizontally parallel vector field along a horizontal
geodesic c. Then
(A('-Y)'U = 2SCACY+ RU(Y, C)C.

Proof. Let J be a holonomy Jacobi field as in (1.4). Then

(R(Y, )6, Ty =(R(J,6)¢, Y)Y =—(J"Y)
=S 1), Y+ (ALY, Y)
=—(S: ], Y'Y+ (ALY Y
= —(S;: ALY Y+ (J,AYY
= (L, SeAY Y+ (T, AY Y+ (AY))
= ((AY) —285:A:Y, ).

The lemma follows, since for any ¢, there exists a vertical basis of holon-
omy fields that is orthonormal at ¢,,. Ol

A similar argument shows that, more generally, if U and V are horizontally
parallel along ¢, then
(AyVY’=S:AyV+SyAV —-SyA:U—RY(U, V)c. (1.6)

The details are left to the reader (alternatively, this can be deduced by in-
serting appropriate curvature terms in Lemmas 2.3 and 2.5 of [4]).
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Throughout the remainder of the paper, M will denote an open (i.e., a
noncompact, connected, and complete) manifold with nonnegative section-
al curvature, 7: M — N a Riemannian submersion, so that Ky = 0. We are
mainly interested in the case when N is noncompact. Under these hypoth-
eses, we have the following theorem.

THEOREM 1.7. Let w: M — N be a Riemannian submersion between open
manifolds with K = 0. If Ty denotes a soul of N, then n~'(Zy) is a totally
convex submanifold of M.

Proof. In the special case where M is flat Euclidean space, this was proved
in [2]. The argument actually goes through with no major changes in the
general case, so we merely sketch an outline. Given p e N and a ray c start-
ing at p, any horizontal lift ¢ of c is again a ray in M; furthermore, for ¢ > 0,
w(B,(¢(t)) = B,(c(t)) because w does not increase distances. The basic soul
construction in N can thus be “lifted” to M. More precisely, for pe =~ (p),
set
C;=M\UB((1), C= (O Cs C=N\U B(c(2)).
t>0 pen~1(p) t>0

It is straightforward to check that = ~!(C) = C. This remains true if one in-
tersects over all rays emanating from p. One thus obtains a compact totally
convex set D in N, and a closed totally convex set D in M, with 7~ (D) = D;
7 preserves both interior and boundary of these sets. Once again, basic dis-
tance properties of 7 ensure that = ~1(D") = D’, where the superscript de-
notes those points at distance = r from the boundary. The statement now
clearly follows. O

If = has compact fiber, then 7~!(Xy) is a compact totally convex submani-
fold without boundary of M. In general, compact totally convex submani-
folds need not be souls—for example, when M is a paraboloid. In our case,
however, although 7 ~'(Z) is not strictly speaking obtained via the soul con-
struction of [1], there exists a filtration of M by compact totally convex sets
such that #='(X,) is obtained by applying the soul construction to them. By
a striking result of Perelman [6], there exists a distance nonincreasing re-
traction p: M — w~(Z,) which is a Riemannian submersion given by metric
projection in a neighborhood of #~'(Ey). In particular, 7 ~!(Z) is isometric
to any soul of M, and we shall therefore also call it a soul. Observe, though,
that the above retraction still exists if =~'(X,) is noncompact. This implies
that if E is a parallel vector field along a geodesic of =~'(Xy) with E(0) or-
thogonal to w~!(Ep), then the rectangle

(¢, 5) — exp(tE(s))

is flat and totally geodesic. There are two more consequences that will be
used later. First, parallel translation along geodesics of 77 '(Zy) preserves
ray directions. Second, there are as many rays emanating pointwise from Iy
as from its pre-image: we have already noticed that horizontal lifts of rays
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are again rays; conversely, if ¢ is a ray from = ~'(Xy), then we claim that wec
must be a ray from X. Otherwise, there would exist, for some > 0, a geo-
desic y from wec(f) to wec(0) of length < ¢. If ¥ is the horizontal lift of v
starting at c(¢), then the endpoint of ¥ lies in = ~'(Z,). But this endpoint
cannot be p (since c is a ray), nor can it be different from p, because the
above retraction p is characterized by p(c(#)) = c(0) for any geodesic ¢ ema-
nating from and perpendicular to = (Zy).

2. Global Applications
An immediate consequence of the proof of Theorem 1.7 is the following.

THEOREM 2.1. An open manifold M of positive curvature admits no Rie-
mannian fibrations.

Proof. Suppose 7: M — N is a Riemannian submersion, and consider a soul
{ p} of N. By the final remarks of Section 1, any plane spanned by a vector
tangent to = '(p) and a vector orthogonal to it has zero curvature. Thus,
the pre-image of p is 0-dimensional, and = is a covering map. By [1], 7 is
an isometry. O

Perhaps the simplest nontrivial example of an open manifold with nonneg-
ative curvature is M* = S3x g R?, where S! acts diagonally, on S via the
Hopf fibration, and on R? by rotations. Since this action is by isometries,
the natural projection 7: S3x R> - M*is a Riemannian submersion. Theo-
rem 1.7 says that « restricts to a submersion between souls. This is easily
verified directly in this case, since the restriction is just the Hopf fibration
S3(1) > §%(2). One thus has the commutative diagram

S*xR* 5 M*
| |
s 5S4y,

where the vertical maps, given by metric projections, are Riemannian sub-
mersions. What is noteworthy here is that the restriction to the soul actually
determines all of #, as the next theorem shows.

THEOREM 2.2. Let 7: S" X RX - M be a Riemannian submersion with com-
pact fibers from a metric product of some Euclidean sphere with Euclidean
space. Then w is homogeneous if n # 15. More precisely, M is isometric to
S"x% s RX, where G =SO(2) or S* acts diagonally, via a Hopf fibration on
S" and by an orthogonal representation on RX.

Proof. By Theorem 1.7, = restricts to S”— X, where T is a soul of M. For
n #+ 15, this restriction is a Hopf fibration according to [4], and thus homo-
geneous under the action of G = SO(2) or S* on S". We assume G = S3, so
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that n = 4/+ 3. The other case is similar, but easier. X and Y will denote basic
fields on S”, as well as their natural lifts to S”x RX along the soul S”x0;
U and V will denote sections of the normal bundle of the soul, which are
basic along fibers in = ~}(Z). If 7, J, K denote the canonical almost complex
structures on R*“*D with N the unit normal field along S**3 c R¥**4, then
IN, JN, and KN are Killing fields on the sphere that form an orthonormal
basis for the fibers of S*'*3 - HP. The corresponding Lie algebra coincides
with the Lie algebra g of integrability fields spanned by all AyY, X and Y
basic, since Ay /X = —IN, and similarly for J, K.

By O’Neill’s formula [5], the curvature tensors of the total space and the
base are related by

T R(X, Y)U = Ry (1 X, mY)mU
+ (A Ay U— A Ay U—2A5A5Y). (2.3)

Since the curvature of a plane spanned by two vectors, one tangent and the
other orthogonal to a soul, is zero, (2.3) becomes

Ry /(me X, 7Y ) U = 2w, A Ax Y.

In particular, for T= AyY, A} T is basic. It follows that if c is an integral
curve of T then U-c(t) = P,ou(t), where P, is parallel translation along ¢
and u is the curve in the tangent space

E = (c(0) X R*)((0),0) C (S > X R¥) (0), 0y
given by
u(t) = e'4ru(0).

Here, A7 is the skew-adjoint operator Aru := AT Identify E with R,
The map T+~ A7 from g to the Lie algebra of SO(k) is a Lie algebra homo-
morphism, since

h h h h h

It follows that if #: S3— SO(k) denotes the induced Lie group homomorph-
ism, then the fiber through (p, u) € S**3x R¥ is {g(p), h(g)u|g € S3} (here,
p = c(0)). It remains to check that the fiber through (g, ©) can be described
in the same way if g # p. Evidently, we may assume that p and g can be
joined by a horizontal geodesic. Since the Hopf fibration has totally geo-
desic fibers, (1.6) implies that

(AXYOC)'U = (AuV°C),v =0

for parallel U, V, and for horizontally parallel X, Y along c. Thus, A7 AxY
is parallel along ¢, and the theorem follows. U

It is tempting to conjecture that any open manifold with K = 0 can be real-
ized as the result of a submersion from a metric product, as in the case of
S3x R? - M* above. One must be a little more precise, of course, since any
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M can (for example) be viewed as the projection of M X R onto the first fac-
tor. In light of Theorem 1.7, the most plausible version is as follows.

QUuEsTION 2.4, Given any open M with K = 0 and soul X, does there exist
a metric product M, x P* of nonnegative curvature, and a Riemannian sub-
mersion m: Myx P¥— M with #7(Z) = Myx0? (Here, P¥ denotes R* to-
gether with some nonnegatively curved metric.)

Notice that M, need not, in general, be a soul. Consider, for instance, the
Riemannian product My = N XR, where N is a compact manifold with Kill-
ing field X. If D is the standard coordinate vector field on R, and d, the polar
coordinate vector field on R?, then (X, D, dg) generates a Riemannian fibra-
tion 7: My X R? - M, and M, = 7 ~(Z,,) is noncompact. In [9] it was shown
that the standard metric on M* = §3 x 1 R? could be deformed in some com-
pact neighborhood C away from the soul, so that the resulting metric still
has nonnegative curvature, but those fibers over the soul that intersect C are
no longer rotationally symmetric. We use this fact to give a negative answer
to Question 2.4 (cf. [9], where a weaker assertion is deduced). So suppose
there exists a Riemannian submersion from some product My x P? — M,
where M now denotes S3 x g1 R? with the canonical metric deformed on the
compact set C. Let u be a vector orthogonal to M, at some p, and denote
by J the almost complex structure on the normal bundle of M, in My x P2
By (2.3), A,Ju # 0. In fact,

(A, Ju, A, y) = —w(Te X, T y),

where w is the volume form of &), = S2(1/2). Let dy denote the polar coordi-
nate vector field on P?, and set T,:=A,Ju. It is straightforward to check
with (1.4) that the vertical space at ( p, exp(fu)) is spanned by

(T},, _IAuJulzaf) ]exp(tu))

together with a (possibly trivial) subspace of (M), X Ocxpry- Thus, if 9 is

the corresponding polar coordinate vector field on the fibers of M — E,,, then
|85/

1+ |Au.1u|2|83|2 )

185> = |0, 85)"|*> = (2.5)
Since C does not intersect the soul, all fibers of M — X,, have curvature 3
(= curvature of the standard metric) along the zero section. Thus,

|4, Ju|* = 13— Kp2(0))

is constant along M,,. But d4, when restricted to any fiber that does not inter-
sect C, is Killing. It follows from (2.5) that g, is Killing on P2, Again by
(2.5), 9, is then Killing on M (cf. [9, Lemma 1.7]). This is impossible, so M
cannot be constructed as the result of a submersion from a metric product.
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The fact that the fibers of S3 x5 R? - S? have positive curvature along the
zero section is rather suggestive: any trivial bundle admits, of course, a non-
negatively curved metric with flat fibers. This is no longer true if the bundle
is nontrivial.

PROPOSITION 2.6. Let M be a simply connected open manifold of nonneg-
ative curvature with soul T. If every 2-plane orthogonal to ¥ has zero cur-
vature, then M is isometric to a Riemannian product £ x P

REMARK. By a standard argument, a local splitting still holds when M is
not simply connected.

Proof of Proposition 2.6. We show that, under the above hypothesis, the
normal bundle of ¥ is flat. The conclusion then follows from [7]. By [6],
the metric projection onto the soul is a Riemannian submersion on a small
enough neighborhood of X. If d, denotes the gradient of the distance func-
tion from ¥ on this neighborhood, then it is straightforward to check that,
for basic X,

VXE), = VarX =0. (27)

Moreover, if Y also is basic and + is an integral curve of 4, with y(0) eX,
then AyYeoy is the Jacobi field J with J(0) =0 and J'(0) = —3 R(x, »)7(0),
where x = X |, (o), and similarly for y (cf. [8]). Since R(X,4d,)Y = -V, VyY
by (2.7), we deduce that for any x, y tangent to £ and « orthogonal to X,

R(x,»)u=2R(x, u)y. (2.8)

Let v be orthogonal to X. Consider e = ax+Bu and f = vyy+év with «, 3,
v, 6 € R. By repeated use of (2.8), and recalling that planes spanned by a vec-
tor tangent to L and a vector orthogonal to it have zero curvature, we obtain

(R(e, f), f, €)= (ay)XR(x, )y, x)
+3aBy8¢R(x, y)v, u) + (B8)*(R(u, v)v, u).
This expression is nonnegative for all scalars only if
(R(x,¥)y, x){R(u, v)v, u) —3{(R(x, y)v,u)* = 0.
Since (R (u, v)v, u) = 0 by assumption, so does {(R(x, y)v, u). O
In light of Theorem 2.2, one may conjecture that Riemannian fibrations of
open locally symmetric spaces with K = 0 are always homogeneous. The re-
sult for S” x RX, however, relied heavily on the classification of fibrations on
spheres, and there is (as yet) no comparable result for compact locally sym-

metric spaces, not even in the case of 1-dimensional fibers. The following
fact is therefore noteworthy.
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THEOREM 2.9. Let w: M — N be a Riemannian fibration with 1-dimensional
JSibers of an open, nonnegatively curved locally symmetric space M. Then
w is homogeneous, or N splits (locally) isometrically as & xR,

Proof. We may assume without loss of generality that M is simply con-
nected, so that M = £,,x R¥ (see [1]), and that the fibers of & are connected,
so that NV also is simply connected by the long exact homotopy sequence for
fibrations. With notation as in Theorem 2.2,

(AyV, AxY) = —HRN (1 X, 7Y )1 U, 7V) (2.10)

is constant along each fiber in =~'(Zy). But so is [AyV|, and hence also
|AxY|, unless perhaps A,V = 0 for all U, V along some fiber F. If this is the
case, consider a horizontal geodesic ¢ from Fin 7 ~!(Zy), and extend U, ¥ to
horizontally parallel fields along ¢. Then

(AyV )Y’ =S AyV (2.11)

by (1.6). Thus, AyV =0 for all U, V orthogonal to 7#7'(Xy). By (2.10) and
[7] (or alternatively by Proposition 2.6 and O’Neill’s formula), N splits as
Ty X P Using (1.4), it is easy to see that the vertical space along 7 — exp(tU)
is tangent to 7 ~'(X,) (in the decomposition M = 7 ~(XZy) X R/) for all ¢. This
implies that P’ is flat, so N is isometric to Zy X R’.

Assume then that |4xY| is constant along any fiber in = ~'(Zy). Let « de-
note the mean curvature form of =, that is, the horizontal 1-form given by

k(X)) =(SxT, T)=(V;T,X),

where T is a unit vector field spanning the fiber. We first show that « is
closed. It is straightforward to compute that, in general,

dr(X,Y) = —2 divA,Y,

which in our case is zero, since A has constant norm. Next, by Lemma 1.5,
if Y is horizontally parallel (of unit length) along the horizontal geodesic ¢
in #7'(Xy), then

|A:Y |2 = 4(S;AsY, AsY )+ 2(R(Y, ¢)¢, A:Y)
=4S T, TH A Y|*+2{R(Y, ¢)¢,Y")
=4(S: T, TH|A:;Y|*+ K.y,

since M is locally symmetric. Differentiating in the fiber direction yields
T{(SxT,T) =0, so that « is basic. This in turn implies that dx(X, T) =0.
Thus, « is closed. The same argument given in [3] for the constant curvature
case now implies that 7 is homogeneous along the pre-image of £. In fact,
a Killing field Z generating the vertical space can be explicitly constructed as
follows: Let f be a function on 7 ~(XZ,) such that x = df, and set L = e/,
Thus, XL = —Lk(X). It is straightforward to check that Z := LT is a Killing
field on 7 ~'(Xx). Moreover, A}, Z is basic. As for spheres, it remains to check
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that for a horizontal geodesic ¢ and parallel fields U, V along ¢ orthogonal
to 1 (ZN), (AL Z,VY=(Z-c, AyV) is constant. But Zoc is Jacobi, so

(Zoc, AyVY =Ze-c), AyV)+{Zec, (AyV))
- <"‘SCZ, AuV> + <Z°C, SCAUV>
=0,

where we have used (1.4) and (2.11) in the second line, and the fact that S; is
self-adjoint in the last line. O
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