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0. Introduction

Let ©Q be an open and bounded subset of C". If u;e C%(Q), 1< j<n, then
the Monge-Ampére operator (dd€)" =ddu, A --- Add“u, operates on (u,, ...,
u,), where d = 3+ 4 and d¢ = i(d —d). This operator is of great importance
in pluripotential theory. It was shown in [3] that (dd€)" is well-defined and
nonnegative on PSHN L. In this paper, we will study the following Dirich-
let problem.

Let Q be an open, bounded, and strictly pseudoconvex subset of C”, let ¢
be in C(3R), and let u be a positive measure on . Consider the problem:

ue PSHNL®(Q),
(dd‘u)" = p on (1)
fim,_ ¢ #(2) = ¢(§) v£edQ.

There are measures for which (i) has no solution. For if (i) can be solved
with p, then p cannot have mass on any pluripolar set. Thus, for example, if
we take u to be the Dirac measure for a point in Q then (i) has no solution. On
the other hand, if u = fdV where f € C(Q) and dV is Lebesgue measure, then
it was proved in {2] that (i) has a unique solution for every ¢ € C(3Q). This
was generalized in [5] to the case when fe L®({, u) and in [7] to the case
when fe L*(Q, dV). The main result of this paper is the following. Let » be
any positive rotation invariant measure in the unit ball B for which there is a
u e PSHN L®(B) with (ddu)" = v. (These measures can be characterized; cf.
[11].) Then, for every f e L®(B, v) and for every ¢ € C(dB), there is a unique
solution to (i) with u = fdv. For background and references see [1; 6; 10].

1. Perron Classes

To study the problem (i), we use the Perron method and therefore consider
classes of subsolutions
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B(p, p) = [ve PSHNL™(Q); (dd v)" = p, lIm, _, ; v(2) =< p(£) V£ € 09)
and their envelopes
u(e, n)(z) =sup{v(z), ve B(p, p)}.

The following theorem shows that if B(y, u) # @ then B(e, p) has a lattice
property such that u(¢, u) € B(p, ). In particular, u(e, p) e PSHNL®(Q).

THEOREM 1. If u,ve PSHNLE.(Q) and if u is a positive measure on Q
such that (dd“u)" = u and (dd“v)" = p, then

(dd€ max(u, v))" = p.
The theorem can be deduced from [9, Prop. 6:11]; we give here a direct proof.

Proof. Since (dd® max(u+ ¢, v))" » (dd max(u, v))" as e 0 where ~ de-
notes weak convergence, and since u({z +¢ = v}) = 0 outside a countable set
of es, we can assume that u({u = v}) =0. Let x € D(?) and > 0 be given.
Without loss of generality, we assume that the moduli of # and v are smaller
than 1 on the support of x. Then, by [3], there is an open set O, such that the
Monge-Ampére capacity of O, is less than 5, and u lco,, and v |co,, are con-
tinuous. Extend these functions to continuous functions # and ¢ on .

Denote by u, and v, the usual regularizations of # and v. If s > 0 then by
Heine-Borel there is an ¢, > 0 such that

[ue lsuppqaﬂCO,, < vlsupp‘pﬂCO,,} D {u |supp¢nCO,,+s < vlsuppgaﬂCO,,}
and
{u |supp¢ﬂCO,] > Ve IsuppgoﬂCO,,} 2 {u IsuppvpﬂCO" >v lsuppxpnCOq"'S} Ve < €s.
Therefore

x(ddv)"+ f x(dd®u,)"

{ue>ve

fx(ddc max(,, v.))" Zf

fu,<v,}

> | x(dd®v)" + x(dd®u,)"
O,Ufu.<v} 0,VUtu>v,]

_ fo x(dd )" — fo x(dd<u,)"

n

> [ xt@deuy+ [ x(ddou)"=2ulxl
fa+s<D) {E>0+s}
Since {i1+s < U} and {&# > 0+ s} are open sets, we have
lim [ x(dd® max(u,, v,))" = f x(ddv)" + x(ddu)" — 2] x| 1=
e—0 {ii+s<D) {iT>0+s)
= x dp.+ x dp.— 21| x| L=

fa+s<v) tia>o+s]
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Letting s 0 we get

fx(dd“maX(u, v))”Zfl_ _’xdu+f x dp—21||x|| =
u<v

{ie> 0}

Since it = u and ¥ = v outside Q, and since u({u = v}) =0, we see that

fx(ddf max(u, v))" = fx dp—3n]| x| =,

which completes the proof. O
THEOREM 2. If B(p, n) #9 then u(p, p) € B(p, p).

Proof. An application of Choquet’s lemma shows that there exist v; € B(p, p)
for jeN such that (sup;env)* = u*(p, p), where g* denotes the smallest
upper semicontinuous majorant of g. Thus #*(y, u) is plurisubharmonic on
2, and since v; < u(p, 0), where u(yp,0) is continuous on € and equals ¢
on 4Q (cf. [2]), it follows that lim,_, ; u*(z) < ¢(£), for all £ 3Q. Further-
more, max; < j<,(v;) 7 u*(p, ) a.e. as p— +oo and (dd° max, <<, v;)" = p
by Theorem 1. Since the Monge-Ampeére operator is continuous on uni-
formly bounded and monotone sequences (cf. [3]), we have (ddu*(¢, n))" =
p and so u*(¢, n) € B(p, n) and the proof is complete. Ol

REMARK 1. In [8] it was proved that for dV the Lebesgue measure on C”,
fe LX), and B(p, fdV) # 0, if u = fdV then u(ep, p) solves (i).

3. Some Properties of u(p, n)

From now on, let x be a positive measure with compact support in £. We
can then replace lim by lim in the last condition of (i).

We thus have a sequence of nonnegative compactly supported continuous
functions ¢; such that ¢;dV~pu as i > +oo. Therefore, (dd“u(p, ¢;dV))" =
@;dV ~ p as j — +oo, but the sequence need not be locally uniformly bounded.
However, if B(0, ) ## then (¢;)7-, can be chosen so that u(0, ¢;dV) is
locally bounded.

For if ue B(0, p), let C®>5u;u. Then (dd u;)" ~~(dd u)" = p. Hence
if @ is any nonnegative continuous function, then (dd‘u(0, 0(dd u;))")" ~~
0(ddu)" and 0 = u(0, 0(ddu;)") = (sup 0)""u(0, (dd“u;)") = (sup 6)""u.

REMARK 2. It is natural to ask: If y; » p and —1 < u(0, ;) < 0, does there
exist a subsequence (ji) such that u(0, u; ) — u(0, p) in the sense of distri-
butions? The answer is No. For by [4] there exists a sequence of contin-
uous and plurisubharmonic functions ¢;, jeN, defined on the unit ball
Bsothat —1=¢; < —3 and @j = ¢ as j— +ooin LP(Q) for 1 = p < +oo but
(dd p))" ~~ (dd py)" # 0. If we choose A large enough, the functions y;(z) =
max (A log|z|, ¢;(z)), j€N, are plurisubharmonic and continuous on B.



566 URBAN CEGRELL & SrAwoMIR KOLODZIE]

Then
¥;(z) = u(0, (dd° max(A log|z|, ¢)))")

and (dd‘y;)" ~~ n as j— +oo, where p # (dd° max(A4 log|z|, ¢¢))". But
¥;(z) = u(0, (dd* max(A log|z|, ¢;j(z)") - max(A4 log|z|, ¢o(2))
as j— +oo in LP(B). Note that since y; = A log|z| near dB we have

| dacy,y" = | (da¢ max(aloglzl, wo)"
B B

=f(ddfmax(A log|z, —1))" vjeN.
B

If Y; > u(0, n) in the sense of distributions, it would follow that u(0, u) =
max(A log|z|, o) so in particular (dd(A4 log|z|, ¢¢))"” = p. But since these
two measures have the same mass they would be equal, implying a contra-
diction.

4. The Case = B, the Unit Ball in C"

PRroPoOSITION 1. Let (u;);- be a uniformly bounded sequence of plurisub-
harmonic functions on B with the property that for each j, for each r in
[0,1] and for each € >0, there is a 6 > 0 such that if |z—w|< b and |z| =
|w| = r then |u;j(z) —u;j(w)| < e. Then there exists a subsequence (ji)z=, such
that u;_converges uniformly on B.

Proof. Let(r))jZ,bedensein[0, 1]and let (£j);2, be densein {z € B;|z| =r;}.
Since (u,);~, is a uniformly bounded sequence, we can choose a subsequence
(Jk)K=1 such that lim _, , o, u; (§7) exist for all (§7);°s—;. Note that this means
that u; converges uniformly on each {ze€ B; |z| =r;}, jeN. To avoid too
many indices, denote this convergent subsequence again by (#,);~;. Define
V= (lim;_, ;. 4;)*; then Ve PSH(B) and we claim that ¥,—V uniformly
on B.

To get a contradiction, suppose thereisa o > 0and a sequence zP e B such
that |uj (zP)—V(zP)| > o for all p. We can assume z” - z%¢ B. If u; (z%) <
V(z”) — o then from some po on we have u; (z°) < V(z%) —0/2. 1t is ciear that
llmp_, too Uj < V everywhere and that hmp_,Jroo uj, (z) =lim, _, ;- u;(z) for all
z with |z| = r;. Since the 2n — 1 Hausdorff measure of {z€ B;lim;_, ;o u; <V}
is zero,

f lim u;(r¢)do(t) = f V(ré)de(t) foreveryr, 0<r<l,
| [E]=1

where do is the Lebesgue measure on the unit sphere. In particular,

f| T, r;8) do(8) = f| _ VDde®

£|= t|=1

and so, by Fatou’s lemma, (hmpﬁﬂ° uj) (z) = V(z) everywhere. Choose
now & > 0 so that if |z| =|w| and |z— w| < & then |u;(z) —uj(w)| < o/4.
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Denote by W = {z € B; |z| =|z°|, |z—z°| < 8}° the interior of the polynomial
convex hull of {z€ B; |z| =12°|, |2—2°| < 8}). If ze W, then ze {we B; |w| =
|z7], |[w—z?] < 8}° for all sufficiently large p.

Therefore, uj(z)— ujp(z") < o/4 for all sufficiently large p. Hence uj(z) <
V(z°%) —6/4 and (lim ujp)*(z) < V(2% —0/4 for all ze W; so V(z) < V(z°) —a/4
for all ze W. But since V is plurisubharmonic V(z°) = lim, ~1 V(rz®), which
gives a contradiction since W D (rz?; ry < r < 1} for some ro<l.

Thus, if u; does not converge uniformly to ¥, we must have V(z”)+0 <
ujp(z”), peN. It follows from what we have done so far that V(z?) - V(z°)
as p— +o. Choose k so large that (sup; 4 uj)*(zo) < V(2% +0/2. Since
(sup; » x 4;)* is upper semicontinuous, there is a 6 > 0 such that if |z—z°%| < 0
then (sup;> 4 u;)*(z) < V(z%) 4+ 6/2. In particular, if Jp>k and |z°—z”| <
0, then u;(z”) <V(z°)+0/2 which is impossible since lim, _, ., ; (z”) =
lim,_, ;o V(zP)+0o= V(z°) + 6. This completes the proof of the proposition.

O
THEOREM 3.  Suppose B(0, u) # 0, where u is a positive measure in B that is
invariant under rotations. For every ¢ € C(dB) and every 0 < fe L*(dy),
u(p, fdu) solves (i). Furthermore, if 0 < fe C(B) then u(e, fdu) € C(B).

Proof. Suppose first that 4 has compact support in B. If x is invariant under
rotations, so is (0, n). To prove Theorem 3 we prove that if u is as above
with (ddu(e, p))" = p and if 0 < fe C(B), then u(p, fdu) € C(B) and solves
(1). The proof of Theorem 3 can then be completed by copying the proof of
Lemma 2 in [5].

Since B(0, ) # 0, (ddu(0, n))" = p by [11]. We can then approximate
u(0, n) from above by smooth radially symmetric plurisubharmonic functions
vj, so that u(0, u) =< v; < u(0, ¢;dV’) where 0 < ¢;€ Cg’(B) are rotation invari-
ant with ¢;dV =~ dy as j — +o0. We claim that u(p, f¢;dV’) tends uniformly
to u(e, fdp) and so, by the convergence theorem, (dd“u(e, fo;dV))" ~
(dd u(ep, fdu))" = fdu. Let T be a complex rotation. Then, by the transfor-
mation rule for a complex Monge-Ampére operator,

(dd(u(v, fo;dV)eT1)" = foTo;dV
so that u(v, fo;dV)°T =u(v-T, f-T¢;dV) for each » € C(dB).

By the comparison principle,

(@, f$;dV)T+u(—pT+o,| foT—flé;dV) < u(e, fo;dV)
and

u(e, f6;dV)+u(peT—o,|f-T—flo;dV) < ulp, fo;dV)e-T,
SO

|lu(e, fo,;dV )T —u(ep, fo;dV)]
< 2[sup|p°T—o|—u(0,|fT—f|p;dV)]
< 2[supygle T —p|—(supp|f-T—f)"""u(0, ¢;dV)]
< 2[sup;ple o T—o|—supg| foT—f|"/"u(0, p)].
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By the uniform continuity of ¢ and f on dB and supp u, respectively, the
right-hand side is small, independently of j, when 7 is close to the identity
transformation. By Proposition 1, we can select a uniformly convergent sub-
sequence (u(e, fo;, dV))i~,. By uniform convergence (dd“u(p, fo; dV))" ~
(dd‘ limy u(e, fo;, dV))" . But (ddu(e, fp; dV'))" ~ fdu, which completes
the proof of Theorem 3 in the case when p has compact support in B. Now,
let (x,,(r));»=; be an increasing sequence of nonnegative continuous func-
tions on the real axis such that each function is zero near 1 and such that
Xm(r) 71 as m—oo for all re[0,1[. For each m, we solve (i) with fx,,,du
and find u(e, x,,fdp) as above. Since (x,,)m=1 15 increasing, u(e, x,,fdp) is
decreasing and

u(@, XmSAdp) = || f1| 5, u(0, )+ u(ep, 0).
Since lim,_, ; u(0, p)(§) = 0 for all £ € dB (cf. [11, §11]), lim,, _, , u (e, X,nSd1)
solves (1). O

ExaMPLE. Let 0 <r <1 be fixed and let do be the normalized Lebesgue
measure on {z € C"; |z| = r}. Then

v(z) = max[log|z|, logr] € PSHN L®(B),

1
(2m)"
(dd“y)" = do, B(0, do) + @, and Theorem 3 applies. Thus, if ¢ € C(dQ) and
0 < fe L™(do), then u(e, fdo) is plurisubharmonic on B, continuous on
dB, and solves (i).
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