Efficient Representatives for
Automorphisms of Free Products

D. J. CoLLiNSs & E. C. TURNER

The Scott conjecture for automorphisms of free groups says that if ¢ is
an automorphism of a free group of rank »n, then the subgroup of elements
fixed by ¢ is a free group of rank at most n. This conjecture was recently
settled in the positive in the brilliant paper of Bestvina and Handel [BH],
which applied the Perron-Frobenius theory of nonnegative matrices [Se],
the folding techniques introduced by Stallings [St], and motivations from
the train-track theory of homeomorphisms of surfaces to the study of self-
homotopy equivalences of graphs. In this paper we prove the generalization
of the Scott conjecture to an arbitrary group G represented as a free product
of freely indecomposible factors. Our proof is patterned on that of Bestvina
and Handel: we consider 2-complexes & whose fundamental groups are iso-
morphic to G and efficient self-homotopy equivalences f: X — X (see 2.10)
that generalize the relative train-track maps of [BH]. In Section 1, we define
topological maps of graphs of complexes, describe the way in which they
model automorphisms of free products, and discuss the simplification oper-
ations on them. In Section 2 we define and prove the existence of efficient
representatives for general automorphisms (see 2.12) and establish their most
important properties. In Section 3, we apply the analysis of Section 2 to
construct a “core” & of the covering space & of X corresponding to the sub-
group Fix(¢) (see 3.8) and prove that its fundamental group has Kuros rank
at most that of the group (3.11). This was the approach employed in [GT]
(resp. [CT)) in proving the finite rank of Fix(¢) in the free (resp. free prod-
uct) case.

1. Basic Objects and Constructions

In order to generalize the Scott conjecture, we need general notions of the
(absolute) rank of a group and the (relative) rank of a subgroup (groups will
always be assumed to be countable). If G = %%, G, is represented as a free
product of freely indecomposable factors, then it was shown in [Ku] that
the set of factors (and in particular the number of factors) is well-defined up
to isomorphism. The Kuros subgroup theorem states that if A is a subgroup
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of G then H = F; % /.| H;, where the H; are intersections of H with conju-
gates of the factor groups G; and F; is a free group of rank s which meets no
such conjugate (either of s or ¢ could be o). If the representation of G as a
free product is changed by an automorphism then these intersections change,
but by [BL] the number of factors (and also their isomorphism types) is
invariant. The following terms are therefore well-defined.

1.1. DeFiNITION. If G is a group and G = % /2, G; where each factor G; is
freely indecomposable, then m is the Kuros rank of G—denoted K-rank(G).
If H is a subgroup of G such that H = F; *}=1 Hj as above, then s+ is the
Kuros subgroup rank of H in G—denoted K-rank(G, H).

Comment: Clearly K-rank(G, H) < K-rank(H) in general. The two are
equal if s = 0 and the factor groups H; have the property that none of their
subgroups decompose nontrivially as free products—for example, if G is a
free product of finite groups. Also, K-rank(G, H) is invariant under abstract
group isomorphism.

Our main theorem is the following.

THEOREM 3.12. If ¢: G — G is an automorphism, then

K-rank(G, Fix(¢)) < K-rank(G).

1.2. GraprHsS oF CoMPLEXES. The multiplication table complex Cg of the
group H is the standard 2-complex associated to the multiplication table
presentation of H: thus Cy has a single vertex, an edge for each pair {x, x ™!}
in H, and a 2-cell ¢ with dc = xyz for each relation xyz =1in G. A graph of
complexes X is the union of a graph X with a family {C;} of 2-complexes
called the factor complexes, where C; is the multiplication table complex
CG, of a freely indecomposable group G; # Z with an edge ECj called its
stem that joins a vertex Vg, of X to CG,- (We use multiplication table com-
plexes for uniqueness of representation of group elements by paths: if finite
complexes were required, say, then other choices could be made. Stems arz
included for convenience in keeping track of “countries” in the covering
spaces of Section 3 and can be safely ignored elsewhere.) The union of the
factor complexes (including stems) is denoted by C(9). The edges of the
underlying graph X are real edges and the edges of the factor complexes arz
infinitesimal edges. An infinitesimal x in the complex C is a loop at v, of the
form x = EceE, where e is an edge of the multiplication complex. (Thz
term infinitesimal is used because, when lengths are assigned to edges in
Section 2, the edges of the factor complexes will always have length zero.)
Clearly the fundamental group 7{(I) is isomorphic to the free product of
the free group (X)) with the groups G;. The rosebush R for the free prod-
uct G =F; %/_; G; is the graph of complexes whose underlying graph X is
a bouquet of s circles with vertex v; together with ¢ free edges to which the
stems for the ng are attached: clearly 7;(R g, vg) = G. Graphs of complexes
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are the topological models for free products which we use in a manner analo-
gous to the familiar way in which graphs model free groups.
The following proposition is clear.

1.3. PropositioN. If & is a graph of complexes whose underlying graph X
has rank s and whose factor complexes correspond to freely indecompos-
able groups {H,, ..., H,}, then for any vertex ve X,

7r1(fr, U) = F;. *Jf:lHl
Furthermore, K-rank(w (X, v)) =s+¢.

1.4. ToPOLOGICAL MAPS AND REALIZATIONS OF AUTOMORPHISMS. A map
N ) 6

between graphs of complexes is topological if it is a continuous map satis-

fying the following conditions.

(1) f carries vertices to vertices.

(2) The restriction of f to each factor complex C; is a homeomorphism
onto a complex C; which maps edges to edges and stems to stems.

(3) Every real edge of X can be subdivided as [z, 2;, ..., 2,] in such a way
that f|(,, ., maps the subinterval [z;, z;;,] linearly across a real edge
or an infinitesimal. Furthermore, no two successive subintervals are
mapped to inverse real edges or to infinitesimals in the same factor
complex.

Note that a topological map f is locally injective on real edges. Standard
techniques show that any continuous map between graphs of complexes is
homotopic to an essentially unique topological map. This process will be
called tightening in general and real tightening if real edges are involved.
(For uniqueness, it is important that the factor complexes are multiplication
complexes.) A map is called a train-track map [BH, p. 8] if every iterate
f¥of fis topological. Train-track maps have the property that if each edge
can be assigned a length in such a way that f has the effect of increasing the
length of each edge by the same factor A, then f has the same effect on the
lengths of legal paths.

If f:9— X is topological homotopy equivalence and pu is a path in &
from v to f(v), then the path-induced automorphism = (f, n): ©(X, v) —
71(C, v) is defined as

m (f, W) ({a]) = [pef(a)ea].
(In general, the inverse of a path ¢ is denoted by 4.) If u, is the constant path

at a fixed point v, then we call =,(f, u,) a point-induced automorphism and
Write Wl(fs ﬂu) = Wl(f’ U).

1.5. DerINITION. If ¢6: G— G is an automorphism of G, then a represen-
tative of ¢ is a topological self-homotopy equivalence f of a graph of com-
plexes &, a path x in &C, and a homotopy equivalence 7: R; — X with 7(vg) =
1(0) = v so that the following diagram commutes:
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G = m(Rg, vg) LN 71 (X, v)
¢ | mm
G = m(Rg, vg) LILZN (X, v).

A rosebush representative is one for which I = ®; and 7 is the identity.

1.6. PRrROPOSITION. A topological map [ of a graph of complexes X is a
homotopy equivalence if and only if = (f, p) is an isomorphism for any p.
Every automorphism ¢ € Aut(G) has rosebush representatives.

Proof. Clearly, if f is a homotopy equivalence then 7;(f, n) is an isomor-
phism for any u. It is easy to reduce the converse to the case in which p is the
constant path at a fixed point vy. So assume that #;( f, vy) is an isomorphism.

Case 1: The underlying graph X is a tree T (perhaps infinite and with in-
finitely many factor complexes).

The fundamental group G = % G; is a free product of the fundamental
groups of the factor complexes, none isomorphic to Z, and w;(f, vo)(G;) is
a conjugate of G, ;) for some permutation ¢(i) [Fo]. If f(T) C T, then f is
clearly a homotopy equivalence (since then f is well-defined on /7). In
general, let f; be some homotopy equivalence of & which carries the factor
complex C,;) to C; by the inverse of the homeomorphism f|¢ (with e.g.
Sf(T)CT),and let f'= fof;. Thus f is a homotopy equivalence if and only
if f”is, and f” fixes all the factor complexes.

Claim: The map [’ is a homotopy equivalence.

Proof of claim: The induced map w;(f’, vo) is an isomorphism and f” fixes
all the vertices at which factor complexes are attached. By a homotopy sup-
ported near the remaining vertices we can arrange that it fixes all vertices.
After tightening, then, the image of f“ on each edge (and so each path) is
determined by an element of * G, the intermediate tree segments being
uniquely determined, and the automorphism = ,(f’, vy) has the effect of con-
jugating each G; by the label on the path from v, to the vertex at which C; is
attached. The inverse automorphism has the same form—the homotopy in-
verse for f” fixes the factor complexes and is defined on edges to give the
conjugating elements for this inverse.

Case 2: X is any graph of complexes.

Let K be the normal subgroup of G generated by the factor complexes;
that is, K is the kernel of the map on 7, induced by the map that collapses
each factor complex to its vertex in X. Let X be the covering space of X
corresponding to K. Since K is invariant under f, there is a lift fx: Xx — Cx
covering f and (see 3.2(iii)) v, is covered by a fixed point &, of fx. Further-
more, fx induces an isomorphism on (X, #iy). (K is the normal subgroup
generated by the factors of G that are not isomorphic to Z. The argument
of step 1 of Theorem 2.11 below shows that if a free factor is invariant under
an isomorphism of a finitely generated free product, then the restriction is
an isomorphism.)
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The covering projection map is an isomorphism on all homotopy groups
beyond the first, so fx induces an isomorphism on = if and only if f does.
But by Case 1, fx is a homotopy equivalence. It follows that f induces an
isomorphism on all homotopy groups and, since X is a CW complex, it fol-
lows from the Whitehead theorem [Sp, p. 405] that f is a homotopy equiva-
lence. This completes the proof of the first statement of the proposition.

Rosebush representatives can be composed, so it suffices to show that
generators of Aut(G) can be induced by topological maps. It is routine to
show that all the Fouxe-Rabinovitch generators [Fo] have rosebush repre-
sentatives—in fact, these representatives can be taken with trivial paths pu.

|
Just as in the case of free groups, varying the paths p between the basepoint
v and its image f(v) corresponds to varying the automorphism through its
outer automorphism class. Thus a representative f corresponds to an outer
automorphism O of G.

1.7. MATRICES M AND PF-INDICES A(M). If M = (my) is an n X n matrix
of nonnegative integers, define I'(M) to be the directed graph with vertices
{1, ..., n}and an edge joining / to j if m;; > 0. This partially orders the indices
{1, ..., n} by the condition

i < j & thereis a directed path in I'(M) from i to j.

This condition is equivalent to the existence of some power M* = (m,‘f))

of M so that the image of the ith basis vector under M* has a nonzero value
in the jth position—i.e., mj(,k) > 0. The relation < determines equivalence

classes of indices; namely,
i=sjelkli<kli=tk|j<k].
M is said to be irreducible if I'(M') has one equivalence class.

Comment: In [BH, §5] i and j are defined to be equivalent if i < j and
Jj =<, but their proofs suggest that they are working with the above defini-
tion. The two notions agree except for classes determining zero diagonal
blocks (see discussion following 1.8). For example, the matrix

1 11
0 0O
0 0 O

has two equivalence classes relative to the definition given above but three
relative to that in [BH].

1.8. THEOREM. Suppose that M = (my;) is an irreducible n X n matrix of
nonnegative integers.

(i) There is a unique positive eigenvector w of norm 1 for M which has
associated eigenvalue A\(M) = 1.

(ii) If v is a positive vector, p >0, and Mv < uv with at least one com-
ponent inequality strict, then A(M) < u.
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(iii) If M, is an irreducible square matrix obtained from M by reducing
some entries or by deleting pairs of rows and columns, then A(M;) <
A(M).

(iv) Foranyi,j, mj;<A".

The eigenvalue A will be called the PF eigenvalue of M and an associated
eigenvector a PF eigenvector.

Proof. Statements (i) and (ii) are the Perron-Frobenius theorem, a proof
of which is in [Se].

(i11) Suppose that M, results from reducing some entries of M and that v
is a PF eigenvector for M. Then M;v < A(M)v and at least one component
inequality must be strict. Hence, by (ii), A(M;) < A(M).

Now suppose that some pairs of rows and columns of M are deleted. With-
out loss of generality we may assume that M, is the leading r X r submatrix
of M. If vis a PF eigenvector for M and w consists of the first » entries of v,
then M,v < A(M)v. Since M is irreducible, some entry in the upper right-
hand block of M is nonzero and therefore in the inequality M;v < A(M)v at
least one component inequality is strict. Again the result follows from (ii).

(iv) Write w = (b;). From Mw = Aw we have m;;b; < Ab;. Choose k such

that m},-k) + 0. From M*w = Mw we obtain m},-k)bi < /\kbj. Combining these

and cancelling b;b; gives m;m{” < Ak+1,

Since M is irreducible, the directed graph I'(M) is path-connected. In
particular, there exists a path of length at most » —1 from the vertex i to the
vertex j and so we can choose kK < n—1. (This argument is due to Aidan

Schofield.) O

If M is an n X n matrix, then simultaneous permutation of rows and col-
umns can be performed so that i < j = i< j. This puts M into the form

M, ? ? ?
m=| O M P
0 0 - M,
where the matrices M, are either zero matrices or irreducible matrices, each
of which corresponds to an equivalence class under the relation <. The M,

are determined up to row-column permutation, so in particular the set of
PF values of the diagonal blocks is well-defined.

1.9. DEfFINITION. The PF index A(M)=1{A; zA;, = ---=A;} of M is the
nonincreasing list of PF values A; > 1 of the matrices M;. The set of PF in-
dices is ordered lexicographically (with zeroes added at the end if necessary).

1.10. THEOREM. For any PF index A( and integer n, there are only finitely
many A(M) < A, associated with nonnegative n X n integral matrices M.
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Proof. This is a consequence of 1.8(iv). Since all the diagonal blocks M, of
M have size bounded by #, their entries are all bounded by A" where A is the
largest entry in A. O

1.11. STRATIFICATION OF & AND A(f) FOR TOPOLOGICAL f: X — . Suppose
that f: 9 — X is topological and that {£),, ..., E,} is the set of real edges of .
If m;; is the number of times f(E;) covers E; (regardless of orientation), then
the transition matrix M( f) = (m;;) and the PF index of f is A(f) = A(M(f)).
The real edges of X are grouped into equivalence classes by the relation <
and these classes can be linearly ordered. The rth stratum 3C, is the union of
the closed edges in the rth equivalence class (with 3y = C(X)) and the rth
subgraph of complexes X, is \Uj-(JC;. Thus f determines a stratification
of &:
C(X)=AyCX,C---CX,,, =X

The stratum JC, is called growing, level, or descending according as the cor-
responding diagonal matrix is irreducible with PF value > 1, is irreducible
with PF value =1, or is a zero matrix.

1.12. OPERATIONS ON TOPOLOGICAL REPRESENTATIVES f AND EFFECTS ON
A(f). The basic strategy for proving that efficient representatives for auto-
morphisms exist is to start with a topological representative f: X — X of
¢ € Aut(G) and to improve it, the measure of improvement being the PF
index A(f). The basic operations (following [BH]) are the following:

(1) pruning (collapsing invariant and pretrivial forests);

(2) adding a prevertex (BH subdivision);

(3) valence-1 homotopy (including pruning);

(4) valence-2 homotopy (including pruning);

(5) core subdivision;

(6) folding; and

(7) adding isolated fixed points to the vertex set.

Comments on the Basic Operations: These operations are all analyzed in
[BH] for the case of ordinary graphs, and their results carry over to the
setting of graphs of complexes with the following qualifications. The forests
(which are unions of whole edges) to be collapsed in pruning—either maxi-
mal forests that are invariant under f or that are mapped to the vertex set by
some iterate of f [BH, paragraph before 1.5]—are contained in the under-
lying graph X: in particular, stems are not collapsed. Adding a prevertex
(i.e., a point whose image is a vertex of X)) is exactly the same as in [BH,
Lemma 1.10] (where it is called subdivision). Note that all prevertices lie
in X. Valence-1 and -2 homotopies [BH, Lemma 1.11 & Lemma 1.13] are also
the same with the understanding that the vertices in question have degree 1
or 2 in X and have no factor complexes attached. Core subdivision can also
be defined as in [BH, proof of Theorem 5.12]. Core subdivision is applied
to a particular stratum JC,: each edge E € JC, is subdivided (perhaps) into
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three subedges such that (a) each point in the initial and terminal subedges
is mapped to JC,_; by some iterate of f and (b) these “germs” are maximal
with respect to this property.

The basic operation of folding on a graph of complexes is exactly as in
[BH], but its use in the context of illegal turns in irreducible Nielsen paths
requires comment. For us, a furn at v is a pair (Ej, E,) where E, and E, are
real edges and the terminal vertex of E is the initial vertex of E,. The turn
(E\, E,) is degenerate if E, = E;. We call (E,, E,) a real turn if f(E,) =
... E{and f(E,) = Ej; ..., where the E's are real edges; in these circumstances,
the image turn is f({(E,, E,)) = {Ej, E3). We shall be concerned only with
real turns all of whose iterated images under f are also real; such a turn is
said to be illegal if some image under f is degenerate and /egal/ otherwise.
With this notion of illegal turn, the Bestvina~Handel discussion of folding
carries over (in particular, the issue of full as opposed to partial folds in the
analog of [BH, Lemma 3.7]).

An operation that replaces f with f’ will be called safe if A(f’) < A(f)
and beneficial if A(f') < A(f). The following theorem summarizes the ef-
fects of the above operations.

1.13. THEOREM. All of the basic operations are safe with one exception: a
valence-2 homotopy applied to a valence-2 vertex v which is in the interior
of a growing stratum 3C,. The following are beneficial: valence-1 homo-
topies, pruning that involves any edges in growing strata, and folding when
real tightening is necessary.

Proof. The basic operations are analyzed by Bestvina and Handel in [BH]
in the free case, and their proofs carry over to the general case with the
above comments. Pruning is discussed in [BH] in the paragraph preced-
ing the statement of Theorem 1.7, adding a prevertex in Lemmas 1.10 and
5.1, valence-1 homotopy in Lemmas 1.11 and 5.2, valence-2 homotopy in
Lemmas 1.13 and 5.4, and folding in Lemmas 1.5 and 5.3. Core subdivision
or adding an isolated fixed point to the vertex set may add level or descend-
ing strata, but the growing strata and their PF values are unchanged. [

2. Efficient Representatives

The goal of this section is to define and prove the existence of efficient repre-
sentatives f: L — X (see 2.10). These representatives generalize the relative
train-track maps of Bestvina and Handel for the case of free groups and
play the same role in the proof of the Scott conjecture. The key step in both
analyses is the understanding of Nielsen paths (see 2.1) and the definition of
a measure of r-length of paths in &, for growing strata JC, (see 2.9).

2.1. DErFINITION. A path p between fixed points of f is a Nielsen path (NP)
if f(p) is homotopic to p relative to its endpoints, denoted f(p) ~ p. An in-
divisible Nielsen path (INP) is a real Nielsen path that is not a nontrivial
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product of real Nielsen paths or an infinitesimal Nielsen path that lies in one
factor complex. A Nielsen path p has height r if p lies in 9, and contains
edges of 3C,.

Two technical problems arise in the general case due to the presence of in-
finitesimals. Suppose, for example, that p = ¢Ey is an INP, with f(E) =
-+« Ex; then f(y) =y’ and y = xy’. But there may be many infinitesimals z
such that z = xz’ (2= f(z)), producing perhaps infinitely many INPs of the
form ¢Ez. Furthermore, if p = p;xp, (where p; and p, are INPs and x is
a fixed infinitesimal), then p = (p;X)p, = p,(xp,) are distinct factorizations
into INPs. This motivates the following definition.

2.2. DErINITION. A Nielsen path is real-ended if it begins and ends with
real edges. The topological representative f: L — X is neat if any INP p’ can
be written as p’= xpy for fixed infinitesimals x and y and a real-ended INP g.

2.3. PropPoOSITION. Suppose f: X — X is a topological representative. Then:

(1) fis homotopic to a neat representative; and
(ii) if f is neat then any Nielsen path can be factored uniquely into real-
ended and infinitesimal INPs.

Proof. (i) Consider first the case indicated above (in which the £ appearing
in f(p) is in the image of E£); namely p = oEYy is a Nielsen path with f(EF) =
.-« Ex, f(y)=y’, and y = xy’. First, “untighten” f by subdividing E into
E,E,; map E| to the image of E followed by y’ and E, to y’~.. Then fold £,
against y (which has the same image as E,) to get E; mapped to --- E;y ~'xy".
But y ~'xy’=1, so tightening gives the desired map. This is described in Fig-
ure 1, where the image of an edge is indicated (in parentheses) below the
edge and denotes the factor complex.

Start Untighten
E E, E,

* * * * *
(...Ez) (...E1Bpzy’) (v )
Fold E, Tighten

E] El
* * * *
(... Eyy 'zy") (... Ev)

Figure 1 Neatening a topological representative
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The remaining possibility is that the £ appearing in f(p) is in the image of
o, and so p = oEy, f(0) =cEa, and f(E) = ax= oyy’~! for some real «.
First subdivide and untighten E as E = E,-E, - «y-y’~! and then subdivide
o as g,-0,~ 0,0,E,-E,&. Fold E, against y~! (as above), producing a real-
ended INP 0,0, E; where

01— 0102 E),
gy y’—l&’
El = ay’s

Now fold E| against &, to get the INP g,. The effect of these steps is to re-
place the original INP p by the shorter ¢, without increasing the number of
edges in the graph (the original £ has vanished but ¢ has been subdivided).
A finite number of these steps, together with those described by Figure 1,
produces a neat representative.

(ii) If /" is neat, then any Nielsen path can be uniquely factored into real-
ended INPs and infinitesimal bits. Each such bit is a fixed element in a free
product under an automorphism that permutes or preserves the factors and
so must be a product of fixed elements of the factors. O

The above neatening process can be applied to any topological representa-
tive to produce a neat map and also preserves all properties of interest.

2.4. PROPOSITION. A neat map has only finitely many real-ended INPs.

2.5. DerNITION. If f is neat and JC, is a growing stratum, then N(f, r) is
the number of real-ended INPs of height r and

N(f)= 3 N,
growing 3C,

Comment: Neatness is a convenience here rather than an esential condi-
tion: for maps that aren’t neat, one could define N(f, r) to be the number of
equivalence classes of INPs of height r, where two such classes are con-
sidered equivalent if they differ only in infinitesimals at the beginning and
end.

Proof of Proposition 2.4. Since f is topological, it has only finitely many
fixed points other than whole fixed edges, so it suffices to show that there
are finitely many INPs joining a particular pair. If {py, oy, ...} is an infinite
set of distinct INPs joining xq to x;, then {o;, = p;pg': i = 1} is an infinite set
of distinct elements of the free part of Fix(w(f, xy)), which is known to be
finitely generated [CT]. Suppose that {A,...,A;} is a set of generators of
the free part of Fix(m(f, x9)). Then each A; is homotopic to a product of
INPs and any word in the A;s is a product of at least as many INPs as the
length of the word. But this could only account for as many as (22k ) prod-
ucts of two INPs, contradicting the infinity of the list {g;: i = 1}. il
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The proofs of our main theorems require that we begin with a representative
of minimum A value, the existence of which is complicated (as in [BH]) by
the fact that valence-2 homotopies are not always safe. In an earlier version
of this paper, we “proved” that for any representative of an automorphism
¢ there is a geometrically bounded representative—that is, one for which
the graph of complexes & has no vertices of degree 1 or 2—whose A value is
no larger. Since there are only finitely many geometrically bounded repre-
sentatives of any automorphism, this would prove that there is one with
minimum value of A. We are indebted to Warren Dicks and Enrique Ventura
for convincing us that in our “proof” the quotes are necessary. We therefore
mimic the method of [BH] by considering representatives f such that A(f)
“looks like” it belongs to a geometrically bounded representative.

2.6. DEFINITION. The representative f is bounded if it has no more than
3n—3 strata (the maximum possible among geometrically bounded repre-
sentatives) and if each A, € A(f) is the PF value associated with some matrix
of size (3n—3) X (3n—3). An(¢) = min{A(g)]g is a bounded representa-
tive of ¢}.

2.7. ProrosITION. If f is a bounded representative of ¢ such that A(f) =
Anin(¢) and if f is obtained from f by safe moves, then A(f) = A pin(®).
There are finitely many bounded representatives g of ¢ such that A(g) is
less than any given bound.

Proof. The proofs of Lemmas 5.1-5.6 of [BH] apply with all operations
generalized as in Section 1. This proof leaves open the possibility that there
are nongeometrically bounded representatives with strictly smaller A values.
It would be interesting to know whether this possibility can occur. O

We are now in a position to define the central notions of this section: that of
a relative train-track map (2.8) and of an efficient representative (2.10) for
an automorphism of a free product.

2.8. DeriNITION. The topological representative f: X — X is a relative train-
track (RTT) map if the following conditions hold for each growing stratum
JC,.
(i) f preserves r-germs if, for each edge Ee€ JC,, f(FE) begins and ends
with edges in JC,. (Note: this means that turns with both edges in JC,
are legal or illegal as discussed in 1.12.)
(ii) f is injective on r-connecting paths if, for each nontrivial path o €
X,_, joining points of 3C,N,_;, [ f(«)] is nontrivial.
(iii) f is r-legal if o r-legal implies that f(o) is r-legal.

2.9. MEASURING LENGTHS OF PATHS INX,. If f: 9 —» X isan RTT map and
JC, is a growing stratum, then (as in [BH]) an eigenvector for M(f), deter-
mines a length L, (E) for each edge E of the growing stratum 3C,. For an r-
legal path ¢ composed of whole edges, define
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L,-(O') = 2 Lr(E)
EceNX,

Since f is topological, L,(f(E)) = A,L,(E). It follows from 2.8(ii) and
2.8(iii) that on any r-legal ¢ composed of complete edges, L,(f(0)) =
ArL,(g). Suppose that u;€ X,_; and A;e 3C,; then

0= poA sy Ak = [F(0)] =[S () ILSOADIS ()] o LA ()]

and the [ f(u;)] are nontrivial. If o0 € 3C, is any path, then o = v,G, for germs
v; and v,. Let L, (o) = L,(5) and define

< L,(f"(0)) )
Al
(Note that the sequence is increasing and bounded by the length of the path
extending o that includes the whole edges in which v, and v, are contained.)
It follows that, for all r-legal paths 6 € X,, L, (f(0)) = A,L,(0).
This defines a measure of length for arbitrary paths in 9,, since any path
can be factored into a product of legal pieces; the r-length of X is

L(X)= > L.(E).
EcC3,

L, (o) = lim

nt —co

By a metric RTT map we mean an RTT map f together with length func-
tions L, (corresponding to eigenvalues A,) as above.

2.10. DerINITION. The map f is stable if A(f) = A (¢) and N(f) is the
least value among all representatives with PF index A_;,(¢). We say f is
efficient if it is a neat, stable relative train-track map with the additional
property that, for each growing stratum JC, and INP p, of height r, L,(p,) =
2L ,(90).

2.11. THEOREM. If f:X — X is efficient, then for each growing stratum
JC, there exists at most one real INP p, of height r.

2.12. THEOREM. For any automorphism ¢, there exist efficient representa-
tives.

Proof of Theorem 2.11.

Step I: It suffices to prove the theorem for the case in which JC, is the top-
most stratum.

If there is a real INP p of height r, then f maps the component of &, con-
taining p back to itself, and irreducibility of the rth stratum shows that there
is only one component fi, of &, containing real edges (the remainder being
complexes at isolated vertices of X). To establish step 1 it suffices to show
that the restriction f, of f to the invariant subcomplex X, is a homotopy
equivalence.

If xo is an endpoint of p then clearly ,(f,, xo) is an injection. Let G and G
be the fundamental groups of & and &,, respectively, and let o = w1 (f, Xo)-
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Without loss of generality we can assume that G2 G. If | is not a sur-
jection, then

G2G2a(6)

is a strictly decreasing sequence. But since « is an automorphism of G, an
application of the Kuro$ subgroup theorem shows that «(G) is a free factor
of G, which contradicts that fact that G and a(G) have the same K-rank.
(The application of the Kuro$ subgroup theorem is as follows. Write H =
G and K = a(G), so that G2 H 2 K and KX is a free factor of G; we show
that K is a free factor of H. H is represented as a subgroup of the free prod-
uct G = K% L, where L is any complementary free factor in a way that con-
tains a free factor HNuKu~" for u a representative of the double coset HK
[Co, pp. 175-180]. Taking u =1 gives K as a free factor of H.) Thus 7 ( f}, Xqo)
is an isomorphism. But since f, is a topological map of a graph of com-
plexes, it follows (see 1.6) that it is a homotopy equivalence. This finishes
step 1.

Suppose a choice of length functions L, has been made so that f is a metric
RTT map. Arguing as in [BH, Lemmas 3.4 & 5.11], each real INP p of height
r contains one illegal turn in 3C, and p = a3, with the illegal turn between «
and B. Furthermore f(a) = a7, f(8) = 67, and “folding the INP p” to pro-
duce a representative f’ is defined as in [BH, p. 21]—namely, folding the
initial edge of & against that of 3 (or appropriate germs in either case). If
the L, length of the folded edge is / and p’ is the resulting INP in 9C’, then
L,(p")=L,(p)—2land L (X)=L(X)-/

Each fold is either a partial fold, in which each of the edges is subdivided,
or a full fold. Full folds are of two types: those that fold a full edge against
another full edge (full-full) and those that fold a full edge against a partial
edge (full-partial). Partial and full-partial folds preserve both 2.8(i) and
2.8(ii). That 2.8(i) is preserved is straightforward (note that no real tighten-
ing could occur because A is minimal). Since partial and full-partial folds
do not identify points in JC,NX,_,, any pretrivial path would have to be
a loop, an impossibility since f is a homotopy equivalence. Thus 2.8(ii) is
also preserved by partial and full-partial folds. Finally, the proof of [BH,
Lemma 5.9] generalizes to show that since A = A,;,, 2.8(iii) follows from
2.8(i1). Thus, for efficient maps, partial and full-partial folds produce effi-
cient maps.

Full-full folds preserve 2.8(i), since the strata and the maximal initial and
terminal germs that would become new edges after a core subdivision are
exactly the same after a full-full fold as before. But full-full folds may
destroy 2.8(ii) by introducing inessential connecting paths. Restoring 2.8(ii)
by folding out inessential connecting paths of height s < r as in [BH, Lemma
5.14] (and step 1 of the proof of 2.12 below) produces an RTT map f* whose
rth stratum is the same as that of f’. Thus, in all cases, folding the INP p
produces a metric RTT—f* in the case of full-full folds, and f’ otherwise.
Each triple (XC, f, p), where p is an INP in a growing stratum of the metric
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RTT map f, thereby generates an infinite chain of such triples, denoted
by W(XC, f, p) by iterating this process.

Step 2: Since f is stable, each fold encountered in the construction of
W(X, £, p) is a full fold.

The argument, as in [BH, Lemma 5.17], is that otherwise one could sub-
divide and collapse an initial segment of 7 to produce a representative in
which the INP corresponding to p lies in a nongrowing stratum, thus reduc-
ing N(f) and contradicting the stability of f.

Step 3: In “W(X, f, p), only finitely many ratios L,(p)/L,(C) are encoun-
tered.

For any particular representative f: X — X, there are only finitely many
ratios for all INPs, since there are only finitely many INPs. In fact, the ratios
achieved will depend only on the definition of f on the real edges, since they
depend only on the placement of the fixed points (determined by how each
edge covers itself) and the measure of length (determined by M(f),). Since
all folds in the construction of “W(C, f, p) are full, the number of edges is
bounded. The argument of [BH, Lemma 3.7] then shows that finitely many
f can arise.

Step 4: 1f no full-full folds are encountered in W(X, f, p), then L, (p) =
2L ,.(X).

Each full-partial fold produces a neat, stable relative train-track map
(without tightening); thus, if (X, f/, ') is obtained from (9, f, p) by fold-
ing a path of length /, then L (X’) =L, (X)—2/ and L,(p’)=L,(p)—!. If
L,(p) # 2L,.(X) then the ratio moves strictly away from 2 (the segment from
the point (L,(XC), L,(p)) to (L,(X’), L,(p')) in the xy plane is parallel to the
line y = 2x and both points are off the line). So if L,(p) # 2L (), we obtain
infinitely many ratios, contradicting step 3.

Comment: It is unclear to us whether this ratio condition will hold in
general. If f were an efficient map with an INP p and a real edge E not in g
that could be “unfolded” to give another RTT map, then the ratio condition
would fail for this new RTT.

Step 5: If 3C, is growing, there is at most one INP of height r.

If there are two distinct INPs p and p’ of height r, stability implies that
they remain distinct through the infinite sequence “W(C, f, p). Since full-
full folds reduce the number of edges in JC,, only finitely many can occur
and we can find a stage (X, £®, %)) in the sequence “W(, f, p) beyond
which none are encountered. Step 4 then guarantees that the ratios are con-
stantly equal to 2 beyond this point, and the rest of the argument as in [BH,
Lemma 3.9] finishes the proof. O

Proof of Theorem 2.12. We begin with a neat stable topological representa-
tive f: L —» X, the existence of which is guaranteed by Proposition 2.6, and
perform operations (steps 1 and 2 below) that preserve stability and neatness
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and which lead in finitely many steps to a relative train-track map. To obtain
the ratio condition we fold the INP p, (which is unique by 2.11), moving
through the representatives in “W(C, f, p) until we get beyond all full-full
folds (see 2.12, step 5), and repeat step 2 below if necessary to produce the
desired efficient representative.

Step 1: There are finitely many r-connecting paths for growing strata JC,
whose images f(«a) are homotopically trivial—call them pretrivial. As in
[BH, Lemma 5.14}, they can be folded out, starting with the top stratum.
Folding out connecting paths at height » will not introduce any new ones
at height r or higher, and each such folding reduces the number of points
in 3C,N X, _;. This process will therefore terminate in a stable representative
which is injective on r-connecting paths for all growing strata JC,.

Step 2: Perform a core subdivision of each growing stratum, in any order,
to produce a representative which preserves r-germs for all growing strata 3C,.
Core subdivision preserves injectivity on connecting paths. This is obvious
on all strata other than the cored stratum JC,; for JC,, we must consider
connecting paths that may begin or end with edges in a new stratum that
were formerly germs. But if v, and v, are germs and o = vy, is a pretrivial
path, then f(vy,;) = f(¥,) and «’is pretrivial. So, if there are any pretrivial -
connecting paths after the coring, there were before. Finally, the proof of
[BH, Lemma 5.9] generalizes to show that since A = A;,; 2.8(iii) follows
from 2.8(i). C

3. The Scott Conjecture for Free Products

The problem is to show that for f: 9 —» X and a path u in &, the Kuros rank
of the fixed-point subgroup of the path-induced automorphism m(f, ) is
less than or equal to the Kuro§ rank of 9. We begin (as in [BH]) with an
analysis that reduces the general case to that in which =;(f, ) = m(f, v), a
point-induced automorphism. Let 5: 9 — % be the universal covering of X
with covering translation group T. Associated with each lift & of a point v
in &, there is the standard isomorphism

0;: T—m(X,v) givenby 6;(¢) =4[v, t(D)],

where [, t(§)] is any path in & from & to #(7).

3.1. DerINITION.  For any lift 7 of f, define {7: T — T so that the following
diagram commutes:
N

X
Lo
.

B — 82

7
—

~

3.2. PROPOSITION. Suppose that f is a lift of f and that U is a lift of v.
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(i) If p = (D, f(D)), then the following diagram commutes:

T 25 7, v)
| | miw
T 25 7%, v).
(ii) 4ny 7(f, 1) appears in such a diagram for that lift f of f such that
J(0) = (1) for p the lift of u starting at ©.
(iii) {7 E!etermines a point-induced automorphism under ©;_ if and only
if (o) = o. )
(iv) If 0y is a fixed point for f and o = [, 5], then f(a) = jice.
(v) Fix(§p) = (¢|ef = fi}.

Proof. Suppose that {7(¢) = ¢". Then ft = ¢'f, and we have

T (S, 0)(O3(2)) = pef(n(D, L(D)]) ot
= q[8, £(D)]onf 10, t(7)]en(t'D, ££(9)]
= ([0, f(0)1[S (), £ ()]=[¢'f(D), 'D])
= n([5, t'D])
= 0;(¢')
= 0;({7(1)).
This verifies (i). If & = [, §y], then f(&) = [f(D), §p] = [F(D), D], Ty], es-

tablishing (iv). The remaining statements follow easily from the definitions.

O
Thus the path-induced automorphisms =;(f, n) fall into sets of conjugate
automorphisms (with isomorphic fixed point subgroups) according to the
lifts f. Furthermore, the class determined by f contains a point-induced
automorphism if and only if f has a fixed point.

3.3. PropositioN. If K-rank(T, Fix({7)) = 2, then f has a fixed point.

Proof. Suppose that f is fixed-point free. We use the strategy of [GT] and
[CT] to show that the edges of an appropriate graph can be directed in a
way that guarantees rank at most 1. As described in [CT], the universal
cover & of & is composed of countries (which cover factor complexes) and
real edges (which cover real edges of ). Each real edge £ of & can be di-
rected by choosing an interior point & € E in the edge and using the direction
of the first (partial) edge in the reduced path [, f(#)]; this is well-defined
since & is simply connected and f(§) # 0.

Claim:
(i) At each vertex that is not in a country, exactly one edge is directed
out.
(ii) Among the edges incident to a particular country, at most one is
directed out.
(iii) There is at most one country with no outwardly directed edges.
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Proof of Claim: The condition determining directions on edges works
equally well at vertices which are not in countries, verifying (i). If an edge
incident to a country is directed away from the country, then—since f carries
countries to countries—paths determining directions for all vertices in the
given country will leave the country on the unique edge on the way to the
image country, verifying (ii). A country has no outwardly directed edges if
and only if it is setwise fixed by f: if there is more than one of them, choose
two such that the real-ended path between them encounters the fewest coun-
tries. Since f must permute these countries in an order-preserving way (paths
are homotopically unique) there are no outwardly directed edges. But then
the path is a sequence of real edges which is stretched over itself by £, and
must have a fixed point by the Brouwer fixed-point theorem. This establishes
(iii), completing the proof of the claim.

Now consider € = X/ Fi)i( {7), the covering space of & with fundamental
group~Fix(§’f-). Since ¢f = ft for all teFix({7), X inherits edge directions
from 9C, satisfying properties (i)-(iii), and (iii) guarantees that at most one
country in % is essential (i.e., has nontrivial fundamental group). Collapse
each country of & to a point to form a graph X. If there are no essential
countries, then (%) = 7r,(f( ) and the edge directions induced on X imply
that w,(f( ) is trivial or free of rank 1 [GT]. If there is an essential country
C then m(X) = WI(X)*WI(C) and 7;(C) corresponds to a conjugate of a
subgroup of one of the factor groups. But in this case the edge directions on
X have a sink—the collapsed C—implying that the fundamental group of
X is trivial. In either case, the proposition follows. 0

A restatement of Proposition 3.3 is the following.

3.4. CoROLLARY. If ¢ € Aut(G) has a realization f: X —X with a lift f
which is fixed-point free, then

K-rank(G: Fix(¢)) =<1 < K-rank(G).

It remains therefore to deal with the situation where, for every realization
f of ¢, every lift f to the universal cover has a fixed point. For this case we
employ the theory of Section 2.

Let f: 9 — X be an efficient representative of ¢ with the associated strati-
fication

C=%oCX,C - CX,=9X.

We assume additionally that all the isolated fixed points of f are vertices; it
is easy to check that this does not affect efficiency. The main construction
of this section is that of the complex & below, which is the analog of the
graph T in [BH] and of the covering spaces D, of [GT] and K of [CT]. The
complex F (or, more precisely, its component F* containing v) is a “core” of
the covering space of & corresponding to the subgroup Fix(m(f, v)), in the
sense that it is a subcomplex of the covering space that carries the full fun-
damental group. The construction uses the classification of INPs described
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in 3.5-3.7. (Recall that, since efficient maps are neat, all real INPs are real-
ended and have real-ended images under f.)

3.5. LEMMA. INPs p, of height r are classified as follows.
Type G: I, is growing and p, is the unique INP of height r.
Type L: 3C, is level and composed of a single edge E, and

(i) pf'= Ea for some o € X,_, (o may be trivial), or
(ii) pX' = EBE for some 8 € X,_, but not of type (iii), or
(iii) p*!= Evx¥E for some infinitesimal x and v € %, _,.

3.6. LeMMA. If 3C, is a level stratum and there exist INPs of height r bui
none of type L(i), then either

(i) all INPs of height r are of type L(ii) for 8 a power of a fixed 3y, or
(ii) all INPs of height r are of type L(iii) for a fixed v =y and xe€ K,
K a factor subcomplex.

3.7. DEFINITION. A stratum of type G or L(i) is one containing INPs of
type G or L(i) respectively. A stratum of type L(ii} or L(iii) is one which
contains INPs of type L(ii) or L(iii), respectively, but which is not of type
L(i). Strata without INPs are not considered in this classification.

Proof of Lemma 3.5. 1f 3C, is growing, this follows from 2.11.

If 3C, is level, then f permutes the edges of 3C, (perhaps covering lower
strata) and so f(o) contains the same number of edges of JC, as does o.
Moreover, since f(o) ~ o, the sequence of edges in JC, that occurs in f(o)
must be identical with that of ¢ without cancellation of these edges in reduc-
ing f(o). So the matrix M, is the identity and the irreducibility of M, shows
that 3C, contains just one edge. Irreducibility and the fact that all isolated
fixed points of f are vertices of X implies that f(F) = E7 (replacing E with
E if necessary): irreducibility rules out all but the indicated three possibili-
ties. (This generalizes [BH, Prop. 6.3].) O

Proof of Lemma 3.6. All INPs of height r are of the form ESE for loops f8
at the terminal vertex v of E, and f(E) = E7 (see 3.5). Thus

{B|EBE is an INP} = {8| f(B) = 787} = Fix(m(f, 7).

Thus~ we must show that K-rank(Fix(7(f, 7))) = 1. If not, then by 3.3 the
lift f has a fixed point 7 and by 3.2(iv) there is a path o with f(«a) = 7o. But
then E« is an INP, contradicting the hypothesis. O

3.8. THE CompPLEX F. & is a graph of complexes, and the map p: F— X is
topological except that its restriction to a factor complex is an embedding
rather than a homeomorphism.

Vertices of X: The primary vertices of X are fixed points of f which are
added as needed (in parentheses) with edges and fixed factor complexes. The
secondary vertices are those of the form §, added with edges of type L(iii).



Efficient Representatives for Automorphisms of Free Products 461

Edges of IC: Each stratum JC, of & which is of type G, L(i), L(ii), or L(iii)
contributes one edge €, to F.

Type G: There is a unique INP p, of height r such that ¢, joins the fixed
endpoints (vertices of &) of p, and p(e,) = p,.

Type L(i): Choose one particular INP p, = Eag (as in L(i) of 3.5) and
proceed as for Type G.

Type L(ii): Choose the generating INP p, = EB,E (as in (i) of 3.6) and
proceed as above.

Type L(iii): ¢, is a free edge whose initial point is the initial point of E (a
vertex of &) and whose endpoint is a new vertex ,: p(e,) = Evyq (as in (ii)
of 3.6).

Complexes of X:

Fixed factor complexes: If C is a factor complex at a fixed vertex v, then&
includes a factor complex K at v corresponding to {infinitesimals ke C |
m(f, v)(k) = k} = Fix(w;(f, v)) N7 (C, v). p maps K into C in the natural
way.

Conjugate-fixed factor complexes: For each stratum JC, of type L(iii),
F includes a factor complex K,, at the vertex o,, corresponding to the fac-
tor subcomplex K of 3.6(ii)—that is, corresponding to {infinitesimals X |
Evok#oE is an INPJ. Then p maps K, into the factor complex C containing
K in the natural way.

Then & is filtered as

FoCF C--CFp,

with &, composed of the fixed factor complexes, and each level of the filtra-
tion is either equal to the preceding or obtained by adding an edge ¢, (resp.
an edge ¢, with a factor complex X,) to the preceding level according as the
stratum JC, is of type G, L(i), or L(ii) (resp. L(iii)).

The proof of the main result of this section, Proposition 3.11, precedes by
induction on the following notion of rank (or Kuros rank) which is a variant
of the negative Euler characteristic defined in {BH].

3.9. DerFINITION. If Zis a connected graph of complexes with underlying
graph Z and g factor complexes, then the Kuros rank of Z is
K-rank(Z) = K-rank(m(2)) = rank(7;(Z)) +q.

For a graph of complexes Z with noncontractible components Z,,Z,, ..., Z,,
the reduced Kuros rank is

K-rank(2) =1+ i (K-rank(Z;) —1).
k=1

3.10. LEMMA. Reduced Kuros rank is monotone in the sense that for graphs
of complexes Z, < 25,

K-rank(Z,) < K-rank(Z,).
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The inequality is strict if and only if either

(1) there is a path in Z, meeting Z,\Z, whose endpoints lie in noncon-
tractible components of Z,, or

(ii) there is an infinitesimal complex in Z,\Z which is attached at a ver-
tex of a noncontractible component of Z,.

Proof. Z,is obtained from Z, by a sequence of steps, each of which either
adds an edge (and perhaps a vertex) or adds an edge with a factor complex.
When an edge is introduced the reduced Kuros rank either remains unchanged
(this can happen in several ways) or increased by 1 if the edge introduced has
its endpoints in noncontractible components. If a factor complex is attached,
the reduced Kuro$ rank will increase unless the complex is attached to a
contractible component. [l

3.11. ProprosiTION. With the notation as above and X connected,
K-rank(F) < K-rank(C) = K-rank ().

Furthermore, if v is a primary vertex of & lying in the component °, then the
mapping p, = plg:: F° — X induces an isomorphism w(F°, v) — Fix(w,(f, v))
and

K-rank(m (X, v), Fix(m,(f, v))) = K-rank(F?) = K-rank(F?).

Proof. We prove the following by induction on r.

(a) K-rank(%,) < K-rank(SC,).
(b) If » is a nontrivial path between primary vertices in §,, then p(v) is a
nontrivial Nielsen path in C,.
(c) If o is a Nielsen path in OC,, then there exists a path » in §, such that
p(v)=o.
Observe that the inequality of the proposition follows from (a) and that (b)
and (c) imply that 7(F, v) and Fix(m(f, v)) are isomorphic via m,(p).

For r = 0, (a) is trivial since &, consists of the union of the factor subcom-
plexes corresponding to Fix(f|c) as C ranges over the complexes in Cy =
Xy. To verify (b), it suffices to observe that any nontrivial path x in &, is of
the form x = x;x; ... x, (where each x; is an infinitesimal in a single factor
complex) and that p(x) = x. To verify (c), note that any Nielsen path in 9,
is an infinitesimal path of the type just described.

Suppose r > 0 and that K-rank(F,) = K-rank(%,_,)+1 (the only case in
which (a) is not immediate). As noted in 3.10, this means that either the
endpoints of ¢, lie in noncontractible components of &,_;, or that &, con-
tains an infinitesimal complex not present in &,_; which is attached to a
noncontractible component of ¥,_,. In either case, it can be checked that
p(e,;) will have its endpoints in noncontractible components of &,, so that
K-rank(,) > K-rank(C,_,), verifying (a).

To prove (b) and (c), we recall that a real Nielsen path can be decomposed
uniquely into a product of INPs. If there is no INP of height r then there is



Efficient Representatives for Automorphisms of Free Products 463

nothing to prove, so suppose that p, has height r and consider growing and
level strata separately. If JC, is growing then p, is the unique INP of height
r and p(e,) = p,, whence (c) follows. To verify (b), observe that for any
veS,, p(v)is of the form Bop2'BipZ! ... p¥'B,; the fact that p(»,) is non-
trivial follows from the fact that p, has edges in JC,; the (8;s are nontrivial by
the induction hypothesis.

If 3C, is level and JC, is contained in Fix(f) a similar argument applies.

We finally consider the case of a level 3C, which contains a single edge E with
Sf(E) = E7, 7 nontrivial. An easy cancellation argument [BH, proof of Prop.
6.3] shows that if » is a path in &, not in &, _, then no occurrence of E can be
cancelled in reducing p(v), proving (b). To prove (c), we consider the three
types of level strata separately. If 3C, is of type L(i), then all INPs of height
r are of the form Ea or EBE for o, S X,_,. Then Ea = (Eag)(Gga) =
Ple)(@pa) and EBE = (Eag)(@oBoo)(@o E) = ple, N &oBag) P(E;), and (&g )
and (@yBay) are NPs which by induction are images of p|g,_ . This verifies
(c) for type-L(i) strata. For type-L(ii) strata, (c) is immediate because all
INPs of height r are powers of p,. For type L(iii) strata, all INPs have the
form of 3.5(iii) and are images of loops ¢, x€, for infinitesimals x € X,. This
completes the induction, verifying (a), (b), and (c).

It remains to prove that K-rank (7{(C, v), Fix(m(f, v)) = K-rank(5"). From
the discussion in the introduction, it is enough to show that for any path y
from v to v, Fix(w(f, v))Nym(C, vc)7 is conjugate to the image under
w1( p) of some uw (K, vg)jii where p is a path in § from v to vg. An easy in-
ductive argument, using (c), verifies this. (It should be observed that without
the above arguments, we only know that K-rank(m (2, v), Fix(w(f, v)) <
K-rank(FY). However, for our application this inequality actually suffices.)

a

Note: Two fixed points of any map f are said to be Nielsen equivalent if
they are joined by a path which is endpoint homotopic to its image under f.
It is clear that two primary vertices of &, lie in the same component of &, if
and only if they are Nielsen equivalent in £C,.

Our main result—the Scott conjecture for free products—now follows easily.

3.12. THEOREM. Let G = %L G, be the free product of m freely indecom-
posable factors and let ¢ be an automorphism of G. Then the Kuros sub-
group rank of Fix(¢) is at most the Kuros rank of G.

Proof. Either K-rank(G, Fix(¢)) <1 or there is an efficient representation
S > X of ¢ such that

K-rank(G, Fix(¢)) = K-rank(m(9C, v), Fix(mx,(f, v)).

Let & be the complex constructed above and &' the component of F con-
taining the primary vertex v. Then

K-rank(m(C, v), Fix(m(f, v))) = K-rank(F?) < K-rank(F)
< K-rank(C) = K-rank(G). O
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