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1. Introduction

In this paper we construct a family of wavelets y for L2 and the Hardy space

H? with the property that |!/:(E)| =1 for ¢ in the support of ¥. One of the wave-

lets constructed is the well-known Journé-Meyer example. We also include

a proof of the equivalence of Meyer’s equations and wavelet conditions.
Let ¢ € L%(R) and let, for j, ke Z,

¥ k() = 2729 (2/x k).

Let H be a Hilbert subspace of L?(R). The function y € H is called a wave-
let for H if {{; i}; kecz forms an orthonormal basis for H; {y; ;} is called a
wavelet basis.

There are essentially two methods of constructing wavelets. The first is
based on the following equations (W1)-(W4): y € L? is a wavelet for L?(R)
if and only if ¢ satisfies

(WD) ZgezldE+2km) =1,

(W2) ez \g(g +.2k1r)\b*(2’($+2k1r))=0 for j=1,
(W3) Zjezlf(2778))>=1, and

(W4) Z120 Y(21(E+2pom) §*(2'8) = 0 for poe 2Z+1.

Here, ¥* is the complex conjugate of Y. This equivalence appears in [Le]
and is attributed to Y. Meyer. However, no proof of it seems available, so
we give a complete proof in this paper.

The second method of constructing wavelets is based on the pairing of
wavelets and multiresolution analysis (MRA) [Me, D2]. An increasing se-
quence {V;} of closed subspaces of L*(R) is called an MRA of L*(R) if the
following hold:

(R1) NjezV;={0} and U;ez V;=L*(R),

(R2) f(x)eV;if and only if f(27/x) eV,
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(R3) f(x)eV,if and only if f(x—k)eV,, and
(R4) there exists a function ¢ in V; such that {¢(x—k)};cz is an ortho-
normal basis of V.

The function ¢ in (R4) is called a scaling function for the MRA {V}}. Let
 be a wavelet for L?(R). For each integer j, we denote by W; the closure of
the span of {{; t}xez in L2 We say that ¢ is associated with an MRA if the
subspace V; defined by V; = @,__m W, forms an MRA for L2(R). If this is
the case and if pisa scahng function for {V}}, then ¥ and ¢ satisfy

¥(28) = e mg(g+m) $(£), (L.D)
where m, is a 2w-periodic function in L?(0, 27) defined by
¢(28) = my(&) p(£). (1.2)

This pairing of wavelets and multiresolution analysis and an algorithm to
construct wavelets from multiresolution analysis were found by Y. Meyer
and S. Mallat, and one can find proofs of (1.1) and (1.2) in [Ch, D2, Me].

Even though the second method is a powerful constructive scheme, the
first method has its own virtue since there are wavelets that can not be con-
structed from a multiresolution analysis. One such example of wavelets is
the Journé-Meyer example in which ¢ is even and

V(&) = X1anr7, 21(8) + X4, a1+ 4n/1(8)  fOr £>0. 1.3)

However, it is apparent that it is hard to solve equations (W1)-(W4). There-
fore, one can naturally put some a priori assumptions on ¥ so that equations
(W1)-(W4) can be reduced to easily solvable ones. Meyer put an assumption
that the support of 1[: lies in a compact set [—8«/3, —2#/3]U[2#/3, 8n/3],
so that the infinite sums in (W1)-(W4) become finite sums—in fact, 2-sums
(Meyer’s wavelet [Le, Me]). On the other hand, Lemarié assumed that 1@
can be separated as J(E) = w(§)Q(§), where w is homogeneous and Q is 47-
periodic (Battle-Lemarié wavelet [Le, Me]). His assumption is based on the
observation that all the sums in (W1)-(W4) are made of 2x-translation and
dilation. Both Meyer’s wavelet and the Battle-Lemarié wavelet can be con-
structed from MRA [Me].

In this paper, we construct a new class of wavelets based on equations
(W1)-(W4). Note that condition (W1) implies that [1/,(5)| =< 1. We thus con-
sider an extreme case when ¢ is unimodular—namely, |¢(.§ )|=1 on the sup-
port of ¥. It turns out that, for unimodular functions, (W1) implies (W4)
and (W3) implies (W2). Moreover, (W1) and (W3) require that 27 -translates
and 2/-dilates of the support of y match nicely. This gives a severe restric-
tion on the size and location of the support of 1[3, and we are able to charac-
terize some classes of unimodular wavelets for 2. We then apply the same
method to the Hardy space H 2 to construct a new class of wavelets for H>.

One class of wavelets constructed in this paper is

Vi(8) = X i+ =1y, ) F X(27m, 2im+2imr@i+1i—n(§)  for j=1,2,...,
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where ; is even. To our surprise, ¥, is the Journé-Meyer example. More-
over, we prove that y; cannot be considered from a multiresolution analysis
if j=2.

We organize this paper as follows. In Section 2 we give a proof of the fact
that  being a wavelet is equivalent to (W1)-(W4), since no proof of the
fact is currently available. In Section 3 we find a necessary and sufficient con-
dition for a unimodular function to be a wavelet. In Section 4 we character-
ize certain classes of unimodular wavelets for L? and deal with the existence
and non-existence of corresponding MRAs. In Section 5 we characterize
some classes of unimodular wavelets for H2

The second author wishes to thank Professor G. Weiss for helpful con-
versations regarding the subject of this paper; in particular, our construction
of wavelets for H? was stimulated by conversations with him. We also thank
Professor D. Dickson for valuable suggestions on the presentation of this

paper.

2. Meyer’s Equations

In this section we prove Theorem 2.1, the statement of which appears with-
out proof in [Le]. Note that we prove Theorem 2.1 without any a priori as-
sumption on y¥. Bonami, Soria, and Weiss [ BSW] proved the theorem when
Y is band-limited (i.e., when ¥ has a compact support).

THEOREM 2.1. Let y e L*(R). Then (y; ) is an orthonormal set in L*(R)
if and only if

(W1) Zyez|P(E+2km)|>=1and

(W2) Ekezl,b(f+2k1r)¢ (21(£+2k7r)) =0 forj=1.

Furthermore, {; } is complete in L%(R) if and only if
(W3) E,Ezltﬁ(Z"’E)]z— 1 and
(W4) 350 ¥ (2UE+2pem))*(2'E) =0 for pye 2Z+1.

All the equalities are to hold in the sense of almost everywhere.

Proof. We first note that the infinite series in (W2) converges in L(a, a + 2)
for each a, and that the series in (W4) converges in L'(R). An easy compu-
tation shows that for each pair j and %,

¥ k(§) = 27/2e =127k (270, 2.1
We then have
ks Y, 10
1 ~ .
= E(‘/’j,k, Yn 1)

_ 1 2-;/22—11/28' JQ275) §H(anE) e Kt g2 ME g

27
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‘ ___?17;2(_17—I2)/2Sco J:(g)@*(Zj—ng)e—ikieﬂj‘”lfdg

27 .
= o202 5 [ e+ 2mm) 12T+ ammy)e TR

27 meZ Y0

Since 3, ez Y(E+2mm)P*(2/ (¢ +2mm)) is in L'(0,27), one can inter-
change the infinite sum with the integral and get

27 ,
Wj ks Yn, )= 51;2<,-~,,),2 SO vi_n(§)e’ ek g, (2.2)
where
vj(§) = EZ$(£+2m1r)$*(2f(£+2mvr)). (2.3)

Suppose that {; ;} is an orthonormal system. If j =n, then

27 .
ZL S vo(§)e’!=%ede =6, forall ,keZ.
T Jo

Since vy € LY(0, 27) and is 27-periodic, we have vo(£) = 1 which is (W1). Here,
we use the fact that the Cesar6 sums of a 27-periodic function in f € L(0, 27)
converge to f in L! norm [To). If j > n then VJ-_,,(E)eiZJ_"’E e L(0, 27) and is
2m-periodic; hence »;_,(£) =0 by (2.2). Thus (W2) is proved. Conversely,
that (W1) and (W2) imply the orthonormality of {y; 4} is trivial.

Suppose now that {; ,} is complete in L?(R). Then {‘f/j-, «} 1s also complete
in L2(R), so we have

f=3 o

> 5, V0¥, forall fe L’ (R).
Js

Hence, by the Poisson summation formula,

1®=5-52(]" sovrepet e ag)e
Js

= E(Sm f@I)d*n)e™ dn)e-"z""‘fxﬁ(z-fa
ﬂ- j:k —0o
=3 3 fQRIQTIE+2kn)) YR TIE+2kT) Y (27E).
J k

In conclusion, we have

fE =& ZPesl
J
+3 3 fE+22%km)PRIEY QI+ 2k). (2.4)

j k#0
We note that the infinite series converges in L!(R) if f has a compact sup-

port. We omit the proof of this fact since it is similar to arguments which
follow. Let

0(5) =3[P 27e) (23)
J
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Let £, 0 be an arbitrary point in R. Choose € so that 0 <e <|&|/127 and
let f=Xz,—er to+ex(£), the characteristic function on [£g—em, &g+ex]. It
then follows from (2.4) that

Eotem
[ n-e)a

Eog—en

foten . R . R )

=3 3 |7 ek mI @@+ 2km) d. (2.6)
J k#0 Y —er

Note that f(§+2k2/7w) #0 on [£y—em, £g+en] only if |k2/|<e. Thus we

have

Eotem fotem . . )
[Tn-e@ias= 3 {7 eIpIbE@ e 2k d

fo—em |k2/|<e YEg—em

S 27 (g +em)

= Y 2/ ()| (n+2km)| dy

|k2/| <€

27 Eg+em) 172
=35> 2f<§ I'l/(n)lzdn)

J<logie 27(gy—em)

27 (&g —em)

27 (&g +em) R 5 1/2
> (S T+ 2km) dn> .
. |k| < €27/ \Y2 /(¢ —em)
Note that if |£2/|<e then
[277(£g—em), 27 (Eg+ em)] +2km C[279(Eg—3em), 277(£o+ 3em)].

Hence,

27/ (g tem) 172 /27 g+ 3em) 5 172
E e o 2kmpan) 2] " b an)
<e2™/

27/ (&p—em) 27y —3em)
It then follows that
Eoter 27480+ 3em) R )
|7 n-e@lag=2e = | popRan
Eg—em J<logye Y27/(§)—3em)

Assume that £,>0 without loss of generality. Since e <&y/12w, we have
277+ (g, —3emw) > 27/(£g+ 3ew) and hence

0

Eotem .
[ -o@lag=ac | [Cn[2 dn. @.7)

Eo—em e (Ep—3em)
In particular, 1—0 € LY([¢g—em, g+ €m]). Let £€ ((9—e€m, &p+em) be a Le-
besgue point of 1 —0 and choose 6 so that [§ — 6w, £+ 67] C (§g—em, £p+em)
and that 6 < £/127. Then, by (2.7),

i E+om 1 " 5
——S |1—0(17)|dn5—g [¥(n)|* dn.
26m E—oT T Js—Yto—367)

As 6 —» 0, we have 6(¢) =1 by the Lebesgue differentiation theorem. So,

60=1a.e. on [§g—em, g+ en]. Since &, is arbitrary, we have 6 =1 a.e. This
proves (W3).

oo
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Now, from (2.4) we have
S S fE+2kn) Y2 E) Y2 VE+2kT) =0 forall feL*(R).  (2.8)
j k%0
Let k= p2!, where /=0,1,2,... and pe2Z+1. Then the identity (2.8) can
be written as

0= 3 3 fE+2027m)dQE) I 2t +2p2'T)

JEZ =0 pe2Z+1

= X 2 fE+2p2tn)0,(27"), (2.9)
pe2Z+1 nel
where
Opl6) = 2 P2 P2/ +2p)). (2.10)

Fix poe2Z+1 and let g(¢) = f(§+2py7). Then, rewrite (2.9) as

g0, &)+ X > 8(E+2p2"w—2py7)0,(27")=0.
pe2Z+1 nel
(p,n)# (Do, 0)
As before, let £ # 0 be an arbitrary point and put g(£) = Xz, —er, g, +ex1(£)- It
then follows that

Sotem fotem
S 0,(6)|di< 3 S |g(E+2p2" 7 —2pom)||0,(2"8)]| dE.
fo—em pe2Z+1 fo—em
neZ

(P, n)# (P, 0) (2.11)

Note that g(¢+2p2"7—2pom) #0 only if |2p2"x —2po7|<2ew. Thus we
have

Eotem Eotem
G N N e (2.12)

to—em | P27 —pol<e YEg—em
(p,n)#(py,0)

Then,

Eo‘i‘f?l‘

S 16,(27"%)|
|p2"—pol<e YEg—em
(p,n)#(py, 0)

2""(£0+e7r)
= 3 2"8 16,(n)| dn

|p2" = po|<e 27"(§o—em)
(p:n):#(PO,O) 2—H(E+ )
oTET “ -
= 3z x| eI+ 2pm)d
. p2"=pol<e 120 J27(Ey—em)

(p,n) # (Do, 0)
If | p2"— po| <€ and (p, n) # (py, 0), then n <0 and hence

2"<2"p—po27"|<e.

Hence n < log, e. Therefore,
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Eo+6‘ﬂ'
s |7 serld
|P2"—P0|<; Eg—em

(p, n) # (Do, 0) 2y bem)

172
< 3 2"22-’6 |¢<n)|2dn)

n<log,e =0 27 —eTr)

27 g tem) T 172
x 3 (S ¥ (n+2p2'm)| dn) .
|p—po27"|<e27 " \V2 "+ (g —em)

Note that if [p—py27"|<e27", then

[27"H (g —en), 27" (g +em)] +2p2 n
C 27" (Eo+2pom—3em), 27" (Eg+ 2P0 + 3em)].
Hence,

27 (g tem) | 2 1/2
s (| baa+2p2mf di)
|p—po27"|<e27"

27"+ (gg—em)

—n 2_"+’(£0+2p07r+361r) N 5 172
<2e2 <S l¥ ()| dn) .
277 (g +2pgm —3em)

It then follows that

Eotem
s |7 lgeela

|p2"—pol<e YEy—em
(p’ n) * (pO! 0)

/ 27 (g tem) ) 172
<2¢ 270 % (S [¥ ()] dn)

1=0 n<logye \Y27"*(£,—e)

27" (go+2pgm+3em) ) 1/2
><<S V() dn)
2 2 po T —3eTr)

S 2_n+’(E0+€7l')

. 1/2
<2¢ Y 2"( > |¢(n)|2dn>

1=0 n<logye Y2 "¢ —em)

27§+ 2pg T+ 3em) ) 172
S ¥ (n)] dn)

x( >
n<logye V27" gy +2pgm—3em)

Assume that £,>0 and £y+2po7 > 0 without loss of generality. We then
choose € so that e < (1/127) min(&y, &9+ 2po ). It then follows that

Eot+em
s |7 gl

|p2"—pol<e YEp—em
(p, n)#(po,0)

o . 1/2 oo R 1/2
<2 3 z—f(j w(nnzdr,) (S [¢(n)l2dn>

=0 e~ 12/(go—em) 6—12'(£0+2p0w—3ew)

oo . 1/2 fp oo R 1/2
SZE(S |¢(n)|2dn> (S |¢(n)|2dn> :

e 1(¢p—em) e W&o+ 2pom—3em)
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Then, by the same argument as before, we can show that
0p,€ L ([E9—em, &g+ em])

and 0, =0 a.e. on [£y—em, £y +en]. Since &, is arbitrary, we conclude that
6,,=0 a.e. This completes the proof of (W4).

If ¥ satisfies (W3) and (W4), then {{; ;} forms a complete system by (2.4)
and (2.9). This completes the proof. O

3. Unimodular Wavelets

In this section, we find a necessary and sufficient condition for a unimodular
function to be a wavelet for L2(R).

QEFINITION 3.1. A function y € L*(R) is called a unimodular function if
|¢(£)| =1 for £ supp .

LeEMMA 3.2. Let  be a unimodular function in L*(R). Then (W1) implies
(W4).

Proof. Fix £&. We claim tpat eachA term of the summands in (W4) is equal to
0. In fact, if 2/£€ supp ¢ then |{(2/€)| =1. Since Tz ¥ (2/E+2km)|* =1,

V(2764 2km) =0 if k+#0. In particular, Y(2/(¢+2p7))=0 for every pe
27Z +1. This completes the proof. O

LeEmMA 3.3. Let  be a unimodular function in L*(R). Then (W3) implies
(W2).

Proof. Fix . If £+2kwesuppy then |\/;(AE+2k7r)|= 1. Thus (W3) implies
that ¢ (2/(¢+2kw)) =0 if j + 0. Hence Yy (¢ +2km) Y (2/(§+ 2kw)) =0 for
each j and k. This completes the proof. 1

Combining Lemma 3.2 and Lemma 3.3, we obtain the following theorem.

THEOREM 3.4. Let y be a unimodular function in L*(R). Then  is a wave-
let for L*(R) if and only if the following hold:

(W1) ZyczldE+2km))*=1; and

(W3) Z;ez[0 2782 =1.

Let a be a real number. For each x € R there is a unique integer k(x) such
that a < x4+ 2k(x)7 < a+2xw. We define a function 7,: R— [a, a+27) by

To(X) =x+2k(x)7. (3.1)

Let a > 0. For each x > 0, there is a unique integer j(x) such that a <2/®x <
2a. We define a function 6,: (0, ) — [a, 2a) by
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8(x) =2/Wx, (3.2)
If a <0, we define 6,(x) = —6_,(—x) for x<O0.

LemMMA 3.5. Let 7, and b, be defined as above. Then:

(1) For each pair a and b, 1,7, =17, and each 1, maps [b, b+ 2«) bijec-
tively onto [a, a+27).

(2) For positive a and b, 6,6, =6, and each 6, maps [b,2b) bijectively
onto [a,2a). The same holds for negative a and b.

Proof. The proof of (1) is trivial. For (2), we let j be the unique integer such
that @ <2/b < 2a. If 2/b = a then there is nothing to be proved. If 2/b > q,
let c=2'"Ja; then b<c<2b and 0,(c) =a. Hence, 6, maps [, ¢) bijectively
onto [2/b, 2a) and 8, maps [c, 2b) bijectively onto [a, 2/b). That 6,8, =8, is
trivial. This completes the proof. O

THEOREM 3.6. Let y be a unimodular function in L*(R). Let K = supp ¥,
Kt=KN(0,), and K~ =KN(—x,0). Then y is a wavelet for L*(R) if
and only if the following hold:

(1) ForeachaeR, 7,is one-to-one on K except on a set of measure zero
and |[a,a+27)—7,(K)|=0; and

(2) foreach a>0and b<0, é, and &, are one-to-one on K+ and K~ ex-
cept on a set of measure zero, and

[a,2a)—6,(K*)|=0 and |(2b,b]—8,(K7)|=0,

respectively.
Here |-| denotes Lebesgue measure.

REMARK 3.7. As aresult of Lemma 3.5, “For each @¢” in (1) and (2) in The-
orem 3.6 can be replaced by “For some a”.

Proof. Suppose that y satisfies (W1). Then Srez|¥E+2km)>=1a.e. Let
H be the set of points where 3y ¢ 7| (£ +2kx)|*# 1. Since Ekez|x‘b(£+2k7r)|2
is 2w-periodic, H+2kw = H for any integer k and hence 7,(H)C H. Let
£ela,a+2n)—H. Then (¢ +2kw) # 0 for some k € Z, and hence £+ 2kx e
K and 7,(§+2k7)=£. Thus [a,a+2x)— HC 7,(K). Moreover, such a k is
unique since y is unimodular, and hence 7, is one-to-one on K — H.

We now suppose that (W3) holds and let a be positive. Let U be the set of
all points where X; 7 |¢(27/¢)[*#1 and let H=\,.7(2/U). Then |H|=
0 and §,(H)CH. Let ¢£€(a,2a)—H. Since zjezw(z—fg)]z- 1, we have
Y(277¢) £ 0 for some Jj. Therefore, 27¢e K* and 8,(27/¢)=¢&. It follows
that [@, 2a) — H C 6,(K ™). Moreover, such a j is unique and hence §, is one-
to-one on K+ — H. The case when b <0 can be treated in the same way.

Suppose that (1) holds and that U and V are the sets of measure zero
such that 7,(K)=[a,a+2x)—V and 7, is one-to-one on K—U. Let H=
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Ukez(UUV+2kw). Then |H|=0, 7,(H)C HN[a,a+27), and 7,(K—H)=
[a, a+27)— H. We claim that 3; .4 |{(¢+2k7)|>=1 for all e R—H. Let
¢e R—H and let £ = 7,(£). Then there exists an integer k, such that £ =
&o+2kgm. Since £y € [a, a+27)— H and 7, is one-to-one on K — H, there ex-
ists a unique integer k; such that £,—2k,w€ K— H. Hence, {+2kneK if
and only if k= —(ko+ k;). We thus have

> W&+ 2km)]? =|§ (£ —2(ko+ k) m))* =1.
keZ
This proves (W1).
Now suppose that (2) holds and that ¢ > 0. (The case when @ <0 can be
treated in the same way.) Let U and V be sets of measure zero such that
8,(K)=1[a,2a)—V and §, is one-to-one on K+ —U. Let

H=Q/UUW)).
JjeZ
Then |H|=0, §,(H)C HN[a,2a), and § (K —H) =[a,2a)—H. We claim
that 3¢ z|¥(27/£)|>=1 for all £& (0, )~ H. Let € (0, ) — H and let £=
6,(£). Then there exists an integer j, such that £ =2/0&,. Since £, € [a, 2a) —H,
there exists a unique integer j; such that 2~1¢,e K. Hence 2/t K * if and
only if j = j,+ j;. We thus have

> REP = hg))P=1.

JeZ
This proves (W3). It follows from Theorem 3.4 that ¥ is a wavelet for L2(R).
This completes the proof. O

If ¢ is a unimodular function and if K = supp \ﬁ, then ¥ can be written as

U(5) =0() xx(£), (3.3)

where |6(£)|=1. One can see from Theorem 3.6 that y is a wavelet, provided
that K satisfies conditions (1) and (2) of Theorem 3.6.

4. Unimodular Wavelets for 1.2

According to Theorem 3.6 and Remark 3.7, a unimodular wavelet is essen-
tially a characteristic function on a set K. In this section, we shall consider
those unimodular wavelets whose supports are disjoint unions of finitely
many intervals. In fact, we characterize three special classes of unimodular
wavelets. The same method may be applied to more general classes of uni-
modular wavelets.

Let ¥ be a unimodular wavelet and let K =suppy. As before, let K+ =
KN(0,00) and K~ =KN(—o0,0). Then K* and K~ are non-empty, by The-
orem 3.6. From now on, we deal with those K which are finite unions of
intervals. If K is a finite union of intervals, then |[a, a+27) — 7,(K)|=0 if
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and only if 7,(K) =[a, a+27), and 7, is one-to-one on K except on a set of
measure zero if and only if 7, is one-to-one on K except at finitely many
points. So, if this is the case, we simply say 7,(K) =[a, a+27) and 7, is one-
to-one on K. The same thing applies to §,,.

1. The case when both K™ and K~ are intervals

Suppose that K™ =[a, b] for some b > a > 0. Since 7,(K) =[a, a+27) and 7,
is one-to-one on K, 7,(K~)=[b,a+2~x). Hence, b < a+ 27 and there exists
an integer p such that a—2(p—1)wr<O0and K~ =[b—-2pw,a—2(p—1)7].
Since §,(K*) =[a, 2a) and §,, is one-to-one on K+, we have b = 2a. Like-
wise, one can see that b —2pw =2(a—2(p —1)7). We thus have the following:

b=2a<a+27 and b—2pw=2a—-2(p—1)w)<0.

THEOREM 4.1. Let ¥(£) = 0(£) xx(£), where
K=[2a—4w,a—27]U[a, 2] (4.1)

Sfor some 0<a< 2w and |0(£)|=1. Then y is a wavelet for L%. Moreover,
each unimodular wavelet  for which the support of ¢ consists of two dis-
Joint intervals is of this form.

REMARK 4.2. The wavelets in Theorem 4.1 are associated with MRAs. In
fact, if

Yo(£) = 0(£) (X (20— 47, 20— 2x) F X[a, 20])

with 8 defined on [2a—47,a—27]1U]a, 2a], then we can extend 6 to be a
2m-periodic function. Hence the closure of the span of {yy(x—k): ke Z} is
the same no matter what § is. Hence, it is enough to show that the wavelet
¥(8) = e'2(X (24 _4x, 20221 X4, 24]) 18 associated with an MRA.. But one can
easily see that the wavelet ¥(£) = e™*'2(X[24—4x, 20— 201+ X[, 247) 1S associated
with the MRA whose scaling function is given by ¢(&) = x[4— 2, 01(§)-

II. The case when K~ =—K* and K consists
of two disjoint intervals

Suppose that K =[a, b]U[c, d] for some 0 <a<b <c<d. Since |7,(K)|=
2|7,(K™)| and |7(K)| =27, |7(K*)|= . Moreover, a=|6,(K")|<|K*|=< .
We claim that b = . In fact, if b > 7 then 7¢([a, w]) N7o([—b, —7]) contains
an interval and hence 7 is not one-to-one on K. Now, suppose that b < =.
Then, since 7 € 79(K), there exists an integer k such that 7+ 2kw € (c,d]
and —7w—2kwe[—d, —c]. Hence

1o([—d, —m—2k7n])N7o([c, T+ 2k7])

contains an interval and so 7, is not one-to-one on K. Note that [¢,d] C
(2’a, 2’ *1a] since, if not, then [a, a+€) C8,([c,d])N[a, b] for some e > 0;
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hence §, is not one-to-one on X. Since 6,(K +)=[a,2a), we have c=2/b and
d =27%1q for some positive integer j. Therefore

K=[-2/*"a, -2/7]U[—7, —a]lU[a, ]U[2’/7, 2/ a].

Note that 7_,(K) = [, ), that 7_,(2/7) =0if j = 1, and that 7_, ([, 7]) =
[, 7). Thus we must have T_([2/7,27*1a]) = [0, a]. It then follows that
2/+1g—2/7 =g and hence a=2/#/(2/ 1 -1).

THEOREM 4.3. Let Y (£) =0(£) xx(&), where

2J
21"

+_ Py -+
K —[ w]U[Zw,Zvr—l-sz_lw], K =—K™, (42)
and where j is a positive integer and |0(£)|=1. Then y is a wavelet for L>.
Moreover, each unimodular wavelet for which K~ =—K™* and K™ consists

of two disjoint intervals is of this form.
If j=2and §=1, then

V(&) = X[=324/7, =4+ X[=x, —42/7) F X[42/7, 1 T X (47, 322/7])

This ¢ is the Journé-Meyer example of a wavelet which is not associated
with an MRA [D2, Ma]. We will show that each y is not associated with an
MRA if j=2.

THEOREM 4.4.  Let Y/(£) = 0(£) xx (&), where K is given as in (4.2) and |0 =1.

(1) If j=1, then the corresponding y is associated with an MRA.
(2) If j =2, then the corresponding y is not associated with an MRA.

Proof. (1) If j=1 and ¥(£) =e'¥?xx(£), then one can easily check by (1.2)
that y is associated with an MRA whose scaling function is given by

(&) = X(—4x/3, —x1(8) + X[=22/3, 2031 (8) + X [, 47731 (E)- (4.3)

It can also be checked by Proposition 5.3.1 and 5.3.2 of [D1] that this ¢
really defines a scaling function. For arbitrary ¢, the theorem follows from
the same argument as in Remark 4.2.

(2) Suppose that j =2 and that y is associated with an MRA with a scal-
ing function ¢. Then, V(28) = I(£) $(£) and (48) = m(£) $(£) for some 2r-
periodic functions / and m in L*(0, 27). Since Y(2&)=1on

Zj_l T j—1 j—1 Zj—l
I:F:IT,E}U[Z T, 2 7r+—2-j—+ﬁ7r R

1(£) # 0 on the same set. Since / is 2w-periodic and j > 1, /(£) #0on [0, w/2].
Hence

sy =" 50 on [0,7/2]. (4.4)

(&)
But equality (4.4) cannot hold, since {¥(4£)#0 on
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2772 2/71
2+ " it “]

while y/(2£) = 0 on the same set. This completes the proof. O

REMARK 4.5. For the scaling function ¢ given in (4.3), m, is given by

mo(§) = X(=2a/3, —2/21(E) + X (=73, /31(E) + X (272, 2231 (E)- (4.5)
Note that m, in (4.5) does not satisfy
inf |my(£)]> 0. (4.6)
HEE )

In [Ma], Mallat introduced the condition (4.6) to construct a scaling func-
tion ¢ for an MRA from a 2w-periodic function m, by the formula

@(£) =TT mo(277¢). 4.7)

j=1

III. The case when K ~ is an interval and K+
consists of two disjoint intervals

As before, it follows from Theorem 3.6 that
K~ =[-2c,~c] and K7*=[a,b]U[2/b,2/"a]

for some a, b, ¢, and j satisfying

c>0, 2a>b>a>0 and j=1. 4.8)
Since 7,(K) =[a, a+2~], there are positive integers p and g such that either
2/'b—2pw=b, —c+2qn=a+2rw, and 2/ la—2pr=—-2c+2qn (4.9)
or
—2c+2qn=>b, 2V \a—2pr=a+2x, and —c+2qr=2'b—-2px. (4.10)
From (4.9), we have

o= p—q+2 - _2p
To2i—1 7 T 201
It then follows from (4.8) that 1+ 2a/7w < g < 2, so (4.9) cannot occur. From
(4.10), we have

_ 2(p+1) _2@2p+q) _ 2p+q
B N7 e el Ul Vo y

b

w, and c=2(g—D7r—-2/"a.

Since b <2a, g <2 and hence g = 1. Using the other inequalities in (4.8), we
conclude that

_2(p+]) _ 22p+1)

2p+1
i 27+ ]

™, and c= (1 - -m)ﬂ' (4.11)

for some j=2and 1< p<2/-2.
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THEOREM 4.6. Let Y(£) = 0(£) x (&), where

T 2p+1 2p+1 _
K __—2(1—&_“__7)?,_(1_5?__1)?},
2(p+1)  2Q2p+1) ] {2j+1(2p+1) 2/2(p+1) ]
- Ty — 7| U - T, - T
_21+1_1 21+1__1 21+l__1 21+1_1

Sfor j=2and 1< p<2/—2and |0(¢)|=1. Then { is a wavelet for L*. More-
over, each unimodular wavelet for which K ~ is an interval and K™ consists
of two disjoint intervals is of this form.

(4.12)
K+=

If j=2 and p=1, then
K=[-37,—4nlU[ 57, $x]VU[ 5 x, L],

The inverse Fourier transform of the characteristic function on this particu-
lar K is known to be a wavelet which is not associated with an MRA [Le].

THEOREM 4.7. Let { =0xx, where K is given in (4.12) and |0|=1. If p is
odd, then Y is not associated with an MRA.

Proof. Fix j and p in (4.12) and let a, b, and ¢ be the numbers given in
(4.11). Suppose that ¢ is associated with an MRA with a scaling function ¢.
Then, as before,

[BEF = 2 QO =X e, )+ E X(2#b, 2141 (£)>

jzl
SO
-1

162812 = X(=c/2, ar2)(§) + E X[2-1p, 241 ()
j_

Hence,

1 on [—c/2,a/21U(ULZi 2% b, 2%a)),

|mo(£)| = =0 L (@13)

0 on [—c,—c/2]U[a/2,b/2]1U[2/7°b, 2/a].
We claim that this m, cannot be extended to be a 27-periodic function. In
order to prove this, we observe that

2/ lp—(p+1)w=—c/2 and 2/a—(p+Dr=a/2. (4.14)

(4.14) implies that [2/7'b, 2/a]l—(p+1)7w =[—c/2, a/2], and hence m, can-
not be extended as a 2w-periodic function, provided that p is odd. This
completes the proof. Ll

REMARK 4.8. If pis even then the 31tuat10n is totally different. For exam-
ple, if j=p=2thena= 71r, b=1 T, C= 77r in (4.11). Hence, by (4.13),

_ on [ 771", 77(-]U[77I',77I']U
ImO(E)l {O on [_._71-’ —"ﬁ']U[77r, 77F]U[207r, 77"]

12
[Lr, 271,
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This mg can be extended as a 2w-periodic function. In this case, the wavelet

given by ¥(£) = e *(X(—ans, —22/11(E) + X 16277, 10m71(E) + X 140277, a82/71(£)) 1S
associated with the MRA whose scaling function is given by

?(8) = X[=22/7, 62/71(8) + X [102/7, 121r/7](£)+X[207r/7 24x/71(E)-

On the other hand, if j =3 and p=2, then a= &, b=1¢x, and c={}~.
Hence

|m0(5)|—{ on [— 5'”’ 157r]U[157r, 157"]U[151r, 157r]U[157r, 157r],
O on [—157r, 157T]U[157r, ISW]U[ISW’ 15 ]

Note that [, 127] C [427, $27] — 27 and hence m, cannot be extended to
be a 2w-periodic function.

5. Unimodular Wavelets for the Hardy Space H?

We first recall that the classical Hardy space H2 = H?(R) is the collection of
all functions f in L? whose Fourier transforms are supported in [0, o). The
only known example of a wavelet for H? is the inverse Fourier transform of
the characteristic function of [27,4w] [BSW]. Moreover, P. Auscher re-
cently proved that there is no continuously differentiable wavelet y for H 2
with the property [/ (£)|+]¢'(§)| = C|£|~ for £=1and « > 1. In this section,
we construct a family of wavelets for H? by using the patchwork developed
in previous sections.

Analogously to Theorem 3.6, we first have the following theorem regard-
ing unimodular wavelets for H2.

THEOREM 5.1. Let Y be a unimodular function in L*(R). Let K = supp ¥
Then v is a wavelet for H? if and only if the following hold:

(1) XC[0,o);

(2) foreach aeR, 7,is one-to-one on K except on a set of measure zero
and |[a, a+27) —1,(K)|=0; and

(3) foreach a>0, 6, is one-to-one on K except on a set of measure zero
and |[a,2a)—6,(K)|=0.

Theorem 5.1 can be proved in the same way as Theorem 3.6.

Let us now construct unimodular wavelets for 2 based on Theorem 5.1.
As before, we first consider the case when K = [a, b] with a = 0. Since 7¢(K) =
[0,27), we must have a=2kn and b=2(k+1)% for some integer k. Since
6,(K)=1a,2a) and [a, b) C[a,2a), we have 2(k+1)7=4kw. Hence k=1,
and so each unimodular wavelet with connected support is of the form

V(&) =0(&) x(2x, 4x1(8)s (5.1)

where |6(£)|=1.
Let us now consider the case when K =suppy consists of two disjoint
intervals, say [a, b] and [c, d] with b < c. We first observe that a # 0 since
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d; cannot be one-to-one on (0, b], whatever b is. We also observe that |K|=
|70(K)| =27 by (2). Then, since K C [a, ), |6,(K)|=<|K]; therefore, a=
|6.(K)|<|K|=2=. Since b<c, d>a+2n=2a and hence |6,([c, d])|<d—c.
S0 {6,(K)|<|K|and a < 2x. We claim that c=b+2kn and d = a+2(k+ )7
for some integer k. To prove this claim, we first observe that the interval
[c, d) cannot contain a point of the form a+ 2/x with / € Z. In fact, if [c,d)
contains a+2/% for some /, then [a,¢) C7,([c,d))N[a, b) for some >0
and hence 7, cannot be one-to-one on K. If d+ a+2/% for any integer /,
then 7,(d) <a+ 27 and hence 7,(K) is properly contained in [a, a + 27).
Therefore, 7,(d)=a and 7,(c) =b. On the other hand, by a similar argu-
ment, [c, d) cannot contain a point of the form 2/a with je Z. So we need
to have c=2/b and d=2'*'q for some j. It follows that b+2kx=2/b,
a+2(k+1)r=2/"g, and 0 < a < 2w. Hence we have

_ 2(k+1) 2k

a—mﬂ' and b=21—1

x for k<2(2/-1). (5.2)

THEOREM 5.2. Let J/(£) =0(£)xx (&), where

[2(k+1) 2k ] [21'“1« 27 2(k+1) ]
= - T, ——7| U - T, -

2/+1—1 "7 2/—1 2/—1 2/+1—-1
for some integers j>0 and 0 <k <2(2/—1) and |0(£)|=1. Then ¢ is a
wavelet for H%. Moreover, these are the only unimodular wavelets for H?

such that the support of their Fourier transform is the union of two disjoint
intervals.

(5.3)

Proof. 1t is enough to prove the first statement. Fix je N and 0 < £k <
2(2/—1). Let a=2(k+1)7/(2’*1—1) and b=2kn/(2/—1). We show that
7, and 8, satisfy (2) and (3) of Theorem 5.1.

Since K =[a, b]U[2’b, 2/24], 6,(K)=1a,2a) and §, is one-to-one on K
except at the endpoints. Since K =[a, b)JU[b+2km,a+2(k+1)7x], 7,(K)=
[a, a+27) and 7, is one-to-one on K except at the endpoints. This completes
the proof. 1
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