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1. Introduction

Bourgain algebras were introduced by Cima and Timoney [5] in connection
with Bourgain’s work on the Dunford-Pettis property for certain concrete
function algebras [1]. Subsequently, several authors have studied Bourgain
algebras [2; 3; 4; 7; 8; 9; 12; 14; 15] with a variety of goals in mind but with
attention to the Bourgain algebra determined by an algebra. We are con-
cerned with the study of Bourgain algebras of a class, including the space of
bounded harmonic functions on the disk, of /inear subspaces.

Let D be the open unit disk in the complex plane C and let T = dD be the
unit circle. The usual spaces of essentially bounded functions with respect to
Lebesgue measure are denoted by L*(T) and L”(D). The space of bounded
analytic functions on D is denoted by H “(D), with H* = H *(T) being used
to denote the boundary values of H (D) functions. We will also write L= =
L™(T) for brevity. The algebra of bounded continuous functions on D is
denoted by BC(D) and C = C(T) denotes the algebra of continuous func-
tions on T. Each of these algebras is equipped with the (essential) supremum
norm || |-

Let & be one of the spaces L, L*(D) or BC(D), and let Y C X be a closed
linear subspace. We say that fe X belongs to the Bourgain algebra of
relative to X, and write f e ‘Y,, in case for every weakly null sequence {f,}
in Y there exists a sequence {g,} in Y such that || f, f—g,|e— 0 as n—ocx.
Essentially as shown in [5], Y, contains the constants and is a closed sub-
algebra of . Moreover, if Y is a subalgebra, then Y C,. However, there
is no known simple relationship between a subspace Y and its Bourgain alge-
bra Y,. We emphasize that Y, is defined relative to a particular overlying
space X even though this is not reflected in the notation ¢Y,. Each of the
spaces L = L%, L=(D), BC(D), or C(9M) (when Y is an algebra with maxi-
mal ideal space 9IU) has a certain claim to naturality; however, the general de-
pendence of Y, upon X is quite complicated and not fully understood. For
X = L*(D) and Y a subalgebra containing the bounded analytic functions,
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the Bourgain algebra Y, (relative to L*(D)) has been studied; the choice of
L”(D) for the ambient space is natural in regard to boundary-value ques-
tions and connections with operator theory [3].

For a function f e L*® we write f to denote the Poisson extension of f over
the unit disk D; that is,

~ 27r .
f@)= SO F(e®)P6) %‘i—

for zeD, where P, is the Poisson kernel at z: P,(0) = (1—|z|*)/]e” —z|~
For any nonempty subset B of L™ we write

B={f: feB).

If B is an algebra then the set B need not be a subalgebra of L*(D). For ex-
ample, h” = (L*)", the space of bounded harmonic functions on D, is not a
subalgebra of L*(D). However, for any closed linear subspace B of L%, the
set B is a closed linear subspace of L*(D). We will be concerned with finding
the Bourgain algebras of the spaces B relative to L*(D) and to BC(D).
Our main result, Theorem 1, is discussed in Section 2 and proved in Sec-
tion 4. The proof requires certain preliminaries which are gathered in Section
3. In Section 5 we determine the second Bourgain algebra in certain settings.

2. Statement of the Main Result

To state our main result we need to review some notation. Let V be the ideal
of vanishing functions in L*(D) as defined in [3]; that is,

V={feL”D): | fxp\plle—0asr—17}.
The algebra of quasi-continuous functions, QC, is defined by
QC=(H*+C)N(H®+C). |

The following theorem is the main result of this paper.

THEOREM 1. If B is a closed linear subspace of L™ containing C, and By, is
the Bourgain algebra of B relative to L*, then the Bourgain algebra of B rei-
ative to L*(D) is

(B)y=(B,NQCY +V.

We defer the proof of this theorem to Section 4, after we discuss various
corollaries in this section and the preliminaries needed for its proof in the
next section.

CoRrOLLARY 2. If B z;s a closed subalgebra of L™ containing QC, then the
Bourgain algebra of B relative to L*(D) is

(B)y=(QCY +V.

Proof. Clearly QC C B C By, so that B,NQC = QC. 0
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In particular, we have the following.

CoROLLARY 3. The Bourgain algebra of h® relative to L*(D) is
(h%)p=(QCY +V.

The main result in [3] states that ((H*)),=(H*+ C) +V. Note that this
algebra is larger than (l?)b if B is a closed subalgebra of L” containing QC,
even though (H ) is smaller than B.

If we write Cy(D) for the space of continuous functions f on D for which
1im|z|_.1— f(z) =0, then VN BC(D) = Cy(D), which can be used to determine
the Bourgain algebra relative to BC(D) given the Bourgain algebra relative
to L=(D). The next corollary provides an example.

CoRrOLLARY 4. If B is a closed subalgebra of L* containing QC, then the
Bourgain algebra of B relative to BC(D) is

(B),=(QCY + Co(D).
Proof. Clearly,
(B),=(B,NQCY +VNBC(D)=(QC) + Cy(D). O

In view of the simplicity of this device, we will not continue giving separate
statements or proofs for Bourgain algebras relative to BC(D).

CoROLLARY 5. The Bourgain algebra of (QCY relative to L*(D) is
((QC))p=(QC) +V.

Proof. Clearly QC C QGC,, so that QC,NQC = QC. ]

To formulate one more corollary, we need to introduce the notion of essen-

tial oscillation w(f,{) of a function fe L*(D) at the point {€T. Let >0
and put

w(f, §, t)=esssup{| f(z) —fW)|:z,weD, |z—{|<t,and |w—{| < 1}
For feL®”, ¢€T, and 7 >0 we put
w(f, § ) =esssup{| f(E)—f(n)|: £, ne T, |E—¢|<t,and |p—¢| < t].

In either case, we define
w(f;§) = lim w(f,§,1).
t—0*
In [12] it is proved that the Bourgain algebra of the disk algebra A= H*NC
with respect to L is given by
Ap=(HNW)+C,

where W={fe L”:¥e>0 the set {{eT: w(f,{)=¢€} is finite}. In [4] it is
shown that, relative to L®(D), the Bourgain algebra of the disk algebra
A(D) = H*(D)NC(D)is given by
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A(D), = (H=(D)NW(D))+C(D)+V,

where W(D) ={fe L"(D): Ve >0 the set {{€T:w(f,{)=¢} is finite}. The
following corollary should be compared with these results. Note that C is
the space of bounded harmonic functions on D which extend continuously
to D.

COROLLARY 6. The Bourgain algebra of C relative to L*(D) is

(€)= (H=(D)NW(D)) + C(D)) N((H (D) NW(D)) + C(D)) + V.

Proof. Clearly C, =W (see [12]), so that
C,NOC=(HNW)Y+C)N(H*NW)+C).

Hence (C,NQOC)Y =(HNW)+ C)Y N(HNW)+CY. It follows from the
argument in [4] that (H*NW)+C)Y +V=(H>(D)NW(D))+C(D)+V,
and the result follows. O

3. Preliminaries

The space QC of quasi-continuous functions has an important role in our
work. The following characterization of QC will be useful.

ProrositioN 7 (Sarason). Let feL®. Then
211- ,0 2 da —
feQC s\ |f(e )—f(z)|PZ(0)§—>0as|z|—>l .
0

Note that VMO is the space of functions fe L!(T) satisfying the vanishing
condition in the above proposition; a restatement of the above result is thus:

QC=VMONL™.

As in [3], we use BV to denote the subalgebra of L*(D) consisting of
those (equivalence classes) of essentially bounded measurable functions cn
D which have nontangential limits at almost all points of the circle T. To be
more precise we recall the following notation. For { €T and 0 <R <1, let
I'z($) be the interior of the convex hull of z and the set {z € C: |z|=R}. We
say that fe L*(D) has essentially nontangential limit L at { € T if

ess sup{| f(z) —L|: zeTr({), |z|>1—-8} >0 as § > 07

for every 0 < R< 1, in which case we will write f*({) for L. We define BV to
be the set of f e L*(D) for which an essential nontangential limit /*({) exists
for almost every ¢ € T. If we define the essential nontangential oscillation of
SeL¥(D)at {e€T over I'g({) to be

wr(f, §) = alirf; ess supf| f(z) —fW)|: z, we Tr({), |z—{| <8, [w—¢| < 8},

then the space BV is characterized by
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BV ={feL”D): wg(f,{)=0forall 0< R <1 for almost every { € T}.

We write A(D) to denote the disk algebra H (D) N C(D). The following re-
sult is proved in [3].

THEOREM 8. Let °\ be a closed linear subspace of L*(D) such that A(D) C
YC BV. Then , C BV.

CoOROLLARY 9. Let B be a closed linear subspace of L™ containing C, and
let (E)b denote the Bourgain algebra of B relative to L*(D). If fe (B)b,
then f* exists at almost every point of T and f*e€ By, the Bourgain algebra
of B relative to L*.

Proof. Clearly A(D)=AC B. Let fe (B)b. By Theorem 8, the nontangen-
tial limit f* exists at almost every point of T. If {f,} is a weakly null se-
quence in B, then {f,} is weakly null in B. Since f e (B),, there exist g, in B
such that || £f;,— 84|l — 0. Taking nontangential limits, we conclude that
"f*fn—gn”oo"’O; thus f*€ B,. L

ReEMARK 10. The above proof shows that we also have: If fe(B+ Vp,
then f* exists at almost every point of T and f*e By, the Bourgain algebra
of B relative to L*.

L:EMMA 11. Let B be a closed linear subspace of L” containing C, Aand let
(B), denote the Bourgain algebra of B relative to L(D). If fe(B), and
{ fn) is a weakly null sequence in B, then

||fﬁ:—(f*fn)‘||m—+0 as n— oo,

Proof. Since fe(B),, there exist g,€ B such that e, = ff,— 84|l — 0 as
n— oo, By Corollary 9, the nontangential limit f* exists almost everywhere on
the circle T. It is easily seen that || f*f, — &, < €,; thus [(/*f,) —&8ull — O,
and hence || f£,— (f*f,) |- = 0 as n — co. O

LemMmA 12. Let {z,} be a sequence in D such that z,,— {€T. Then there
exists a sequence {g,} in C such that:
(i) |gnll=1 forall n=1;
(ii) g,— 0 weakly in C; and
(iii) §37|1—g,(e")| P, (6)d8/27w — 0 as n— .

Proof. For each open subset J of T with (e J, we have

S P, (6) -d—a-—>0 as n— oo,
TN 27

Indeed, there is a sequence {J,} of open subarcs of T such that {e J,, the
length of J, goes to zero, and

S P, (B)E—q-—»I as n— oo,
=2

n
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since P, is an approximate identity. It is not difficult to find a sequence {g,}
in C such that

(1) g,=0and | g,||.=1 for all n=1;

(2) supp(g,,) CJ\{¢} forall n=1; and

(3) [57 gu(e™) P, (0) d6/2m —1 as n— o.
Since the sequence {g,,} is norm bounded and converges pointwise to zero on
T, we have property (ii). Property (iii) follows from (1) and (3). 0l

4. Proof of Theorem 1

The proof will be divided into several steps.

Step 1: We first prove (ByN QC Y +VC(B) ». The inclusion V' C (B) p 1S
trivial, because if £, » 0 weakly in B then £, — 0 uniformly on compact sub-
sets of D.

To prove the inclusion (B, NQC) C (B) p, take fe B,NQC and let f,,eB
be such that £, —» 0 weakly in B, that is, Jn— 0 weakly in B. Then there is a
positive constant K such that || ;|| < K for all n=1. Then for each ze D we
have

~ -~ 27‘- A~ . .
If(Z)fn(Z)—(ffn)‘(Z)]SS |f(z)—f(e"’)||f,,(e“")|Pz(0)3—0

f 7@ = fe)| P 2.
Since f e QC, we conclude that
sup sup|f(z) fu(2) = (f,) (z)| >0 as r—1".

r<iz|<l n=1
Since clearly ff,, — 0 and (ff,,)" — 0 uniformly on each compact subset of
D, we see that || ff, — (f7,) [l — 0 as n — 0. Because f e By, and f,, — 0 weak-
ly in B, there exist g,e B such that || ff,—g,[|cc— 0 as n— . Then also
||( SF) = 8ull— O, and therefore || ff,, — &,||co — O as n — oo, This implies that

fe(By,.

Step 2: We show that if ge L= and g e (B) », then ge B,NQC. Assuming
that g ¢ QC, by Proposition 7 there is a sequence {z,} in D and 6 > 0 such
that |z,|] =1 as n— o0 and

S |g(e”®)—8(z)| P, (0)—->5

for every n=1. By passing to a subsequence of {z,,} we may assume that
8(z,) — ¢ for some constant c. Note that also (g—c) =g—ce(B),, so by
replacing g by the function g — ¢ we may assume that ¢=0. Thus:

(4) &(z,)—0as n—oo; and
(5) limsup,, o {57|&(e®)| P, (6) db/27 = 6.
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By considering a subsequence, we may assume that z,, — { for some {eT.
By Lemma 12 there is a sequence {g,} in C such that

(6) ||gx/l=1and g, — 0 weakly in C; and
(D) (371 —g.(e™)| P, (8) d6/27 — 0 as n— oo.
Let G be a function in L* such that Gg =|g| and |G| =1 almost everywhere
on T. For each integer n =1 there exists an 4, in C such that ||, |, <1and
(8) ]%’rlG(eie) - hn(eio)l P, (0)d0/2w — 0 as n— oo.
We put f,=g,h,. Then f,e C, and
) |(|g|gx) (zn) — (&) (zn)| >0 as n—> o0
because

27r . . - .
[(1g|gn) (z4) — (&/n) (z)| = SO (lg(e™)|—g(e™) hy(e™)) gn(e™) P, (6) —2‘%
21!' . . de
< gy _ i0 av
<lgllo |, 16(™ ~hn(e P, 51 (bY€)

—0as n—>o (by(8)).

Since 72| 0 <1, by (6) we have f,—0 weakly in C. Hence f, — 0 weakly in
B. Since g € (B),, by Lemma 12 we have
(10) [|8/,—(&f) | — 0 as n— co.

Note that since g fn—(g f,) is a continuous function on D, the essential
supremum norm | gf, — (&f,) || coincides with the supremum norm of

§f,—(gf,), so that
limsup|| 2/, — (&/2) |

= limsup|(g/,,)(2,) — &(2n) fu(21)]
= limsup|(gf,) (z,)| (by (4))
= limsup|(|g|g.) (z,)| (by (9)

—1i 2 i i0 i0 do
= lmsupS (g™~ (1= gu(e D] P (0) 5

n—oo 0
=6 (by(5)and (7)),
contradicting (10).

Step 3: We show that (B), C (B, QC)" +V, which will complete the proof.
Let fe(B), and put g=f*. If we can show that f— g eV, then it will fol-
low that f—ge (3)1,, since V' C (E’)b. Hence g€ (E)b, so that by Step 2, ge
B,NQOC, and it follows that f=g+(f—2)e(B,NQOCY +V.

To show that f— g e V, assume the contrary. Then there is a sequence {r,}
of numbers in (0, 1), a sequence {A,} of sets of positive area measure, and
a 6 > 0 such that:
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r,—1as n— oo;

A,ClzeC:r,<|z|]<1};

|f(z) —£(2)|= 9, for ze U= 4,; and

| f (@)= fler fOr z€ Upz 1 Ap.
Let z, be a point of density of the set A,. Then clearly |z,| — 1 as n— 0. By
passing to a subsequence (if necessary) we may further assume thatz, - {eT
as n—oo. Let {g,] be as in Lemma 12. Note that (iii) of Lemma 12 implies
that 8,(z,,) = 1asn— wand|g(z,) £,(z,) —(g8,) (2,)] = 0 as n — co. For each
positive integer n, choose 0 < 6, <1—|z,| such that for |[z—z,|<é,:

|8(2,) — 8(2)| < 6/4;

|81(2,) — 8n(2)| < 8/(4] f||»); and

|(g8n) (z4) — (g84)"(2)| < 8/4.
Because z,, is a point of density of 4, the set B,=A,N{ze C:|z2—2z,|<4,}
has positive measure. If z € B,,, then

8| 8,(2n)]
=<|f(z)—8(2)||&n(zn)|
<|f(2)||18n(2n) — £,(2)|+| f(2) £,(z) — (281) (2)| +|(281) (2) — (281) (z4)|
+1(281) (2n) — 8(2) En(2)| + | 8n(20)|| £(21) — 8(2))|
<||fllew8/(4]| f || o) + ] .f(2) 1(2) — (£84) (2)| + 6/4
+1(28,) (20) — 8(2,) En(z0)| + 6/4.
Thus
8|8n(zn)| = 30+ | .f81— (£81) |0 +1(880) (21) — £(21) n(z0))

for each positive integer n. Taking the limit inferior, we see that

liminf || /8, — (g8,) o = 1.

n— oo

But since f € (B),, Lemma 11 tells us that

”fgn_(ggn)‘\||oo"’0 as n— oo,

a contradiction. This completes the proof of Theorem 1. ]

5. Second Bourgain Algebras

Given two closed subalgebras @ and & of &, does @ C & imply @, C &,? The
general question of monotonicity appears to be quite sensitive to the am-
bient space & and to properties of the smaller algebra @. A variety of posi-
tive and negative results are known [3; 9; 12], but in our setting the question
is open. However, as we will show in our context, @, = @p,. In particular,
even if monotonicity holds, it cannot be strict.

Our determination of second Bourgain algebras depends upon the follow-
ing result.
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THEOREM 13. The Bourgain algebra of (QC) +V with respect to L*(D) is
((QCY +V),=(QCY +V.

CoroOLLARY 14. If B is a closed subalgebra of L™ contqining QC, then for
the Bourgain algebras with respect to L*(D) we have (B)y, = (B),.

Proof. This follows immediately from Corollary 4 and Theorem 11. a

For the proof of Theorem 13 we will need to know the Bourgain algebra of
QC relative to L™.

THEOREM 15. The Bourgain algebra of QC relative to L™ is (QC), = QC.

In the proofs of both Theorem 13 and 15 we will need the following lemma,
which produces certain weakly null sequences in QC. Recall that a thin
Blaschke product is a function of the form
A lznl Zin—=%

Y(z)=T1

n=1 Zn I_ZHZ

, Z€D,

where |z,|/z, is defined to equal 1if z, =0, and the sequence {z,} in D satis-
fies the condition

o

Zm—Zn

- —1las n—oo,
1"zmzn

m=1
m+n

For an algebra @ we write 91U(®) to denote the maximal ideal space of @,
and for simplicity we write I =M(H ). Identifying a thin Blaschke prod-
uct ¢ with its Gelfand transform on the maximal ideal space of H”+ C, we
denote by Z(y) the set {xe M(H + C): y(x)=0}. Since ¢ is an interpo-
lating Blaschke product we have Z(¥)=cl({z,: n=1})\{z,,: n=1}, where
cl({z,: n=1}) denotes the closure of {z,: n=1} in the space 9 [7, p. 379,
Lemma 3.3]. We note that Z(y) is an infinite set.

If fe L™, then f is a bounded harmonic function on D and thus (by [10,
Lemma 4.4]) has a continuous extension to the maximal ideal space 9 of
H®, which we will again denote by f. We have the following lemma.

LemMA 16. If ¢ is a thin Blaschke product, then there exists a sequence
{/2} in OQC and a sequence {x,} in Z(Y) such that:

(i) |fulle=1 foralln=1;
(ii) fAn——>0 weakly in QC; and
(iil) f(x,) =1 foralln=1.

Proof. Let ¢ be a thin Blaschke product. Define 7: M(H *+ C) - IMN(QC)
by letting w(A) denote the restriction of A to QC for A e MN(H *+ C). Then
7 is a continuous surjective mapping. Moreover, since ¥ is thin, from Izuchi
[11, Lemma 5] we know that = is injective on Z (). Using that QC is a C*-
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algebra, it is not diﬂjcult to ﬁAnd sequences {x,}in Z(¥) and { f,,} in QC satis-
fying (i), (ii), and f,(x,) = f,(x(x,)) =1 for every n=1. _

LeEmMMA 17. Let B be a closed subalgebra of L™ such that QOCCBC H”+C.
Then B,C H” +C.

Proof. Let fe€ By and assume that f¢ H“+ C. By the Chang-Marshall the-
orem there is a thin Blaschke product  such that y € H [ f], the closed sub-
algebra of L™ generated by H* and the function f. Let { f,,} and {x,} be asin
Lemma 16. Since y € H®[ f1, for each integer n =1 there is an integer m, > 1
and there are h,; in H* (0 < j < m,) such that

mn
I— 3 by s
j=0
Because By, is an algebra, for each j we have f” € B, and thus there is a se-
quence {gj,} in B such that || f,, f/ — g[lo = 0 @s n > oo. Then ||/, — G, = 0
as n—oo, where G, =X} h,;gjn€ H”+C. Then also ¢,=| f,—¥Gplle=

¥ (¥f,— G|l — O as n — 0. Since f;,, G, € H*+C and x, € M(H*+C),
we have

— (0 as n— oo,
(o ]

1= (%) = ¥(x) Gr(xn)| = [(fo = ¥ GY (X)| < €1

contradicting that ¢, — 0 as n — oo. O

Proof of Theorem 15. By Lemma 17, QC,C H®+ C. It is easily seen that
QC} is a C*-algebra, thus also QC, C H*+ C. Hence

OC,C(H+C)N(H*+C)=0QC. u

Proof of Theorem 13. 1If fe L*(D) belongs to ((QC) +V),, then by Re-
mark 10 we see that f*e (QC),. By Theorem 15 we have f*e QC, so that
f Fre (QCY. The proof is completed if we show that g=f—f fre V, because
then we will have f= f*+ge (QCY +V.

Assuming that g ¢ V, there is a sequence {r,} in (0, 1), a sequence {A4,} of
sets of positive area measure in D, and a positive number é such that:

rp—1as n— oo;

A,C{zeC:r,<|z|<1}; and

|g(z)|=6 forze U, 4,.
Let z, be a point of density of the set 4,. Then clearly |z,|—1 as n— co. By
passing to a subsequence (if necessary) we may further assume that the se-
quence {z,} is a thin interpolating sequence. Write ¢ for the Blaschke product
with zeros {z,}. Let {x,,} and { f,,} be as in Lemma 16. Since g€ ((QC)Y + V),
there are sequences {g,} in QC and {»,} in V such that ||g fo— (8,+ Vp)||eo — 0
as n— oo, Taking nontangential limits, we conclude that el — O; thus
|l£:]le = 0 as n— . Hence €, =g/, — vu]l— 0 as n— oo, Fix an integer n
and let 0 <r < 1. Because x, € Z(y), there is a net {w,} in {z,,: m=1} such
that w, — x,, in 9. By the continuity of £, on I we have f,(w,) = f,(x,) =1.
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Note that also |w,|— 1. Choose an index « for which | f,(w,)| > & and |w,|>
r. Pick 0 <7< |w,|—r so that | f,(w)|>% for all w in D with |w—w,|<%.
Writing w, =z,,, W, is a point of density of the set 4,,, and thus the set
B=A,N{weC:|w—w,| <y} has positive measure. Noting that also BC
D\rD, we can choose a we B for which |g(w) f,(W)|=<|lg/xp7rD [leo- We
then have

6/2 < |g(W)||f,,(w)| = "ganD\rD"oo =€t ”VnXD\rD”oo-

Letting r — 17, we obtain 6/2 <e¢,, contradicting thate,>0asn—-oc. L[]

Ghatage, Sun, and Zheng showed in [7] that for Bourgain algebras relative
to C(ON), H*(D),p = H*(D),. In fact, we can prove the same result for
Bourgain algebras relative to the larger space L*(D).

THEOREM 18. Tuking Bourgain algebras relative to L*(D), we have
H%(D)yp=H*(D),.

Proof. Suppose fe H D)y, =(H*(D)+ C(D)+V),. Write g=f* Then
it is easily seen that g € (H®+ C),=H >+ C, so that § € H*(D) + C(D). We
claim that f— g e V. It then follows that

f=8+(f—8) e H*(D)+ C(D)+V=H>(D),.

Assuming f—gé&V, there is a sequence {r,} in (0,1), a sequence {A4,]} of
sets of positive area measure in D, and a positive number é such that:
r,—1asn—oo;
A,C{zeC:r,<|z|<1};
|f(z)—£(z)|= 6 for ze U, 4,; and
| /()| =] fllo for z€ Up21 Ap-

Let z, be a point of density of the set 4,. Then clearly |z,| > 1 as n— oo.
By passing to a subsequence (if necessary) we may further assume that the
sequence {z,} is interpolating. Let {f,} be a Beurling sequence in H*(D);
that is,

Jn(zr) = 6, for all positive integers »# and k, and
w=1|f:(z)| <M for all zeD,
where M is a finite constant. Let {/N;: k=1} be a partition of the positive
integers such that each set N, is infinite. For each positive integer k, put
Fr= E Jn-
ne N,

Then each Fj, e H*(D), and because X7-|Fi(z)|<M, for all ze D, F, -0
weakly in H*(D) (here we use [3, Lemma 1]), thus in H*(D),. It follows
that there exist ;€ H*(D), ¢, € C(D) and »; € V such that

|(f—&)Fy—hx— ok — villw— 0 as k— co.

Taking nontangential limits we conclude that ||Af+ ¢f| = — 0, which im-
plies that || ;. + (¢£) || — 0, so that
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I(f—=8)Fr+(0£) —or— vkl — 0 as k> oo,

Fix an integer k£ such that |[(f— &)F; + (¢f) — ¢r — vkl <"6/4. Note that
for ne N, we have Fi(z,) =1, so we can choose 0<§,<1—|z,| such that
|Fr(z)|> 5 for |z—z,|<§,. Because z, is a point of density of A4, the set
B,=A,N{zeC:|z—2z,|<d,} has positive measure, and we may assume that

|(f(z) — 8(2)) Fr(2) + (0£) (2) — () — v (2)| < 6/4 for all z€ B, and
|»(2)| < [|vxxDAr,p | fOr all Z€ B,.

Then, for all z€ B,;:

8/2 <| f(z) — 8(2)||Fi(2)|
< |(f(2) = 8(2)) Fr(2) + (0£) (2) — ¢(2) — 4 (2)]
+[(0£) (2) — ox(2)|+ |7 (2))]

=< 8/4+|(2%) (2) — 22|+ [P XD 1, D [l co-
Hence

e

I(SD;)A(Zn) _¢k(zn)| =06/4— ”VkXD\r,,D

Taking the limit as » € N, and n — oo, we obtain 0 = 6/4 — 0, a contradiction.
O

References

(11 J. Bourgain, The Dunford-Pettis property for the ball algebras, the polydisc-
algebras and the Sobolev spaces, Studia Math. 77 (1984), 245-253.
[2] J. A. Cima, S. Janson, and K. Yale, Completely continuous Hankel operators
on H* and Bourgain algebras, Proc. Amer. Math. Soc. 105 (1989), 121-125.
[3] J. A. Cima, K. Stroethoff, and K. Yale, Bourgain algebras on the unit disk,
Pacific J. Math. 160 (1993), 27-41.
, The Bourgain algebra of the disk algebra, Proc. Roy. Irish Acad. Sect.
A (to appear).
[5]1 J. A. Cima and R. Timoney, The Dunford-Pettis property for certain planar
uniform algebras, Michigan Math. J. 34 (1987), 99-104.
[6] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[7] P. G. Ghatage, S. Sun, D. Zheng, A remark on Bourgain algebras on the disk,
Proc. Amer. Math. Soc. 114 (1992), 395-398.
[8] P. Gorkin and K. Izuchi, Bourgain algebras on the maximal ideal space of H®,
preprint.
[9] P. Gorkin, K. Izuchi, and R. Mortini, Bourgain algebras of Douglas algebras,
Canad. J. Math. 44 (1992), 797-804.
[10] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2)
86 (1967), 74-111.
[11] K. Izuchi, QC-level sets and quotients of Douglas algebras, J. Funct. Anal. 65
(1986), 293-308.
, Bourgain algebras of the disk, polydisk and ball algebras, Duke Math.
J. 66 (1992), 503-519.
(13] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79
(1973), 296-299.

(4]

[12]




Bourgain Algebras of Spaces of Harmonic Functions 321

[14] K. Yale, Bourgain algebras, Function spaces (K. Jarosz, ed.), Lecture Notes in
Pure and Appl. Math., 136, pp. 413-422, Dekker, New York, 1992.
[15] D. Zheng, Bourgain algebras of some algebras on the disk, preprint.

K. Izuchi K. Stroethoff

Department of Mathematics Department of Mathematical Sciences
Faculty of Science University of Montana

Niigata University Missoula, MT 59812-1032

Niigata 950-21

Japan

K. Yale

Department of Mathematical Sciences
University of Montana
Missoula, MT 59812-1032






