Equivariant Simple Poincaré Duality

S. R. COSTENOBLE & S. WANER

Introduction

In this paper we describe, for a finite transformation group G, the simple
homotopy theory of cell complexes whose cells are discs of representations.
Our primary goal is to define equivariant simple Poincaré complexes and to
prove a m—= theorem for equivariant simple Poincaré pairs.

There is in the literature on equivariant surgery much about the question:
When is a degree-1 normal map between G-manifolds normally cobordant to
a G-equivalence or to a simple G-equivalence? (See [DP], [DR] and [LM];
for a comprehensive overview see [DS].) In this paper we begin to address
the question: When is a G-CW complex simply G-homotopy equivalent to
a smooth G-manifold? If we drop the requirement that the equivalence be
simple, some results are given in [CW1] and [CW2].

The first obstruction to discussing the case of simple equivalence is the
question of what is meant by a simple G-Poincaré complex, and behind
this is the question of what is meant by G-Poincaré duality. It has been
customary [DR; Lii] to consider a nonequivariant triangulation in which
G permutes the simplices; the nonequivariant chains then have an induced
Z.G-action and nonequivariant Poincaré duality gives an equivalence of ZG
chains. This equivalence fails in general to be a simple ZG equivalence, and
in fact Liick defines the Poincaré torsion of a smooth G-manifold which
measures this failure [Li, 18.G]. Thus, under this interpretation, smooth
G-manifolds are usually not simple Poincaré complexes, and so a theory of
simple G-Poincaré complexes would seem pointless.

From the point of view of equivariant stable homotopy theory there is
another problem. From this point of view “ordinary homology” means Bre-
don’s ordinary equivariant homology theory [Br]. This uses the same CW
decomposition as above, but the Bredon chains incorporate more informa-
tion about the fixed sets of the G-complex in question. In this theory we do
not even have Poincaré duality itself for smooth G-manifolds, except in
very special cases such as free actions or trivial actions.

We can resolve both these difficulties if we redefine what we mean by
equivariant Poincaré duality. It is well known that it is useful to extend the
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grading of equivariant homology theories from Z to RO(G); in [LMM] it is
shown how this can be done for ordinary equivariant homology. It then
turns out that Poincaré duality holds for a significantly wider class of G-
manifolds, namely manifolds locally modeled on a single representation of
G, as introduced by [Pu]. If M is modeled on the representation V, then the
Poincaré duality isomorphism has the form HE(M )= HE~*(M). This iso-
morphism cannot be described on the chain level using only the cell struc-
tures discussed above. It is based instead on the natural one-to-one cor-
respondence between these cells and the dual cells. The dual cells are not
permuted by G, but instead are copies of the unit disc of ¥V (minus some
trivial summands). This cell structure, and not any subdivision of it into
ordinary cells, is the appropriate one to use in the construction of HZ™*.
This Poincaré duality isomorphism is in fact a simple isomorphism on the
chain level, because of the underlying geometry. Thus the mathematics forces
us to take these dual cells seriously.

The next logical step is to extend the grading further in order to obtain
simple Poincaré duality for general G-manifolds. The extended grading is
needed to account for the changing local representations of subgroups of G
occurring in the tangent bundle, these being the representations that show
up in the action of G on the dual cell structure. We have already used cell
structures such as these in [CW1] to obtain a theory of equivariant Poincaré
duality, which we then used in [CW2] to study the equivariant Spivak nor-
mal fibration.

In this paper we refine this further in order to define equivariant simple
Poincaré complexes and to obtain the following main results. The first of
these is a “one out of three” result that is easy to prove nonequivariantly
from the simplicity of Poincaré duality. Dovermann and Rothenberg [DR,
5.c.0] prove an equivariant version for manifolds. We give the following
similar result for equivariant simple Poincaré complexes.

ProposiTioN. Let (X,0X) and (Y,dY) be simple Poincaré G-pairs such
that the inclusions dX - X and 3Y - Y are w-equivalences. Suppose that
S:1(X,0X)— (Y,dY) is a degree-1 G-homotopy equivalence covered by a
simple equivalence of local representation data. If f: X - Y is a simple G-
homotopy equivalence, then so is the map df:0X — 3Y and the map of
pairs [: (X, 0X)— (Y, dY).

This will be proved as Proposition 7.7. It is a key technical result in showing
the following generalization to equivariant simple Poincaré complexes of
the 7—7 theorem of [DR] for manifolds.

w-7 THEOREM. Let (X, 0X) be a simple Poincaré G-pair such that the in-
clusion X — X is a w-equivalence; we also assume that the dimensions of
the fixed sets satisfy certain hypotheses (to be specified in Section 7). If M is
a smooth compact G-manifold and f: (M, M) — (X, 0X) is a degree-1 map
covered by a simple equivalence of local representation data and a bundle
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map b: vy, — £ for some bundle & over X, then (f, b) is normally G-cobord-
ant to a simple G-homotopy equivalence of pairs.

This appears as Theorem 7.10.

The bulk of this paper is taken up with developing the simple homotopy
theory of G-cell complexes whose cells are the discs of representations. The
associated Whitehead torsion lives in Whitehead groups containing those
used by various authors [I1; I3; Lii; Ro]. We show along the way that the dual
cell structure of a smooth G-manifold is unique up to simple G-homotopy
equivalence.

The authors are indebted to Mel Rothenberg for conversations and in-
sights.

1. Background

We shall be discussing a theory of G-cell complexes constructed from discs
of representations, where G is a finite group. Such a theory was constructed
in [CW1], and here we shall give a slightly more restrictive version more
suitable for discussing simple homotopy. As is becoming standard practice,
we shall use the equivariant fundamental groupoid in order to keep track
of the representations (cf. [Lii] or [CWI1]). If X is a G-space, the funda-
mental groupoid w(X; G) (or just 7.X, if G is understood) of X is the cat-
egory whose objects are the G-maps x: G/H — X, where H ranges over the
subgroups of G; equivalently, x is a point in X¥*. A morphism x— y, y:
G/K — X, is the equivalence class of a pair (0, w), where 0: G/H— G/K is a
G-map, and where w: G/H X I — X is a G-homotopy from x to yoo. Two such
maps are equivalent if there is a G-homotopy k: w = w’ such that k(c, 0, ¢) =
x(a) and k(a, 1,¢)=yo0o(a) fora« e G/H and t € 1.

Let G be the category of G-orbits and G-maps between them. There is
a functor ¢: X — G, given by ¢(x: G/H— X)= G/H on objects and by
¢(0, w) =0 on morphisms. This turns =X into a groupoid over G in the
sense of [CKMW]. If f: X—>Y is a G-map, then there is an induced map
fo: X > 7Y over G.

Let 10O, be the category of n-dimensional orthogonal G-bundles over
G-orbits and G-homotopy classes of linear maps, so there is again a func-
tor ¢: hO, — G, giving the base space. An n-dimensionial linear representa-
tion of =X is a functor p: 7X — hO, such that ¢p = ¢; that is, it is a functor
over G. If ¢(x) = G/H, then we shall often write p(x) = G Xy V(x), so that
V(x) is an orthogonal representation of H. A linear map of representa-
tions of X is a natural transformation over the identity. More generally,
if f: X—Y is a G-map, p is a representation of w.X, and p’ is a represen-
tation of Y, then a map p — p’ covering f is given by a natural transfor-
mation 7: p — p’o f, over the identity. If £ is an n-dimensional G-bundle
over the G-space X, then £ determines a representation p(£) of #.X given
by p(£)(x: G/H — X) = x*(£) on objects. p(§) is defined on maps using the
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covering homotopy property for G-bundles. Similarly, a map of G-bundles
gives rise to a map of induced representations.

If M is any smooth G-manifold, then its tangent representation r is de-
fined to be the representation of wAM associated with the tangent bundle
of M.

We can define spherical representations by replacing 40, with the cate-
gory hJF, of spherical bundles over G-orbits and G-fiber homotopy equiva-
lences between them. Spherical maps of representations are again natural
transformations. We can consider any linear representation as a spherical
representation via the functor #0,, — hS,,.

2. Equivariant Simple Homotopy Theory

In this section we introduce a generalization of the usual notion of equi-
variant simple homotopy theory [I1; I3; Lii; Ro]. Let X be a G-space and let
v be an /-dimensional linear representation of the fundamental groupoid
(X; G).

DEerINITION 2.1. A G-CW(y) structure on X is a decomposition of X as
colim X", where:

(a) XYis a disjoint union of orbits G/H — X such that vy(G/H—- X)isa
product G/H xR/,

(b) X"=Xx""1U, (U, e}) where for each m there is a specified G-orbit
x: G/H - e}}, and a specified G-homeomorphism

en=D(y(x)+R"™)

that identifies x with the zero section. Here, if # </ then y(x) must
contain an (/—n)-dimensional summand, and y(x)+R"~/ denotes
the complement of this summand. We call the resulting map

D(y(x)+R" )X

the characteristic map for the cell e”.

We identify two such structures on X if they use the same skeleta X"
and if, for each cell, the two given characteristic maps give rise to a G-
homeomorphism $Y®*7=/ , §YN+7=Ithat is G-homotopic to a linear iso-
morphism.

Note that if +y is trivial then this coincides with the usual notion of G-CW
structure, since any homeomorphism of a trivial sphere is homotopic to a
linear isomorphism. In the general case the choice of a class of characteristic
maps is mainly a technical device that allows us to deal simultaneously with
several kinds of cell structure on the same space (see Definition 4.1, which
leads eventually to Proposition 5.2). In this section the main effect of this
choice is on the definition of “trivial unit” given below. (See also Lemma
7.6, which effectively allows one to vary vy up to weak equivalence.)
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A cellular G-map f: (X, v) — (Y, p) consists of a G-map f that is cellular
in the obvious sense together with a linear map y—pu. If A is a sub-G-
complex of X, then the inclusion ¢: (A4, v|A) = (X, v) is then cellular with
the associated natural transformation y | A — «*+ being the identity. In [CW1]
we prove cellular approximation theorems: any G-map f:(X,vy)— (Y, n)
covered by a linear map y — p is G-homotopic to a cellular G-map; and if v
is a representation of #.X for a G-space X then there is a G-CW(vy) complex
I'X and a weak G-homotopy equivalence (I'X, v) = (X, v).

Armed with such a cellular theory, we may now describe geometric sim-
ple homotopy theory along the lines of [Co], [11] and [Lii].

DEFINITION 2.2. A cellular inclusion ¢: (X, vy | X) — (Y, v) is an elementary
expansion if Y=XUe"Ue"*!, with a choice of characteristic maps such
that

e"tl=GxyDIWOR)=GXyD(W)XI
and
e"=GxXy[DW)X1IUSW)XI|=GXgyD(W).

We also say that X is an elemmentary collapse of Y.

Definition 2.2 leads to the standard definition of a simple homotopy equiva-
lence as a G-map G-homotopic to a finite sequence of elementary collapses
and expansions. If X is a G-CW(y) complex, we can now define the asso-
ciated Whitehead group, Whg (X, v), as the group of equivalence classes of
relatively finite cellular pairs (Z, X) in which X is a G-deformation retract
of Z, under the relation =, of equivariant simple homotopy equivalence
rel X. The usual lemmas now apply to show that Whg is a homotopy functor
on the category of G-CW(«y) complexes and G-maps. If f: X — Y is a cellular
G-homotopy equivalence, then we take 7(f)=[MfUxY,Y]e Whg(Y, ).
7( f) is the obstruction to f being a simple G-homotopy equivalence. Notice
that if v = 0 or any integer then Whg(X, v) is the group Wh;(X') defined in
[12] if X is finite, or the group WhY(X) defined in [Lii].

The following “simplified form” result follows from the arguments of
Cohen and Illman [Co; 12].

ProrosiTioN 2.3.  Let (Z, X)) be a relatively finite G-cellular pair with X a
strong deformation retract of Z. Then, for sufficiently large r, Z =, W rel X,
where W=XUU e UU e/ .

In [CW1] we construct the cellular chain complex C, , .(X) of a G-CW(y)
complex X. This is a complex of #.X-groups—that is, contravariant additive
functors from #X to the category of abelian groups, where #X is the stable
fundamental groupoid constructed in [CW1] (and see below). In addition,
there is a canonical isomorphism

C’Y+*(X) = Ei ﬁ-X(-—’ xf)
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where the #X(-, x;) are free functors on the centers of the cells (see [CWI,
Lemma 4.2]). Although this #X-structure suffices for stable theories (such
as ordinary G-homology), we need to refine it in order to deal with simple
G-homotopy theory.

First recall from [CW1] that #.X is the category whose objects are those
of 7X and whose morphisms x — y are formal sums of equivalence classes
of diagrams x <z — y in «#.X. This is a generalization of the construction of
the stable orbit category due to Lindner [Li] and Lewis [Le].

DerINITION 2.4, If 7y is a representation of #.X then let #7.X be the subcate-
gory of #X whose morphisms x — y are formal sums of equivalence classes
of diagrams x < z — y such that, if z: G/K - X and x: G/H — X, then G/K
embeds in y(x) over G/H; that is, we have a commutative diagram

G/K — vy(x)
N 4
G/H,

where the top map is an embedding and where the remaining maps come
from v and the morphism z — x. It is not hard to see that #7.X is indeed a
subcategory.

In [CKMW] we give an alternate definition of #.X in which #X(x, y) is the
set of stable H-maps from SY® to a certain space. #7.X can be described
similarly, except that we permit stabilization only by trivial representations.

The cellular chain complex C, . +(X) of a G-CW(y) complex X can now
be redefined to be a complex of #7X-groups, the point being that the attach-
ing maps define morphisms in the subcategory #¥.X of #.X because they are
given by R-stable maps between y-spheres. C, (X)) is based in the sense
that there is an isomorphism C. , «(X) = X; #7X(-, x;), where the #7X(-, x;)
are free #7X-functors on the centers of the cells (this isomorphism depends
only on the choice of characteristic maps for the cells). In general, we shall
say that the #YX-group C is free if there exists a natural isomorphism ¢:
C=>,; #YX(-, x;), and based if such an isomorphism has been chosen. In
either event, we shall refer to C as finite-dimensional if the sequence of
objects (x;) can be taken to be finite.

We now construct the algebraic Whitehead group Whg(#nX, v). When
v =0, this will coincide with the group Whg(wX) of [Lii]. Following the
standard procedure (as in [Lii]) we consider the category & of finite-dimen-
sional free #7X-groups. Define K;(F) to be the quotient of the free abelian
group generated by the automorphisms of objects in & by the subgroup gen-
erated by the elements [ fog] —[f]1—[g] for any two automorphisms f and
g of the same module, and the elements [ f]—[ fo] —[f;] for which there is
a commutative diagram

Aoy—> A A — A
1 /o S LA
Ag—Ac®D A — A,
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in which the horizontal arrows are the obvious inclusions and projections.
A trivial unit in K;(5) is an element of the form [ea.], where « is an auto-
morphism of an object x in 7 X, ¢ is the homotopy class of an R-stable
G-homeomorphism S - $7™ induced by a G-linear isomorphism, and
the automorphism eay: #7X (-, x) = #YX(-, x) is given by B~ ea°f3. We let
Whg(7X,v) be the quotient of K (F) by the subgroup generated by the
trivial units.

In order to relate this to the geometry, we shall find it convenient to use
the following equivalent description. Fix a skeleton X of #.X and let 6'X
be the corresponding skeleton of #7X. (Here, by 6X we mean a skeleton
of wX as a category rather than as a groupoid over the orbit category.)
Let M(#7X) be the monoid of matrices A=[a,g], where a=(x,, n) and
B = (xg, m) € (obj 67X) x N and where a,p € T7X(xg, X,). We also require
that all but finitely many entries satisfy a,5=0 if o # 8 and a,, =1, . Let
GL(#"X) C M(#"X) be the group of invertible matrices. As usual, we take
E(#7X) to be the subgroup generated by the elementary matrices; that is,
matrices I+ a,g obtained from the identity by adding a single off-diagonal
entry a,g. It now follows as in [Co] that E(#7X) is the commutator sub-
group of GL(#7X). Let E,x be the subgroup of GL(#"X) gencrated by
E(#7X) and matrices J(a,,) obtained from the identity by replacing the ath
diagonal entry by the trivial unit ¢, € #YX(x,, X,). It follows as in the non-
equivariant case that Whg (7 X, v) = GL(#"X)/E . x.

LEMMA 2.5. If ®:3; 27X (-, x;) = X; #YX(-, y;) is an isomorphism of fi-
nite sums, then the sequences (x;) and (y;) agree up to order.

Proof. This is Lemma 10.40 of [Lii]; #*.X is not an El-category as used in
[Lii], but this result does not require that assumption (see Liick’s comments
after 9.42). ' O

It follows that to any isomorphism ¢ between finite-dimensional based 77 X-
groups we can associate a matrix [¢] and hence an element of Whg (7 X, v).
This allows us to define the map ®: Whg(X, v) » Whg(7X, ) connecting
the geometric and the algebraic Whitehead groups. If [Z, X ] is an element of
Whg (X, v), we consider the relative chain complex C(Z, X) =C, ; «(Z, X).
This is an acyclic based complex of #YZ-groups; we choose a retraction
wZ — wX giving a retraction #YZ — #YX so that we can consider C(Z, X) as
a based complex of #¥X-groups. Choose a contracting homotopy s, and
consider the map

0+s5:C(Z,X)oqa— Cc(Z, X)even

between two based #Y.X-groups. By [Lii, 11.5], this map is an isomorphism
and so the matrix [0 +s] determines an element of Whg(#X, ). This ele-
ment is independent of the choice of s, again by [Li, 11.5]. It is easy to see
that it is also unchanged by elementary expansions and contractions. Finally,
choosing different characteristic maps for the cells or a different retraction
xZ — X would only change the matrix by trivial units, and so not change
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its image in the Whitehead group. We let ®[Z, X'] =[d +s]. Similarly, if £ is
a chain homotopy equivalence between two #¥.X-chain complexes, then we
can define its torsion 7(f) € Whg(nX, v) by applying the above construc-
tion to the acyclic complex given by the algebraic mapping cone of f.

Our next goal is to prove the following theorem.

THEOREM 2.6. &: Whg(X, v) > Whg(nX,v) is an isomorphism for any
G-CW(vy) complex X.

[Ro], [I3], and [Lii] rely on a splitting to reduce this to the nonequivariant
case. We cannot expect such a splitting in our context, but we can generalize
the nonequivariant proof directly.

Proof. We first show that ® is injective. Suppose that ®[Z, X] = 0. We
can assume that (Z, X) is in simplified form by Proposition 2.3. Thus Z=
XUUe/UU e/ *!, where we may assume that r is even and at least ly[+2.
The relative chain complex C(Z, X) is then concentrated in dimensions
and r+1, and ®[Z, X]is given by the matrix of attaching maps of the fr + I)J-
cells to the r-cells with respect to some choice of characteristic maps. Since
®[Z, X]=0 it follows that this matrix can be reduced to the identity by a
series of elementary column operations, multiplications of columns by triv-
ial units, and expansion of the matrix by the identity. If the matrix actually
were the identity it would be clear that [ Z, X'] =0, so it suffices to show how
to realize each such matrix operation by a simple homotopy equivalence.

Let C be a column of the matrix corresponding to the cell e/ *! with at-
taching map ¢; and center z;: G/H— Z. Let p: 7Z — wX be the chosen re-
traction with p(z;) =x;. Let ea € #¥X(x;, x;) be a trivial unit as above and
consider the operation C+~ C(ea). The operation C ~ Ce is realized by chang-
ing the attaching map of e/ *! by precomposing with the (linear) homeo-
morphism e (assuming that we have made r large enough). The operation
Cw~ Cu is realized by replacing the retraction p with the retraction p’ defined
by 0’(z) = p(z) on objects, while

p'(B: u—v)=n(v)"ep(B)on(u),

where 5(z) is « if z=z; and is the identity on p(z) otherwise.

Now let C; and C; be two columns, corresponding to the cells e/ +1 and
ef *+1 with attaching maps ¢, and ¢;. Consider the operation C;~ C;+ C;88,
where 8 € #X(p(z;), p(z;)), p: mZ — nX being again the chosen retraction.
We want to realize this by replacing ¢; by ¢;+ ¢;3; what this means is the fol-
lowing. Let » be the natural isomorphism from the identity to p. Write the
morphism n(zj)"lﬁn(z,-) as a sum of terms of the form z; < u — z; and con-
sider one of these terms. This is equivalent to a diagram G/H <~ G/L 5> G/K
and a G-homotopy 4 from the composite z;°0 to z;o7. We may assume that
L C H and that this homotopy has the following form: the radial path out-
ward from z;°0 to an L-fixed point w; in de/ *!, followed by an L-homotopy
h from ¢;(w;) to ¢;(w;), where w; is a K-fixed point on de; +1 followed by
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the radial path inward from w; to z;. We then add ¢,/ to ¢; along the orbit
of w;, and this extends to define ¢;=¢;+¢;8 in general. Call the resulting
complex Z’. We must also define a retraction p’: #Z’— 7X. To do this, let
J: ¢; — ¢} be a (free) G-homotopy, and consider the complex 7 formed by
attaching to Z two cells: one, ¢/, attached by ¢/; and the other, f, one di-
mension higher and attached by J in the obvious way to e/ +1 e/, and to X.
T contains Z’ as a subcomplex. Since Z is a deformation retract of 7, we ob-
tain a retraction 77 — wZ. We let p’ be the composite 7Z' - aT — 7Z —» n.X.
With this retraction one can check that the matrix of (Z’, X) is the original
matrix with the operation C;~ C;+ C;8 performed. T shows that (Z’, X) is
simply homotopy equivalent to (Z, X)rel X.

Expansion of the matrix by the identity is achieved in the obvious way by
an elementary expansion.

We now show that ® is surjective. Suppose that A is a finite invertible
matrix in GL(#YX). Construct a complex Z from X as follows. Let r be an
even number larger than dim X and at least |y|+2. Let xy, ..., x; be the ob-
jects in w.X associated with the columns of A, with x;: G/H; — X. Attach to
X one r-cell for each x; via the attaching map G Xy S(V(x;)) » G/H; - X.
Each column in A then describes how to attach an (7 + 1)-cell to the resulting
complex, giving us the cell complex Z. The retraction p: #Z — w.X is defined
on the r-cell associated with x; by sending every point of that cell to x;; on
the (r+1)-cell associated with the ith column we send all interior points
again to x;. Now the relative chain complex C(Z, X) is contractible and the
associated matrix is equivalent to A in Whg(7 X, v). We need to show that
Z is G-homotopy equivalent to X. For each H the constructions of [CW]1,
§5] give a functor from #YX-groups to Z[#.X]-groups taking C(Z, X) to
C(ZH, X*). The latter is the sum over the components of X of the non-
equivariant relative chains of the universal covers of the components, possibly
with some shifts in dimension. The contractibility of C(Z, X) then implies
the contractibility of each summand in C(Z#, XH), whence X —» Z" is a
homology equivalence. Since X# - ZH is a r;-equivalence, it follows that
XH_ 7zHis a homotopy equivalence. Since this is true for each H, it follows
that X — Z is a G-homotopy equivalence. Thus [Z, X]€ Whg(X, v) and
®[Z, X]=[A] as desired. [l

As in [Li, 4.27] we can define the Whitehead group Whg(X, ) for any G-
space X and representation y of w.X by setting Whg (X, v) = Whg(Z, v) for
any G-CW(y)-approximation Z of X. This is well-defined up to canonical
isomorphism.

We shall also need the following definitions.

DEerFINITION 2.7. Let X be a G-CW(vy) complex and let A be a subcomplex.
Similarly, let Y be a G-CW(8) complex and let B be a subcomplex. A G-
map f: (X, A) — (Y, B) covered by a map of representations v — 6 is said to
be a G-simple homotopy equivalence of pairs if the two maps X —Y and
A — B are both G-simple homotopy equivalences. If C(X, 4)—» C(Y,B)isa
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chain homotopy equivalence with zero torsion, then we say that f is a rela-
tive G-simple homotopy equivalence. ,
As in Lemma 2.5 of [Wal] we have the following.

ProrosiTioN 2.8. Let (X, A) — (Y, B) be a map of pairs of complexes as
above. If two out of the three chain maps C(A) —» C(B), C(X) - C(Y), and
C(X, A) —» C(Y, B) are simple equivalences, then so is the third, and then
the map (X, A) = (Y, B) is a G-simple homotopy equivalence of pairs.

Finally, we need in various places the following result, which is proved as
in [Lii, 14.21].

ProposiTION 2.9. If fi: X, - Y, and f5: X, - Y, are G-homotopy equiva-
lences of complexes, then there are invariants x(Y,) and x(Y>,) such that

(1 X f2) =7(1) x(Y2) +x(Y1) 7(f>).

In particular, if f, and f, are both G-simple homotopy equivalences, then so
is the product fi X f5.

3. Applications to Smooth Manifolds

Let M be a compact G-manifold and let 7 be its tangent representation.
In this section we shall describe the duality between G-CW structures and
G-CW(7) structures on M, and show that M carries an essentially unique
smooth G-CW(7) structure.

DEFINITION 3.1.  Let M be a G-manifold with tangent representation 7. A
smooth simplicial G-CW(r)-structure on M consists of a smooth G-trian-
gulation with skeleta {M*} and a filtration of M by G-subcomplexes M7
such that {M 7%} is the collection of skeleta of a G-CW(7) structure on M.
We also require that the closed cells of the G-CW(7) structure be smoothly
embedded in M. We shall use the word simplex to mean a simplex of the
G-triangulation, and the word ce/l to mean a cell of the G-CW(7) structure.

LeMMA 3.2. Any smooth G-manifold has a smooth simplicial G-CW(r)
structure.

Proof. If M is a smooth G-manifold, then it has a smooth G-triangula-
tion by [I2]. The dual G-CW(7) structure is constructed as the usual dual
complex; for example, the 7-dimensional cells are the orbits of the stars in
the first barycentric subdivision of the original vertices. The smooth sim-
plicial G-CW(7) structure is then given by the first barycentric subdivision
of the triangulation together with the G-CW(7) structure dual to the origi-
nal triangulation. 1

Let M be a smooth G-manifold with boundary oM. A smooth G-triangula-
tion of M is algebraically related to its dual G-CW(7) structure as follows.
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Let C.(M) be the chain complex of the triangulation; thus each Cy(M) is a
contravariant functor on wM. Let C, (M) be the chain complex of the
G-CW(7)-structure; since the cells G Xy D(V(x)—k) are embedded in M,
we can consider C,_; (M) to be a contravariant functor on 7.X °°. We define
cochain complexes in the following way.

DerINITION 3.3. If C is a contravariant functor from a category ® to the
category of abelian groups, we define its dual C7 to be the covariant functor
given by

CT(a) =ZHomg(C, Z&B(-, a)).

(Notice that if C=Z®(-,b) then CT=Z®(b,-) by Yoneda’s lemma.) If
C, is a chain complex of contravariant functors on ®, we let C* be the co-
chain complex of covariant functors on & defined by C k= (Cp) T In par-
ticular, we let C*(M) be the cochain complex of the triangulation of M, and
we let C"7*(M) be the cochain complex of the G-CW(7) structure. We
define the chain and cochain complexes of the pair (M, dM) similarly.

ProrositiON 3.4. Let M be a compact smooth G-manifold, let C.(M) be
the chains of a smooth triangulation, and let C,_ (M) be the chains of the
dual G-CW(7) structure. Then there are canonical based isomorphisms of
complexes

C.(M)=CT™*(M, M),
C.(M,dM)=C"*(M),
C,_.(M)=C*(M,oM), and
C,_.(M, M) = C*(M).

Proof. By construction there is a one-to-one correspondence between the
simplices of M and the relative 7-cells of (M, dM') that associates to each k-
simplex a (7 — k)-cell. This establishes the isomorphism

Ci(M)=C" M, oM),

and one can check that this preserves the respective boundaries. The other
three isomorphisms are similar. O

We now wish to show how to construct the dual G-CW complex to any
smooth simplicial G-CW(7) structure on a G-manifold.

CONSTRUCTION 3.5. (a) Let M be a G-manifold with a smooth simplicial
G-CW(7) structure. We construct a new smooth triangulation of A having
exactly one vertex in the interior of each cell of M. The construction is by
induction on the skeleta of the G-CW(7) structure. The beginning of the
induction is forced. Assume that we have triangulated M 7%~ as desired.
We extend this to a triangulation of M " ~* as follows. Using a diffeomor-
phism of a (7 —k)-cell with G X, D(V(x)—k), we take the vertex in this cell
to be the point corresponding to the origin, and the triangulation of the cell
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to be the cone on the triangulation of its boundary, as in barycentric sub-
division. We call this simplicial structure the barycentric triangulation of M
associated to the G-CW(7) structure.

(b) Let M be as above. The G-CW structure dual to the G-CW(7) struc-
ture is constructed in the following way. Let n=|r|. The n-cells of the de-
sired structure are the orbits of the stars of the vertices of the G-CW(7)
structure taken in the barycentric triangulation. The lower-dimensional cells
are the orbits of the intersections of these stars.

This construction is inverse to the construction used in Lemma 3.2. We
could generalize Lemma 3.2 by using the same procedure as in Construction
3.5 to make these precisely inverse. Both constructions are illustrated by
Figure 1, which shows part of a G-manifold. The shaded regions indicate
some of the simplices of a G-triangulation, while the solid bold figures are
cells in the dual G-CW(7) structure. The remaining lines give the barycen-
tric subdivision or barycentric triangulation.

Figure 1

We now have the following proposition.

ProrposiTION 3.6. Let M be a compact smooth G-manifold with a smooth
G-CW(7) structure. If C.(M) denotes the chain complex of the dual G-
CW structure, then there are canonical isomorphisms of complexes
C,(M)=C"*(M, M),
C.(M,dM)=C""*(M),
C,_.(M)=C*(M,dM), and
C,_«(M,0M)=C*(M).

DerINITION 3.7. If M is a compact smooth G-manifold with a smooth
G-CW(7) structure 8, then a cosubdivision of 8 is the G-CW(7) structure
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dual to any smooth subdivision of the G-CW structure dual to 8. This is
illustrated in Figure 2. The original G-CW(7) structure is given by the solid
bold lines. A cosubdivision is given by the solid thin lines; this structure is
dual to the one given by the dotted lines.

Now let § be a smooth G-CW(7) structure on M, and let D be its dual
G-CW structure. Let ' be a subdivision of D and let 8’ be the dual to D’
so that 8’ is a cosubdivision of 8. The map i: (M; D) — (M;D’) given by the
identity is cellular, and so defines maps of chains:

Ji: Crs(M;8") = CH(M, 0M; D) » C*(M, OM; D) = C, _ (M 8)
and
Jet Crs(M,0M;8Y= C*(M; D) > C*(M; D)= C,_ (M, 0M; 8).

LEMMA 3.8. There is a cellular approximation to the identity j: (M;8') —
(M; 8) inducing the maps j. displayed above.

Proof. The algebraic map j, tells us where to send vertices; in fact, any
vertex is in the interior of some top-dimensional simplex of D, and will be
sent to the center of this simplex. We construct j inductively on the skeleta
of 8’ to have the following property: If s’ is a cell of 8’ dual to the cell d’
in »’, then d’ is contained in a cell d of minimal dimension in D; we require
that j(s’) be contained in the cell s = ¢(s’) dual to d. Assume then that j has
been constructed on the (7 — k —1)-skeleton of 8’ with this property. We now
want to extend j over a (7 —k)-G-cell s’. If we know that j(ds’) C ¢(s’) then
we can extend j over s’ by coning. But this inclusion follows easily from the
following two facts and the inductive hypothesis: (1) @ C db if and only if
B C da, where « is dual to the cell ¢ and 8 is dual to b; and (2) if a’C 3b’
then a C db, where a is the minimal cell of O containing the cell @’ of D’ and
similarly for b and b’.
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It is not difficult to check that j is homotopic to the identity since it takes
each cell of § to itself by a degree-1 map. It is also easy to see that j induces
the algebraic map Jj,. Ol

The map j and the homotopy can be seen in Figure 2. Each decagon inside
a pentagon expands to fill the pentagon, while each hexagon surrounding a
vertex of a pentagon contracts to that vertex.

THEOREM 3.9. Let (M,dM) be a smooth compact G-manifold. Then any
two smooth G-CW(1) structures on (M, M) are G-simply homotopy equiv-
alent as pairs.

Proof. Let 8; and 8, be two smooth G-CW(7) structures on M, with dual
G-CW structures D; and D,. By [12], D; and D, have a common subdi-
vision . Let 8 be the dual G-CW(7) structure, so that 8 is “common co-
subdivision” of 8; and §8,. By [I1] the map i*: C*(M; D) > C*(M;D,;) is a
simple equivalence and similarly for (M, dM'), so the map j,: C,_.(M;8)—
C,_.(M;8§,) is a simple equivalence, as is the map on pairs. By Theorem 2.6
we then get that the identity map (M;8) — (M; 8,) is a G-simple homotopy
equivalence. Similarly, the identity map (M;8) — (M;S,) is a G-simple ho-
motopy equivalence, and so the identity map (M; §;) — (M; 8,) is a G-simple
homotopy equivalence, and similarly for the pair (M, 0M). By Proposition
2.8, the identity map is a G-simple homotopy equivalence of pairs. ]

If 7=+ 6 then we could similarly define what one means by a smooth sim-
plicial G-CW(~) structure on M. We conjecture that such structures exist
and are unique up to simple equivalence. Such a result would simplify some
of the constructions of the next section.

4. Spaces with Two Cell Structures

For use in later sections, we need some results about spaces having simul-
taneously two cellular structures. These generalize the simplicial G-CW(7)
structures used in the last section.

DerinNiTION 4.1. Let X be a G-space and let v and p be representations of
7 X. A G-CW(v, v+ p) structure on X consists of a G-CW(~y) structure with
skeleta {XY**} and a filtration of X by G-subcomplexes X?+?** such that
{XYT?T*} is the collection of skeleta of a G-CW(«y + p) structure on X. We
also make the following restriction on the G-cells of the G-CW(y + p) struc-
ture: Such a cell is to be the image of a copy of GXygD(V(x)®DW(x)+k)
with a G-CW(vy(x)) structure, and we require that this structure on the
pair (GXyg DV (x)@®W(x)+k), GXxXygSWV(x)®W(x)+k)) be G-simply
homotopy equivalent to the product (over G/H) of a smooth simplicial
G-CW(y(x)) structure on G X D(V(x)+i) and a smooth G-CW structure
on G X g D(W(x)+j) (with i+ j = k possibly negative).
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Note that a change in the characteristic map of a cell as allowed by Defini-
tion 2.1 will take such a G-CW(y(x)) structure to another one, so the re-
quirement above that the G-CW(y(x)) structure on a cell be equivalent to a
product structure does not depend on the choice of characteristic map.

LEMMA 4.2. Any two product structures on
(GXyDVOW+k),GXygS(VOW+k))

as above are G-simply homotopy equivalent as pairs.

Proof. Using Theorem 3.9, we have the following H-simple homotopy equiv-
alences of H-CW(V') complexes:

D(V+W+k)=D(V+i)XD(W+J)
= DWV—-VYxDWVH+i)yx DWW +j)x D(W—-WH)
= DWV-VHXDWVI+WH+ kyx DIW-WF),

and similarly for these complexes relative to their bounding spheres. Since
the smooth structures on each factor of the last space are unique up to equiv-
alence of pairs (being respectively an H-CW(V'), an H-CW, and an H-CW
structure), the result follows from Propositions 2.8 and 2.9. (]

Lemma 4.3. Let X be a G-CW(v) complex, let F: (Y;, By) » (Y,, B,) be a
cellular G-map that is a relative G-simple homotopy equivalence, and let
f1: By = X and f5: B, — X be cellular maps such that f, = fi-F. Then

XUftYl =SXUf2Y2.
Proof. This follows by considering the diagram

0— C(X)— C(XU.Y;) = C(XU.Y;, X) —0

! ! 1)
0— C(X)— C(XU.Y;) — C(X UL Y,, X) — 0.

Since C(X Uy Yy, X) = C(Yy, B)) and C(X U Y, X) = C(Y;, By), the outer
two vertical arrows are G-simple equivalences, and so the middle one is as
well. |

These two lemmas imply that the G-CW(«y) simple homotopy type of a G-
CW(~, v+ p) complex is essentially independent of the particular G-CW(«y)
structure, but depends only on the G-CW(«y + p) structure. In other words,
a given G-CW(« + p) complex has, up to G-CW () simple homotopy equiv-
alence, a unique G-CW(4, v+ p) structure.

We can now develop the theory of G-CW(+, v+ p) complexes along the
lines of more familiar complexes. In particular, we have the following defi-
nitions and results.

DeriNITION 4.4. If X is a G-CW(y,v+ p) complex and Y is a G-
CW(6, 6 + o) complex, then a cellular map f: X — Y is a map that is cellular
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with respect to both the G-CW(y) and the G-CW(«y + p) structures on X.
In particular, f must really be a triple of maps: one, the G-map f: X - Y;
and the others, maps of representations y — 6 and p — o.

ProrosiTION 4.5. Let X be a G-CW(+y, v+ p) complex and let Y be a G-
CW(6, 6+ 0) complex. Let f: X — Y be a G-map covered by maps of repre-
sentation v — 6 and p — o, and assume that f is cellular on a subcomplex
ACX. Then f = f'rel A, where [’ is cellular on all of X with the homotopy
covered by maps of representations extending the given ones.

Proof. The proof is by induction on the subcomplexes 4 UXY*?*+* Thuys,
assume that f|AUXYFP+te-1~ frrel 4, where f': AUX Y PHh-1,y jg
cellular. Using G-CW(vy + p) approximation, we can extend f’ to a map
St AUXY*tP*+k Ly that is cellular with respect to the G-CW(y + p) struc-
ture, and we can extend the homotopy to a homotopy f|AUX Y *+k=
f”rel A. Considering f” as a map into Y°+°*¥ that is already cellular on
AUXYHPHE=1 with respect to the G-CW(+) structure, we now homotope
f'rel AUXYFP+k=1 15 a map that is cellular with respect to the G-CW(y)
structure. This map we take as f for the next step, as it clearly respects both
cellular structures. We leave to the reader the job of fitting these homotopies
together in the case where X is an infinite complex. ]

DEFINITION 4.6. A cellular inclusion X =Y of G-CW(«, v+ p) complexes
is an elementary expansion if Y is an elementary expansion of X as a G-
CW(y+ p) complex.

This leads to the notion of G-CW(#, v+ p) simple homotopy equivalence,
and to the definition of the geometric Whitehead group Whg (X, v, v+ p). By
definition, a G-CW(~, v + p) simple homotopy equivalence is a G-CW(«y +p)
simple homotopy equivalence. We also have the following.

Prorosition 4.7. If f: X - Y isa G-CW(v, v+ p) simple homotopy equiv-
alence, then fis also a G-CW(y) simple homotopy equivalence.

Proof. 1t suffices to consider the case where f is an elementary expansion.
Let Y=XUe"Ue"*!, where

e" NN =GxXyDWV+W+k+1)=GXyDV+WH+kyxI
and
e"=GXy[DWV+WH+E)XIUSV+WH+k)XI1=GXgD(V+W+k),
with some H-CW(V) structures on these discs. Let E"*! be
GXgD(V+W+k)xI
with the cell structure given by the G-CW(G X V) structure on
GXgD(V+W+k)x0
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crossed with an ordinary structure on /. By Lemma 4.2, this structure is
G-CW(G x V) equivalent to the structure on (e”, de”). Let

E"=GXy[DV+W4+Ek)X1US(V+W+k) XI]

with the structure it inherits as a subcomplex of E”*1. Again, E” is G-simply
homotopy equivalent to e”. We now want to say that X UE"UE"*!is G-
CW(v) equivalent to Y rel X, where we use exactly the same attaching maps
as in Y. We do this in two steps: XUE"=, X Ue", by Lemma 4.3. Then
(XUEMUE" 1 = (X Ue")Ue"*!, by the same argument modified to ac-
count for the fact that the spaces to which we are attaching cells are not
identical but are simply homotopy equivalent. It is obvious that

X—->XUEMUE"!
is a G-CW(v) simple homotopy equivalence, because it is a mapping cylin-
der, and the result follows. ]

COROLLARY 4.8. There is a homomorphism
e: Whg(X, v, v+ p) > Whg(X, )
given by jforgetting the G-CW(y + p) Structures.

5. Stable Whitehead Groups

In order to simplify our theory somewhat, we show in this section that
all of the groups Whg (X, v) for varying v inject naturally into a group
Wh;(wX), which we call the stable Whitehead group of X. Our argument
uses the spaces introduced in the last section.

ProposiTiON 5.1. Let (Z,X) be a relatively finite G-CW(v, v+ p) pair,
with X a strong deformation retract of Z. Then Z=,Wrel X, where W=
XUU e UU e/t and r can be taken as large as desired.

As in Proposition 2.3, this follows by the arguments of {Co] or [I1], using -
cellular approximation of maps in order to make the constructed complexes
be G-CW(y, v+ p).

ProrosITION 5.2. &:Whg(X,v,v+0) > Whg(nX, v+ p) is an isomor-
phism.

Proof. Simply repeat the proof of Theorem 2.6, but use cellular approxi-
mation to make all attaching maps cellular. ]

COROLLARY 5.3. Whg(X, vy, v+ p) = Whg(X, v+ p) is an isomorphism.

Let X be a G-CW(vy)-complex and let V be a representation of G. If we give
D(V) its smooth G-CW(0, V) structure, then multiplication by D(V') de-
fines a map

oyt Whg(X, v) » Whg(XXD(V),v,y+V).
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LEMMA 5.4. op: Whg(X,v) = Whg(XXDV), v, y+V) is split injective.

Proof. The splitting is given by the map e¢ of Lemma 4.8 and the fact that
XXDWV)=; Xrel X as G-CW(v) complexes. ]

Since the projection X X D(V) —» X is a G-CW(x, v+ V) approximation to
X, this defines an injection

Oy: WhG(Xa 'Y) - WhG(Xa Y, 'Y+ V) = WhG("rX’ 7+ V)'
On the other hand, there is an algebraic stabilization map
oy: Whg(nX, v) > Whg(nX, y+V)

defined by the inclusion of 47X in #Y*VX.

LEMMA 5.5. If V has the property that |V¥| is even for all subgroups H,
then the diagram
Whg(X,y) = Whe(X,y+V)
2] 2]
Whg(nX,v) > Whg(nX,y+V)
commutes.

Proof. ®0[Z,X]is the torsion of
Crivi(ZXD(V), XX DV ) =C, 1 :(Z, X)Q Cy o «(D(V)).

As in [Lii] this is equal to the torsion of C.  «+(Z, X) multiplied by the Euler
characteristic xy(D(V)) of Cp, (D(V)). In our context, xy,(D(V)) is the
alternating sum of the orbits of the centers of the cells of D(V') and lives in
Ay (G), the subgroup of the Burnside ring generated by those orbits of G
that embed in V. Since the (V' — k)-cells in the G-CW(V) structure on D(V)
are in one-to-one correspondence with the relative k-cells in an ordinary G-
CW structure on (D(V), S(V)), it follows that xp(D(V)) =x(D(V), S(V)),
the ordinary Euler characteristic given in [CWW] or [LMS]. Any element
of the Burnside ring is determined by its fixed sets, and as in [CWW] or
[LMS] these are given by

x(DWV), SW)=x(DP)", s(V)") =1.
Thus xp(D(V)) =1, and the diagram commutes. U

Now define Whg(#nX) in the same way that we defined Whg(7nX,v),
except that we use #X in place of #YX. Since the inclusions induce an
isomorphism colimy, #¥*YX = #X for any v, it follows that Whg(7wX) =
colimy Whg(7nX, v+V) for any v.

THEOREM 5.6. For any vy, the homomorphisms Whg(7X, v) > Whg(rX)
and Whg(X,v) > Whg(nX,v) = Whg(nX) are injective. Further, the



Equivariant Simple Poincaré Duality 595

induced map colimy Whg(X X D(V),vy+ V) = Whg(nX) is an isomor-
phism for any vy.

6. Algebra

In preparation for studying Poincaré duality in the next section, we recall
some algebra from [CW1]. As there, it is easiest to allow arbitrary G-sets in
places where we have heretofore only allowed G-orbits (i.e., in G and 7.X),
and we will do so without further comment.

Recall that #.X-groups are contravariant additive functors #.X — @b that
take disjoint unions to direct sums. At times it will be useful to consider a
covariant functor to be a contravariant functor via the isomorphism of #.X
with its opposite category. This isomorphism is given by taking a morphism
X« u—ytoits dual y < u— x. In particular, if 7 is a contravariant functor,
f:x—yis amap, and f: y—x is its dual, we write f* for T(f) and f, for
T(f).

DerNiTION 6.1. If S and T are #.X-groups, we define the group
SQixT=2,8(2)®T(z)/=,

where f*s®t=sQ fit; we define Hom .y (S, T) to be the group of natural
transformations from S to 7. When using these constructions, one should
keep in mind the isomorphisms

Hom;x (#X(-, x), $) =S(x) = #X(-, X)®;xS.

The homology and cohomology groups of X with coefficients in S were de-
fined in [CW1] to be the homology groups of the chain complexes Cy (X)X ;xS
and Hom;x (C. X, S), respectively. Here, C,(X) denotes the chains with
respect to a G-CW structure, giving the integer-graded homology, or the
chains with respect to a G-CW(«y) structure, giving the (y+ *)-homology.
We can also repeat the definition of the cochain complex given in Definition
3.3:

C*(X) =Hom;x (C.(X), #X(-,-)).

Here we consider #.X(-, -) as a functor of two variables, contravariant in
the first and covariant in the second. “Homy” is then taken with respect to
the contravariant variable, making the result a covariant functor of the re-
maining variable. As mentioned at the beginning of the section, we can then
use the self-duality of #X to consider C*(X) to be a #X-group. If X is a
G-cellular complex of finite type (i.e., has finitely many cells in each dimen-
sion), then

C*X)®;xS=Hom;x(C. X, S),

and so we can compute the cohomology using either chain complex.
We need the following notation: If x: A— X and y: B—Y are objects in
#X and #Y respectively, then x X y will denote the object in #(X X Y') given
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by the map xXy: AXB— X XY. Notice that not all objects of #(XXY)
have this form.

DEerFINITION 6.2. If Sis a #X-group and T is a #Y-group, then the #(X XY )-
group S 17 is defined by

(SaOT)(z)= Ez——»xxy S(X)RT(y)/=,
Where ('S'(i()t)z—>_x:'><y’—f£>x><yz (f*s®g*t)z->x’xy’-

The importance to us of this “box product” comes from the easily checked
observation that

X (=, Xo) O 7Y (-, yo) = #(X XY )(=, X0 X Jo),

from which it follows that C,(X XY) = C.(X) O C.(Y). (Note that, if
(X,v) and (Y,0) are G-cellular spaces, then X XY has an obvious G-
CW(y x 8) structure, and this is the one we use; this is simplified somewhat
if we allow cells to have the form of disc bundles over finite G-sets, rather
than orbits, so that a cell in X and one in Y give a product cell in X X Y.) The
analogous statement holds for products of pairs.

Suppose now that U is a #(X X Y')-group and that 7" is a #Y-group. Then
we define the #.X-group T®.y U by

(TR U)(X)=T®;iy U(x Xx-),

where, on the right, we regard U(x X -) as a @Y-group and use ®;y in its
previous sense. One of the properties of this tensor is that

SOT)RixxyU=SR;x(T®;yU);

this follows by playing with the definitions.

Another piece of algebra we need is this: Suppose that f: X—>Y is a G-
map. Given a #Y-group 7, we can form the #X-group f*7T by composing
with the induced map #X — #Y. There is a left adjoint to this construction.
Given a #.X-group S, we can form a #Y-group f«S by letting

(feS)(V) =2y e S(X)/ =,

where sy, v 4, 1= (h*s),_, sy. The homomorphisms of #X-groups S — f*T
are in one-to-one correspondence with the homomorphisms of #Y-groups
J+«S—T. It is also not difficult to see that f*T®;:xS=T Ry f«S.

Finally, we introduce the coefficient system that, in this theory, plays the
role that Z plays nonequivariantly. Let @ = ¢*G(-, G/G), so that ®(x) =
G(¢(x), G/G); if ¢(x)= G/H than @(x) is the Burnside ring of H. We call
Q the Burnside ring coefficient system. An important property of this system
is the following.

LEMMA 6.3. (A.Q)(xXYy)=#X(x,y) naturally in x and y.

Proof. There is a natural map #.X(x, y) - (A.®)(x X y) taking a morphism
X < p—y tothe element 15,_,,x,, Where 1 € @(p) is the unit in the Burnside
ring, given by the projection ¢(p) » G/G.
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In the other direction, suppose that we have an element a,,_, ,«,. Let
the map Az — x Xy be represented by the diagram Az« d— x Xy, and let
a € @(z) be given by the diagram ¢(z) < s— G/G. We can form the follow-
ing diagram in #(X X X):

Ap
"4 N
A(z00) d
N v N
Az XX
Here o:s5— ¢(z) is the map representing a, and the square is a pullback
square. This square is constructed by first forming the pullback of the under-
lying G-sets, and then using composition of maps to get p and the left side
of the square; there is then a unique morphism in #(X X X) from Ap—»d
completing the diagram. We now take a to the map [x « p— y] € #X(x, »).

One now checks that this is well-defined, and is inverse to the map first
described. O

COROLLARY 6.4. If Sis any wX-group, then SQ;x A QA =S.

Here, the tensor product of a #.X-group and a #(X X X)-group is the one
defined after Definition 6.2.

Proof. (S®;ixA:@)(x)=S®ixAsB(xX-)=SQ;x X (x,-)=S(x). U

We put these pieces together to define a chain-level cap product. Let X be a
G-CW(0, 7) complex with chains C, and C,_;, and let £€ C,Q.:x Q& be a
cycle. Give XX X the G-CW(7) structure that is the product of the G-
CW(7) structure on the first factor and the ordinary G-CW structure on
the second. We can then approximate the diagonal A: X —» X X X by a map
that is cellular with respect to the G-CW(7) structure on X. This induces a
map A,:C, - A*C (X XX)=X, AYC,_, 0 Cy). We then define capping
with £ to be the following chain map, natural in y:
CH(3) B CH®(C,®:x @) = CH(»)®(A*(C, O C) Qi x @)
> A(C,_ O X(—, y)®ix @
= T—k(y)'
The third map is evaluation, while the last isomorphism is given by
ANC, O X (=, V) Rix A= (C,_ O X (-, ) Rixx x A+l
= T—-k®1‘rX(ﬁ-X(—: y) ®7‘.-XA*@)
=CrxQix 7 X(-, )
= CT—k(.y)'

The first two isomorphisms were described above, the third is Corollary 6.4,
and the last was pointed out after Definition 6.1. The naturality in y and the
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fact that this is a chain map are straightforward to check. There is another
chain map -N¢: C™~% - Cy that is defined similarly.

If f: X Y is a cellular w-equivalence, then there is a map f*: C*(Y) -
C*(X), and the following diagram commutes up to chain homotopy:

CHX) = C,_1(X)

1 2
CHY) — C,_4(Y).

Here the upper arrow is — N§ while the lower arrow is — N f,(£¢). This is
easiest to check if we can assume that the diagonal approximations agree,
and this can be arranged by mapping both X and Y into the mapping cylin-
der and extending their diagonal approximations to a cellular approxima-
tion to the diagonal map on the mapping cylinder.

We can introduce coefficients by tensoring with a coefficient system S.
The resulting map Hom;x(Cy, S)= C*®.xS— C,_;,®:xS is easily seen,
using Corollary 6.4, to be the same cap product defined in [CW1].

We can define a cap product in the relative case as well. If A and B are
subcomplexes of X, and if £ € C,(X, AUB)®Q is a cycle, then cap product
with £ defines chain maps

-N E: Ck(Xs A) - CT—k(Xs B)
and
-N&: C™ KX, A) > C (X, B).

Finally, we comment on restriction to fixed sets. Let K be a subgroup of G
and let WK =NK/K. In [CW]1, §5] we constructed a functor from #(X; G)-
groups to #(X%; WK)-groups, denoted S+~ SX, and we showed that there is
a natural isomorphism

Cclx)¥=cl¥(x¥)

that preserves the cellular bases. Further, this functor preserves cap products
and simple equivalences. We also constructed in [CW1, §5] a functor from
#(X; G)-groups to #(X; K)-groups, denoted by S+~ S| K, and a natural iso-
morphism

CAX)|K=CK(X)

preserving cellular bases. Again, this functor preserves cap products and
simple equivalences.

7. Simple Poincaré G-Complexes

Generalizing the behavior of smooth G-manifolds seen in Propositions 3.4
and 3.6, we make the following definitions.

DEerINITION 7.1. A simple Poincaré G-complex of dimension 7 is a finite
G-CW(0, 7) complex X with a fundamental cycle [ X] € C(X)X;x & such
that the chain level cap products with [ X],
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~N[X]: CHX) - C,_(X)
and
-N[X]: CTkX) -> Cr(X),

are simple equivalences of based #.X-chain complexes. Similarly, a simple
Poincaré G-pair of dimension  is a pair (X, 0.X) of finite G-CW(0, 7) com-
plexes with a fundamental cycle [X, 0.X] e C,(X, dX)®;x @ such that the
following chain level cap products are simple equivalences:

~N[X,0X]: C" ¥ X, 0X) - Ci(X),
-N[X,0X]: CT ¥ X) - C (X, 0X),
~N[X,38X]: CXX,0X)— C,_p(X),
~N[X,0X]: CKX) - C,_1(X, 0X),

and such that dX is a simple Poincaré G-complex with fundamental cycle
d[X,0X].

REMARKS 7.2. (a) It follows from the remarks at the end of Section 6 that
if X is a simple Poincaré G-complex then XX is a simple Poincaré WK-
complex for any subgroup K of G, and that X is a simple Poincaré K-com-
plex for any K. Similar statements hold for pairs.

(b) In the definition of simple Poincaré G-complex, it is really only neces-
sary to assume that the map C*(X) — C,_,(X) is a simple equivalence, for
this is a simple equivalence if and only if C"~%(X) - C,(X) is (the latter
being the transpose of the former). Similarly, in the case of pairs, it suffices
to assume that C¥(X) - C,_(X,8X) and C"~¥(X) - Ci(X, 3X) are sim-
ple isomorphisms, together with the fact that d.X is a simple Poincaré G-
complex. These assumptions then generalize those made by Wall [Wal).

ProrosiTioN 7.3. If M is a compact smooth G-manifold, then (M, 0M) is
a simple Poincaré G-pair.

Proof. As in Section 3, let 7 be the tangent representation of M, choose a
smooth triangulation of M, and let the G-CW(O0, 7) structure on M be given
by the dual G-CW(7) cell structure. We then have that

C‘T(M’ aM) = 2 'T?M(—,X),

where the sum runs over the centers of the r-dimensional cells of M. We
claim that, as the fundamental cycle for M, we can take the sum

[M,0M]=2%1,Que C,(M,IM)R;u R,

where u € @Q(¢(x)) is the projection ¢(x) = G/G. That this is a cycle follows
from the geometry as in the nonequivariant case. As an approximation to
the diagonal D: M — M X M, we take the following map. The first compo-
nent M — M is the map j constructed in Lemma 3.8. The second component
is a map k constructed in much the same way that j was, except that we start
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by sending the vertices to different places: Using the notation of 3.8, every
vertex of 8’ is contained in the interior of a top-dimensional cell of 8, and we
send such a vertex to the center of that cell. The resulting map D= (j,k):
M — M X M is cellular with respect to the G-CW(7) structure on M and the
product of the 7 and ordinary structures (8 and D’) on M X M. It can now
be checked that with this diagonal approximation and the cycle [M, dM ]
described above, the map -N[M,IM]: C™ %> Cy takes a cellular basis ele-
ment to the sum of the cells in the subdivision that make up its dual cell. In
other words, this is the composite of the isomorphism of Proposition 3.4
and the simple equivalence given by the inclusion of the triangulation in
its subdivision. Similar comments apply to the case C* — C,_,. Finally, by
similar arguments it is easy to see that d[M, dM ] is a fundamental cycle for
oM. O

By the naturality of the cap product, it is also easy to show that any finite
G-CW(0, 7) complex 7-simply equivalent to a 7-dimensional smooth closed
G-manifold is itself a simple Poincaré G-complex, and similarly for pairs
(see the Corollary to 2.1 in [Wal]). :

We now consider degree-1 maps between Poincaré complexes.

DEerFINITION 7.4. Let (Y, dY) be a (simple) Poincaré G-pair of dimension 6,
and let (X, 0.X) be a (simple) Poincaré G-pair of dimension vy. A degree-1 map
from Y to X is a G-map f: (Y, 3Y) — (X, 0.X) covered by a spherical map of
representations f: & — v such that f,[Y, Y] is homologous to [ X, .X].

This depends on the observation that a spherical map like f is sufficient to
determine a map of chains f,: Cs(Y, dY) — C, (X, d.X) (this follows from the
definition of the chains given in [CW1]).

DEFINITION 7.5. Let y and v’ be representations of w.X. A simple equivalence
F:yw~+~'1is a continuous G-map of pairs (D(v), S(y)) = (D(y’), S(y’)) that
is a simple equivalence of G-CW pairs when each disc is given its canonical
(up to simple equivalence) smooth triangulation. Further, we assume for
each x that if ¢(x) = G/H then the map D(V(x)) = D(V'(x)) is induced by
a map D(V(x)g) > D(V'(x) ), where Vg is the orthogonal complement to
the H-fixed sets.

LEMMA 7.6. Let (X, dX) be a simple Poincaré G-pair of dimension v, and
let F: v’ — «y be a simple equivalence. Then there is a simple Poincaré G-pair
(X', 0X’) of dimension v’, and a degree-1 map f: (X, dX)—(X’,3X’) cov-
ered by F such that f is a simple equivalence of G-CW pairs.

Proof. We construct X’ by induction on the skeleta of X. Suppose by induc-
tion that we have constructed ((X”)”, (.X’)") and a simple equivalence f":
(X", 0X™) - ((X)", (0X")"). Suppose that S(y(x)+ k) —» X" is the attaching
map for the (n+1)-cell e”*!, and consider the following diagram:
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S('Y(X)‘l'k) - X" XnUen-H
i) 1} +
S(’)”(X)'I‘k)'—*X’n_"X,nU(e’)n-*-l-

We choose the attaching map S(y’(x)+ k) = X" to be cellular with respect
to the G-CW(0) structures, and to make the left square homotopy com-
mute. If the original attaching map S(y(x)+k)— X" lands in dX, we re-
quire the same of the new attaching map. Continuing in this way, we con-
struct a map f: (X, 0X) - (X', 0X’).

That f is a simple equivalence with respect to the G-CW(0) structures
follows by induction from the diagram above and the assumption that the
map S(y(x)+ k) - S(y’'(x)+ k) is a simple equivalence. It is also clear from
the construction that f induces a basis-preserving isomorphism of C, (X) with
C,(X’) and similarly for the pairs. If we then take [X’, dX'] = fi[ X, dX],
the following diagram commutes:

CHX) — Cc*(Xx)
) I}
Cv_k(X, 0X)— Cyf_k(X’, 0X’).

Since the top, left, and bottom arrows are simple equivalences, the right-
most arrow is as well, and (X’, d.X"’) is a simple Poincaré G-pair. O

The following result generalizes the key Lemma 5.c.0 of [DR], but requires
different assumptions.

PROPOSITION 7.7. Let (Y, dY) be a simple Poincaré G-pair of dimension &
and (X, dX) a simple Poincaré G-pair of dimension vy, such that the maps
w(@Y) - w(Y) and w(0X) — w(X) are equivalences of categories. Suppose
that f:(Y,0Y) — (X, 0X) is a degree-1 G-homotopy equivalence, and sup-
pose further that f is covered by a simple equivalence f:6—~. If f: Y > X
is a simple G-homotopy equivalence with respect to the ordinary G-CW
structures, then f:(Y,9Y)— (X, dX) is a simple G-homotopy equivalence
of pairs.

We shall need the following lemma.

LemMma 7.8. (@) If f:Y—> X is a G-homotopy equivalence of finite G-
CW(0, v) complexes that is a v-simple homotopy equivalence, then it is a
0-simple homotopy equivalence.

(b) If f:(Y,B)— (X, A) is a G-homotopy equivalence of G-CW(O0, y)
pairs, with =B — wY and nA — wX equivalences of categories, and if f is a
relative vy-simple equivalence, then f is a relative 0-simple equivalence.

Proof. By Corollary 4.8 and Proposition 5.2, there is a well-defined homo-
morphism Whg(7X, v) > Whg(nX, 0). For part (a), it is easy to see that this
map takes 7(f; v), the torsion of f with respect to the G-CW(«y) structures,



602 S. R. CoSTENOBLE & S. WANER

to 7(f; 0), the torsion with respect to the ordinary structures. Since 7(f;y)=
0 by assumption, 7(f; 0) =0 also. For part (b), consider the diagram

C’y+k(B) g C’y+k(Y) - C‘y-i-k(K B)
7 lf s
Cy+4(A) > C (X))~ C,+x(X, A).

From this diagram we get

() =77 —7(f5 ),

and similarly
7(f";0)=7(f;0)—7(f"; 0).

Since 7(f;+) and 7(f’;v) are taken to 7(f;0) and 7(f’; 0) as above, it fol-
lows that 7(f”; v) is taken to 7(f”; 0), and so we are done. O

Proof of Proposition 7.7. Applying Lemma 7.6 to the simple equivalence
0 — v, we can replace (¥, dY) in the hypothesis with a y-dimensional Poin-
caré G-pair; that is, we may assume that § =+ and that the map of repre-
sentations is the identity. We have then the following diagram:

cky) ——— c*(x)
! I}
C'y—-k(}’, aY) - C‘y—k(X’ aX)

Since the top and sides are simple equivalences of #.X-chain complexes, so
is the bottom map. By Theorem 5.6 we can conclude that it is also a simple
equivalence of #¥X-chain complexes, so that the map f: (Y, dY) — (X, 3X)
is a relative simple equivalence. of G-CW(y) complexes. By Lemma 7.8,
S (Y,dY)— (X, dX) is a relative simple equivalence of G-CW complexes. It
follows that df: Y — d.X is also a simple equivalence of G-CW complexes.

|
We now write down some dimensional assumptions used in [CW2] to obtain
a m-m theorem.

DEFINITION 7.9. (a) A representation V of G is ideal if, for each subgroup
K of G, V decomposes into a sum of irreducible representations of X as

V= R’%@E Zjn',

where ny < d;(n;+1)—1 for each i; here d;=1, 2, or 4 if Z; is (respectively)
real, complex, or quaternionic. A representation v of #.X is said to be ideal
if, for every x, the representation V(x) is an ideal representation of H.

(b) v satisfies the gap hypothesis if, for every x, if y(x) = G XV then for
every K C H we have either V=V or dim VX =2dim V'X.

(c) v has fixed sets of dimension at least # if, for every x, if y(x)=GXgzV
then dim V' = n.
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THEOREM 7.10 (w—w theorem). Let (X, dX) be a simple Poincaré G-pair of
dimension v; suppose that v is ideal, satisfies the gap hypothesis, and has
fixed sets of dimension of least 5. Suppose further that w(0X) — w(X) isan
equivalence of categories. If M is a smooth compact G-manifold of dimen-
sion 7, and f:(M,0M)— (X, 0X) is a degree-1 map covered by a simple
equivalence T — vy and a bundle map b: vy, — £ for some bundle & over X,
then (f, b) is normally cobordant to a simple G-homotopy equivalence of
pairs.

The proof follows the proof of Theorem 6.5 of [DR], using Proposition 7.7
in place of their Lemma 5.c.0.
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