On the Dimension of Harmonic Measure
of Cantor Repellers

ALEXANDER VOLBERG

1. Introduction

Let J be a Cantor repeller for a conformal map f. We prove that the har-
monic measure of J has dimension strictly less than the Hausdorff dimen-
sion of J for J lying on a line.

Harmonic measure plays an important part in 1-dimensional complex
analysis. Recently, the structure of harmonic measure of rather general plane
sets has become much more comprehensible due to works of Carleson [Cl;
C2], Makarov [Mal], and Jones and Wolff [JW1]. The deep analogy be-
tween the behaviour of sums of (almost) independent random variables and
the behaviour of the Green function of a domain plays a crucial part in this
subject. We refer the reader to [Ma2] for background. This analogy be-
comes still more conspicuous if a domain for which the harmonic measure
is investigated has a regular self-similar structure. As Carleson [C2] showed,
the methods of the ergodic theory turn out to be relevant in this case. This
approach was used also in [P], [Z], and [MV]. In this work we will also use
extensively ideas from [C2]. In some sense we continue here the study that
was undertaken in [C2] and [MV].

It is worth noting that harmonic measure in a dynamical context appeared
for the first time in Brolin’s paper [Br], where it was established that back-
ward orbits of a polynomial f are equidistributed with respect to the har-
monic measure w of the unbounded component of the Julia set J(f). Later
this result was interpreted as the coincidence of w and the unique measure
of maximal entropy of f (“maximal measure”) in [L] and [M]. The Julia
set of the polynomial f can be very complicated, but in one particular case
it is simply a Cantor-like set—namely, when the orbits of all critical points
C1s -++» Cg—1 8O to infinity. For such f the Julia set J(f) represents an example
of a Cantor repeller. But now we would like to note that the result of Brolin
together with Manning’s formula [Man] gives the following estimate of the
dimension of harmonic measure on the Cantor-like Julia set of a polynomial
S of degree d
logd

dimw= - <l
jj(f) log| f’| dw

(1.1)
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In fact § 5 log|f’|dw=logd+ >9-1G(c;), where G is the Green function
of C\J(f) and ¢y, ..., cy_ are the critical points of f (as we assumed, all
of them lie in C\J(Y)).

Estimate (1.1) holds for a wide class of conformal dynamical systems. For
the harmonic measure of any Cantor repeller, it was proved in [C2]. More-
over, it holds for each compact set K with “many annuli” of fixed modules in
the complement C\ K; that result was proved by Jones and Wolff in [JW2].
For an arbitrary compact set K, Jones and Wolff proved in [JW1] that

dimw=<1. (1.2)
For connected K (not a point) the famous result of Makarov [Mal] computes
dimw=1. (1.3)

Looking at (1.1)-(1.3), one may conclude that harmonic measure always
finds some place to hide. And this makes plausible the conjecture that

dimw<dim K (1.4)

when K is totally disconnected. An unpublished example of Christopher
Bishop shows that in general (1.4) does not hold. However for some “self-
similar” sets (1.4) turns out to be true [MV; Z]. This supports the conjecture
that (1.4) is true for all “dynamically defined” disconnected compacts (dis-
connected fractals).

We shall prove this conjecture here for a wide class of conformal dynam-
ical systems. Let us introduce this class of systems, the so-called (expand-
ing) Cantor repellers. Let U, U, ...,U; be d+1 topological discs with real
analytic boundaries such that the closures U; are contained in U, i =1, ...,d.
Consider a map f: U:d=1 U; - U which is univalent on U;, i =1, ..., d, and is
a conformal isomorphism f;: U; —» U on each U; (see Figure 1). By the (ex-
panding) Cantor repeller we mean the set

d
J=J(f)={x:f"xe Uuu, n=0,1,...}.
i=1
The aim of this paper is to prove the following theorem.

THEOREM 1.1. Let w be the harmonic measure on an éxpanding Cantor
repeller J(f), let U be symmetric with respect to R, and let

f(2)=f(z). (S)
Then
dimw < dim J(f). (1.5)

Thus, (1.1) can be strengthened by

dim w <min(l, dim J).

As was mentioned before, (1.5) was proved [MV] for “standard Cantor
sets” depictured on Figure 2. These Cantor repellers (U, U, ..., Uy;; f) are
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Figure 1
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Figure 2

distinguished by the property that all f; = f|U; are linear. On the other hand,
(1.5) was also proved for polynomials f by Zdunik [Z]. Both approaches
used the specific nature of J in a very important way.

2. Gibbs Property of the Harmonic Measure
of Cantor Repellers

2.1

We refer to [Bo] or [EL] for the exposition of the theory of Gibbs measures,
and state here only the facts we need in what follows. On a Cantor repeller
J=J(f), the dynamical system f:J > is naturally topologically conjugate
to the one-sided shift T': 3} <> in d symbols. Providing 3} with the natural
metric p(X, y) =1/2", where n is the first moment for which x, # y,, we see
that the conjugacy A: J— X} is Holder continuous. So, the class of Holder
functions is well-defined if we identify J and X} via A.
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For each f-quasi-invariant measure y on J one can consider its Jacobian

*

g0 =222

defined for all x in J except on a set of y measure zero, which is the derivative
of f with respect to v. The potential of » is defined to be ¢,(z) = —log G, (x).
For measures with Hoélder potential a proper theory exists—the theory of
Gibbs measures. Let us state now the definitions and some properties of
Gibbs measures.

(1) By a Gibbs measure on J(f) we mean an f-invariant measure » with
Holder potential ¢, = —log@G,.

(2) If 5 is an f-quasi-invariant measure with Holder potential, then there
exists a unique f-invariant measure » that is absolutely continuous
with respect to ». This measure is ergodic and is a Gibbs measure, and
log(dv/dn) is Holder continuous.

(3) If n is an f-quasi-invariant measure with Holder potential ¢,, and v is
the corresponding Gibbs measure, then its potential ¢, satisfies the
so-called homologeous equation

¢, =, +v°f—7, 21
where vy is Holder continuous. Actually, v =log(dv/dn).

(x),

2.2 Estimates for Harmonic Measure
For a cylinder set X=x;--- x,C 24, let

QX=fx,_1fx:' j}:‘U=lenf“Ux2n "'ﬂf"(""”an,

and let »(X') = v(Qyx) for each measure » on J=J(f). For two cylinder sets
X=x;:-x,and Y=y, --- y,, the symbol XY will denote the cylinder set
X1+t Xp V1" Ym- FOor X=Xx; - x,, let | X|=n. In [C2] and [MV] it was
proved that for any Cantor repeller there exist constants C and g €(0,1)
such that, for all cylinders X, Y, Z,

| w(XYZ).w(YZ)]
og[ wXY)  w()

Let us remark that (2.2) can be also easily derived from the so-called “bound-
ary Harnack principle”, proved in [JK].

This inequality may be interpreted as follows: On the probability space
(J, w) the sequence of random variables { X,},,~ ;, With X,(x) := X,,, is almost
independent. The past and the future are exponentially independent. Now,
taking X =x;, Y=x, -+ x,,, and Z=Xx,, 1, we get

< Cql?l, (2.2)

WXy X)) o W(Xp e Xpgr)

lo
gw(xz...xn) W(x2"'xn+1)

=Cq".

Consequently, the potential ¢,, exists for all x € J and is Hélder continuous.
We are now in position to apply the Gibbs theory. Summing up, we get the
following proposition.
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ProposSITION 2.1. The function logG,(x) is Holder continuous of J(f).
There exists a unique f-invariant measure p that is absolutely continuous
with respect to w; its potential ¢, = —log G, is Holder continuous. This mea-
sure is ergodic and log(dji/dw) is Hélder continuous.

2.3 Estimates of the Green Function

Let G be the Green function of C\J with pole at infinity. Let us consider
the function G defined by

g(e)= LD

d
for ze | JU\J.
G(z) ,-L=J1 ’

The next two propositions show that G is an extension of the Jacobian J,,
with certain nice properties.

PROPOSITION 2.2.
(1) For each cylinder set X and each z € Qy,

G(fz)  w(fX) 1X].
log[ @ W) ] I =Cqg'tl; (2.3)
and
(2) foreach ze QyandeachxeQxNJ,
G(fz) . Bq
log[ 6@ Jw(x)] ’ =Cq'*. (2.4)
ProrosiTiON 2.3. —log(G(fz)/G(z)) is a Holder continuous extension of

¢ = —log J,, into Utd=l U;.

Each of these results follows easily from (2.2). In what follows we will also
need the next simple lemma.

LEMMA 2.4. Let Uy, U, be two topological discs with U, CU,. Let g map U,
onto U, univalently. Let ¢ be a Holder function in U,. Then there exists a
unique (up to an additive constant) Holder solution of the homologeous
equation

v(8(2))—v(2) =¢(z), z€U. (2.5)
Proof. Let z, be a fixed point of g. Then the function
v(2) = X [6(g7"2) — d(20)]

n=1

satisfies (2.5) provided that the series converges. This series converges be-
cause the Holder property of ¢ ensures that ¢ (g~ "z) —¢(zo) decreases ex-
ponentially. Now it is clear that + is also Hoélder continuous.

To prove uniqueness, let us consider the homogeneous equation

v(gz) —v(z)=0.
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It follows that v is constant along the orbits of g ~!. These orbits accumulate
to zo and so the continuity of v implies y(z) =vy(z,). O

2.4. Invariant Hausdorff Measure and
Variational Principle

Let J=J(f) be a Cantor repeller and 6 = dim J be its Hausdorff dimension.
If Hy denotes the Hausdorff measure of dimension é on J, then its Jacobian
Js=Jn = |.f ’|5. In particular, Jy is Holder continuous. By 45 we will denote
the f-invariant measure equivalent to Hy, which exists as was explained in
Section 2.1. The potential of A; is equal to —é log| f*|.

PROPOSITION 2.5. Let v be a Gibbs measure on J(f) and dim v=46. Then
V= ha.

Proof. Let h, denote the entropy of an f-invariant measure p [Bi]. We will
use the following variational principle [Bo] for Gibbs measures. Let p be a
Gibbs measure and let ¢, be its potential. Consider the functional defined on
probability f-invariant measures

V(p) =h"+g o, dp.

Then V attains its maximum at a unique point, and this point is the mea-
sure p. V(p) is said to be the pressure of ¢,. Apply this principle to 45 and
—6 log| f’|. Suppose that » # h;. Then

h,,—ag log| /| dv < h,,a—aS log| /| dhs. 2.6)
J J

Now we use the Manning formula [Man], which computes the dimension of
an f-invariant measure p, as follows:
h

£ —, 2.7)
S s log|f’| dp
So, applying (2.7) to p = h;, we see that the right part in (2.6) vanishes. Now
the combination of (2.6) and (2.7) applied to u = » implies that dim » <.

Ot

Thus, the proof of (1.5) will follow from the fact that w is singular with re-
spect to the measure Hy. So, now we shall prove that on a Cantor repeller
with condition (S), harmonic measure is singular with respect to Hausdorff
measure; that is,

dimp=

wlH, on J(f). (2.8)

3. Homologeous Equation

The negation of (2.8) is supposed from now on, and we will arrive at a con-
tradiction. First we conclude that invariant harmonic and Hausdorff mea-
sures on J(f) coincide, that is, u= hs. Section 2.1.3 then implies that the
potential of w and Hj are connected by the homologeous equation
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¢y (x) = =6 log| f'(x)|+v(fx)—v(x), xeJ(f). (3.1)

Fix an index i with 1<i=<d, let p; be a fixed point of f;=f|U;, and let

=| f’(p;)| be its multiplier. Consider a point z € U and its backward orbit
{z_nln=1 converging to p; where z_,=f;""(z). We will use the following
two simple lemmas. Recall that G(z) = G(fz)/G(z).

LeEmMMA 3.1. Let ~U be a compact topological disc in U. Y:hen there exist
constants C= C(U) and € > 0 such that, for all 7’ and z"€ U,

IS(f7"2")—S(fT"2")| = Clz'—z"["
Proof. By the Koebe distortion theorem,
|f~"2' = f""2"|=C|z’'—
where C depends on U but does not depend on n. An application of Propo-

sition 2.3 finishes the proof. O

LemMA 3.2. Let XY e,(x) be a series of Hélder functions with uniformly
bounded Holder norms. Let ||, |l < Cq” for q €(0,1). Then the sum of the
series is also Hélder.

The proof is trivial and so it is omitted.
Now we are going to derive some consequences of the homologeous equa-
tion (3.1). First, it follows from Proposition 2.2 and from (3.1) that

G(Z_(n—
log ——(é(z‘”—)”) =1log G, (p))+0(q")
—n
=d8log| f(p)|+O0(g") =logA}+0(¢").  (3.2)
Hence, the series
G(zZ_(n—p) _ .. G(z)
log————"—=lim log ———— 3.3
p) ENG(,)  now EAPG(z_) G-
is convergent on U and its sum is Holder on U by Lemmas 3.1 and 3.2.
Second, analogously we have
G(Z—(n—l))
log —————=édlog|f'(z_,)|+O(q"). 3.4
g Gz_) gl (z_,)|+0(g™) (3.4)
Hence the series
) G G
3 log Zw-n) g jog (2) 3.5)

ST PG(z_)  nme ST G Gz
is convergent on U and its sum is Hélder on U. Using (3.3), we may consider
the following functions:
7:(z) = lim ARG(fi"z), zeU, i=l,...,d,
n— o0
which are positive and harmonic in U. These functions are the main objects
of our study; we would like to prove that they are proportional. This proof
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is accomplished in Sections 4 and 5. In Section 6, the proportionality of the
functions 7; is used to prove that the dynamics f=( fi, ..., f3) is conformally
equivalent to a linear dynamics F=(F,..., F;)—that is, to the situation
where | F/| = A; is constant. For linear dynamics (on the line) w and H; on J(F)
are singular; this was proved in [MV]. This reference shows that the propor-
tionality of 7; really leads to a contradiction. However, to make the present
article self-contained, we would like to avoid reliance upon [MV] here.

So we assume that F=(Fy, ..., Fy) is a linear dynamics; that |F}(z)| = A; is
a constant for z e U;; and that the 7; are proportional. We will now show
that this leads to a contradiction.

Multiplying 7; by suitable positive constants, we obtain a function 7 which
is strictly positive in U \ J, vanishes on J, and satisfies the functional equation

7(Fiz)=N7(z), zeU, i=1,...,d.
Now assume that
3i:|Ff|=A;>1. (E)

The functional equation and (E) allow us to extend 7 onto the whole com-
plex plane. Let us denote by G the group of linear transformations generated
by F, ..., Fy. For a given set K|, let GK denote U, ¢ g gK. Now obviously the
set Z(7) of zeros of 7 is the closure of GJ. That 7 is positive in U \J implies

GJNWUN\J)=0.

The following lemma was pointed out to me by A. Eremenko and is pub-
lished with his permission. It shows that the previous assertion is always false,
which means that the proportionality of 7 will lead us to a contradiction.

LeMMA 3.3. Let G be a group generated by linear mappings F,, ..., F; sat-
isfying (E). Then, for an arbitrary compact K and an arbitrary neighbor-
hood N of K, the following assertion holds:

GKN(N\K)#0.

Proof. We assume that A, > 1. It is sufficient to consider the case d =2. Con-
jugating G with a linear map, we can always assume that

Fi(z)=\z; F5(2) =Ay2+0,.
Then

F()(Z) =F1—1F2-1F1F2(Z) =Z+62<L——1—> =Z+60.
Ay MAy
So a shift belongs to G. Considering Fi XFy Fff(z) = 2+ 8,/)%, we see that
arbitrary small shifts are in G (we use (E) here). Now, let K and N be fixed
and let e =dist(K,dN). We choose g=z+he G, where |h|<e/2. Let h=
|)e™% and let z, be a point on K such that

Re zpe "% =max Re ze ~*%,

zekK
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Then gz, =2z0+ A does not belong to X but does belong to N, and Lemma
3.3 is proved. O

Returning to our functions 7;, let us recall that the proof of their propor-
tionality will take almost the entire remainder of the paper.
The first step is to introduce the functions

v;(z) = Lim (") ("G "z), z€eU;, i=1,...,d.  (3.6)

n— oo

These functions are not harmonic, but they have the following advantage.
Let us divide G by v; in U so that

G(z) =v;(z)e"'?, i=1,...,d, (3.7)

where v; is given by the series (3.5). In particular, all v; are Holder. On U;
this function satisfies the homologeous equation

vi(fz) —vi(z) =log G(z) — 6 log| f'(z)].

Restricting this to x in JNU; and comparing the result with (3.1), we con-
clude that +;(x) =vy(x)+ C; for x € J, where the C; are constants. Using the
uniqueness part of Lemma 2.4 we can renormalize v; and v;, preserving (3.7)
in such a way that

vi(x)=v(x), xed, i=1,...,d. (3.8)

It is useful to note that the functions 7; and v; satisfy the following func-
tional equations:

7:(f2) =X1:1(z), zeUj; 3.9
vi(fz) =) vi(z), zeU,. (3.10)

We will also use the following notation.
Again for z e U and fixed i/ with 1 <i<d, let {z_,} be the backward orbit
of z; that is, z_, = f; "z. Define 4;(z) by
5 & S (z-n)
ai(z)=—= > log— .
' 2 n=1 f (pi)
Each term here is a well-defined holomorphic in U function, and by the
Koebe~ distortion theorem the series converges absolutely and uniformly in
each U for UC U. It is clear that

vi(z) =|e%D21(z), zeU, i=1,...,d. (3.12)

(3.11)

4. Flatness of v;—v;onJ
We begin with the following simple lemma.

LeEmMA 4.1. Given a Cantor repeller J=J(f), there exist constants ¢, c,
such that
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(1) ¢, dist(dQyx, J) <length(dQx) < ¢, dist(dQx, J), and
(2) a|(f") ()| =dist(z, J) = c,|(f")(2)| if z€3Qx and n=| X |.

This is a direct consequence of the Koebe theorem. Now, for a given z let
Ox be smallest cylmcler containing z and let | X|= n Fix an xe JNQyx and
let x°=x, x —fx ., X" = f"x. Using (3.1) with x°, ..., x" 7! we get

- n—1
— E log G, (x*)=—=56 3 log| f/(x®)|+v(x™) —v(x%)
k=0 k=0

= =08 log|(f™)' (x)|+v(x™) — (). (4.1)
The Holder property of log G,, implies that
w(fY) . Y|
vyeQyNnJ, log[ W) Qw(y)] =Cq'". (4.2)

Put Y, =X and Y, = f*X, and use (4.2) in (4.1) to arrive at

—_ 1 ny__
log w(X) =log 1Y OF +y(x") =y(x).
Hence, there are ¢, and ¢, such that
cl(f"Y )P =w(X) =6 (f"Y (%)™ vxeQxNJ. (4.3)

LEMMA 4.2. Given a Cantor repeller J(f), there exist constants ¢, and c,
such that

ew(X)=G()<caw(X) VzedQy. 4.4)
Combining Lemmas 4.1, 4.2, and 4.3, we obtain the following proposition.

PROPOSITION 4.3. For a Cantor repeller J, either w L Hg or

c; dist(z, J)? < G(z) < c, dist(z, J)°. 4.5)

The estimate of v;—v; will be obtained in two steps. The first step follows
immediately from (4.5), (3.8), and the Holder continuity of the functions v;
fori=1,...,d. Suppose their Holder exponent is ¢ > 0. Then

|vi(z) — vj(2)| = G(z)|e @ —e~ 1)
=cdist(z, /)’le M —e 7| cdist(z, /)P (46)

Next we derive from (4.6) a much better estimate:
30> 0: |vi(2) — v;(z)| < c dist(z, J)' . 4.7)

This requires some work, which will be finished at (4.18). To start, let us
estimate Vv; in U\J when UCU. Let Vo=U\U%, f;"'U. Functions 7, are
harmonic and hence real analytic in V; by (3.12) the v; are also real analytic
in Vo. For X=x; -+ X, let Vy=f-"--- f;'V,. Now (3.12) and (3.7) imply
that

7(z)=e M@ |e %9 |2G(z), i=1,...,d, zeU.
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Combining this with (4.5), we see that

¢ dist(z, J)° <|7;(z)| = cp dist(z, J)°, i=]1,...,d. 4.8)
Using the fact that all 7; are harmonic in U\ J, we derive from (4.8) that
|V7:(2)| = cdist(z, J)° L. (4.9)

By (3.12), Vv, =|e%|*V1;,+ 7,V |e%|% As each |e“%|? is a real analytic function
in U, we conclude that
|Vv;(z)| < c dist(z, J)®~. (4.10)

Let dA denote the area measure on C.

LeEMMA 4.4. For a Cantor repeller J, either w L Hj or the function p(z) =
dist(z, J)®~, z €U, belongs to L>**%(dA).

Proof. We fix an integer k and let X,..., X, be that family of maximal
cylinders having the property diam Vx, <2 " The Koebe distortion theo-
rem and maximality of X; imply that diam Vx,zc:2” —k where ¢ does not
depend on k. To estimate the number m; we note that, according to (4.3)
and Lemma 4.1,

w(X;)=c-27%, i=1,...,my. (4.11)
Cylinders Xj, ..., X, being disjoint, we have

my < c-2%°,

Note that the area of Vy, is less than c272. Let V*=U;% Vx. Then U=
Us_ V¥ and |

S p2+9(2) dA(z) = i S =g i =2k . okBy—k(6=12+8) < oo
U k=1Jv* k=1

REMARK. Clearly p € L2*"(dA) for any 5 < 8/(1—8).

We will use also the following standard version of the Sobolev embedding
theorem.

ProrosITION 4.5. Let f be a function from LP, p>2, with compact sup-
port. Then the function

f@)= S —?Q dA(E)

belongs to the Holder class with exponent 1—2/p.

1/ 0 . d -~ 1/ 0 . d
z(a ’5) a*i(&‘*‘?ﬁ)'

alnd ®;; = d(v;—v;). Function ®;; is not holomorphic, but still it has a good
d-estimate:

Let

E‘I’ij = 53(0,-— Uj) = 56(|e”i|2'r,-—|e"f|2'rj).
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We continue the estimate, using the notation «; = Re a;, to obtain
I®;; = 3d(e>*i1;—e*%1;) = 2*3dr; — 24397
+ 7;00e2% — 7;00e 2% 4 §e2%9t;+ de2%idT;
—3e2%97;,—71;de>.

The first two terms vanish as 39 = ;A and 7; and 7; are harmonic. The next
two terms are bounded since «; and a; are real analytic. Each of the last

four terms has an estimate ¢ dist(z, J )‘5 Paccording to (4.9). Let us denote
1 9%;(%)
Wij=— S —== dA(%).
v £—2
Combining (4.9), Lemma 4.4, and Proposition 4.5, we see that
W, € A+, ' (4.12)

Let us fix an integer k, and let X}, ..., X}, be the same maximal cylinders as
in the proof of Lemma 4.4. Recall that k= W H 1 Vx,. We are now in a
position to prove (4.7). To do this, let us use the Green formula for ® = ®;;

in U\V*:
1 P(£) 1 ®(£)
‘I’(Z)—— 27 SaU E V4 d£+_,21 2xi “‘ay Z— E £
+l S 02(£) dA(E)=T1+X+A.
v\t 2—§&
The next estimate
|V(v;— v;)(z)| < e dist(z, J)+e ! (4.13)

will be proven later. Taking it for granted at this point, let us estimate X.
According to (4.13), |®| < c27%@+e=D o dVy fori=1,...,my. So

[Zj=c 32| g
v,

j=1
< kaz k(6+e—l)_2—-ks C2k6—k(5+e—l)—k= Cz—ke'

Letting k£ tend to infinity, we obtain
1 S $;;(£)

2wi Jou E—2

Hence, d(v;—v;) is a restriction to U\J of a function from A¥2+8) (gee
(4.12)). As v;—v; is real valued, the same is true for d(v;—v;) and for
V(v;—v;). As J is nowhere dense and v;—uvj; is at least continuous on U,
we conclude that

®,;(z)= —w;j(z), zeU.

v;—v; € C1H/2+({y, (4.14)

The last assertion means that v; —v; has continuous partlal derivatives and,
moreover, these partial derivatives belong to A¥Z+9 on U. Let us now use
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the symmetry condition (S) given in the statement of Theorem 1.1. In this
case it is clear that

11(2)=7i(2),  vi(Z)=v;(z), (4.15)
and
a;(z)=a;(z) for i=1,...,d. (4.16)

From (4.14) it follows that

0
a(vi—vj)(x) =0 for xelJ.

Using (4.14) once again, we conclude that
[(v;i—v))(x)| <cdist(x,J)'*" for xeR, n=56/(2+85). (4.17)
The symmetry condition (4.15) implies that

,(x) vj(x) 0 for all xeR.

Combining this with (4.14), we get
[(v;—v;)(z)| = c dist(z, J)' T2+ zeU. (4.18)

To justify (4.18) we need only prove (4.13). This is done in the following
lemma.

LeEmMA 4.6. Let 7y and 7, be harmonic in U\J; let o; and a be real ana-
ticinU, y<1+o0, and
|71]|+| 72| =< c dist(z, J)?; |(e%17y—e*21,y)(2)| < c dist(z, J)?. (4.19)
Then
|V(e®17;—e27,)(z)| < c dist(z, J)" L. (4.20)
Proof FixzoeU\Jand D=3,  ,, where ro= 1 dist(zg, J). Let al = a;(Z0),
ad = a,y(20), A(z) =e® —e4G) and A,(z) =e*®@ — %, Then
V(e®ir,—e*1) =e*1V7 —e*:V1y+ 7 Ve*1 —7,Ve™?
= (eX'V 7| — eV 1,) +(1,Ve™ — 7,Ve®2) + (A V7 — A,V7,)
= Il + 12 + 13 .
Now I, =V(e® . ‘T — —e®? -7,). The function under the V sign is harmonic and

bounded by c dist(z, J) T+ c dist(z, J)? in the disc D, so the estimate (4.20)
holds for [I;]. Obviously, |I,|= cdist(z, J)? < c dist(z, J)Y ! and"

|I3| < |A|| V7| +]As]| 72| = e dist(z, J) T~ < dist(z, J)Y L. O

We can apply this lemma with 7,=17;, 7,=17;, 6 =246, and y=35+¢ because
(4.8) and (4.6) imply (4.19). Thus the proof of (4.18) is finished. Applying
Lemma 4.6 for the second time (now with ¢=6 and y=1+48/(2+6)), we
get for all pairs i, j, 1 <i,j=d,
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|0(e2i7;— e2%7;)(z)| < c dist(z, J) /9, 421
where a; =Reaq; for i=1,...,d. Using (4.8) again we have
|(e2%id7,— e2%d7;)(z)| = c(dist(z, J)*/*+9 + dist(z, J)?).
Let us rewrite this inequality for z=x &R and n=4§/(2+6) to obtain
e X% (37,)(x) —e%Pes™(3r,)(x)| < c dist(x, ).  (4.22)

S. The Lemma of S. V. Hrus¢év Removes Singularities

Let us consider the auxiliary function
¥;i(z) = e%®e” 4@ (37,)(z) — eYPe% <f>(ar,-)(z).
Each term is holomorphic in U\ J. On the real axis,

¥;i(x) = e240(37;) (x) — 2% M7, (x)

= 209 97 (1) — 20 9T (1) (5.1)
ox dax
because d7;/dy = d7;/dy =0 on R according to (4.15). Using the lemma due
to Hruscév [H], we will prove that ¥;; is holomorphic on U; that is, we
remove the singularity of ¥;; on J. By (4.22), ¥;;(x) =0 for x € J; hence
¥,i(z) =0. In particular, ¥;;(x) =0 for x € R. Using (5.1) we see that (where
prime means x-derivative)

7/—e*®~*)7/=0 on R. (5.2)

The function 7; — e "‘)T is continuous on R and continuously differ-
entiable on each complementary interval of J. By (4.8) this function van-
ishes at the ends of each interval. Thus, for any complementary interval /,
there exists a point x; such that

(ri—e* @~ 1) (x;) =0.

2(o;—a

Combining with (5.2), we get 2e D7;(o;— ;) (%)) =0, and on the se-

quence {x;}
(ot — ;)" (%) = 0. (5.3)

The functions «;—«; are real analytic, and thus (5.3) implies o; —o;=cyj,
where c;; is a constant. These constants c;; are not arbitrary. The condi-
tion c, j+ Cjx+ ¢k = 0 holds for each i, j, k. Hence, we can find the constants
{c,}, 1 such that ¢;; = ¢;—c;. Returning to (5.2), we conclude that

(e2i7;)' —(e? %7;)’=0 on RNU.
2c

So e%*¢ir;—e i7; is constant on R, and this constant must be zero by (4.8).
For later use we will record here that we have proved the following assertion:

a;—C=a;—Cj. (54)



On the Dimension of Harmonic Measure of Cantor Repellers 253

Renormalizing 7; for 7;:=e?¢7;, we get that 7;=17; on R. Combining this
with (4.15) we have d7; =d7; on R and hence d7; = d7; on U. The same holds
for d derivatives. Finally,

7(z)=1(2), zeU, i,j=1,...,d,

and this implies that there exists a positive harmonic function 7 in U \ J such
that

7(f2)=M7(z), zeU, i=1,...,d. (5.5)

An immediate consequence of (5.5) is the fact that
d
S A=1. (5.6)
i=1

In Section 6 we will show that (5.4) or (5.5) allows us to replace our dy-
namics f with a linear dynamics for which (5.5) still holds. In the case when
all f; are linear, there is no 7 satisfying (5.5)—this was shown in Section 3.
This contradiction will finish the proof of Theorem 1.1.

Section 6 is devoted to the reduction of (5.4) to the linear case. We will
devote the rest of this section to the proof of the removability of J for func-
tions ¥;; that are a priori holomorphic in U \J. Obviously it is sufficient to
prove that ¥;; is bounded in a neighborhood of J. Then we will finish the
proof using the fact that the set J on R is removable for bounded and ana-
lytic functions on U\J if Hy{(J)=0.

Let J be a subset of [—1, 1], O be the square [—2, 2] X[—2, 2], and Q. be
its upper and lower halves. By considering a portion of J and stretching, we
may suppose that Q C U. The following result plays a key role here.

LemMMmA [H, pp. 184-185]. Let f be a function holomorphic in the unit disc
D and having there the estimate (0<o<1)

c
7@1= cronl )

Also, outside a closed set E on dD, the function f has boundary values; that
is, f*(¢)=lim,_,; f(z) for £ € ID\E, and
|f*(£)|]<1 vEedD\E.
IfH,_,(E)=0, then
|f(z)|=<1, zeD.

For the convenience of the reader we will give a simple proof which repeats
the one found in [H].

Proof. It is sufficient to prove that | f(0)| < 1. In fact, everything is invariant
under Mdbius transformation of D. To prove that | f(0)| <1 let us consider
a finite family of disjoint intervals {/f}/, such that
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N N
EcUIf and ' °<e (5.7
i=1 i=1

Let Q;={z eR: z/|z| € If, 1—|z| <|/f]}. Denote by G the domain D\U/L, §;
and apply the Jensen formula to the function log| f|, which is subharmonic

in G and continuous on G (wg is the harmonic measure of G). Then
n

10g|f(0)|55 log| f(&)| dws($) = 3. S log| f(£)| dwg(&).
oG i=1930,
It is easy to see that
I dx 1—
| togir@lawser=c, | " E =i,
30; o X

Taking (5.7) into account completes the proof. ]

Now we wish to apply this lemma to ¥;;in O, and Q_ separately. The “singu-
lar” set now is J and Hj, (J)=0. So it is sufficient to have a global estimate

C ~
[¥;:(z)| =< C exp( |Imz|(12—5—f)) for zeU.

But a much better estimate
¥;;(2)| = cdist(z, J)°! (5.8)

follows from (4.9). The second condition of Hrus¢év’s lemma—the fact that
¥;; is bounded outside the “singular” set /—follows from (4.22).

ReMARK. We cannot remove the singularities of ¥;; by a standard “Cauchy
integral procedure,” because (5.8) is not sufficient for that. An estimate by
dist(z, J)°* ¢! would be sufficient. From (4.13) one deduces easily that

|e**iar;—e®%d7;| < c dist(z, J)°+e L.

But e2*d7;,— e2%d7; coincides with ¥;; only on the real line.

We would like to note, however, that by using just a slightly more tedious
consideration one can avoid the application of Hrus¢év’s lemma. Its appli-
cation is justified for our goals by its elegance and straightforwardness.

6. Reducing (5.4) to the Linear Case

Here we use an idea of M. Lyubich. We call our dynamics f: Uf_, U= U
linear if f{ =A; for constants A; and i =1, ..., d.

Our goal is to show that f is conformally equivalent to a linear dynamics.
Let ze U and {z_,} be the backward orbit z_, = f; "z fori=1,...,d. We put

/(2)= 3 (log]| f'(z-,)] ~log|i], 6.1

where A; is f'(p;) and p; is a fixed point of f;. We restate (5.4) as follows:
There exist constants by, ..., by such that 8;—b;=8;—b;. Denoting these
differences by 3 we see that 3 satisfies the homologeous equation



On the Dimension of Harmonic Measure of Cantor Repellers 255

B(fz)—B(z) =log| f'(z)|—log|A;|, zeU,. (6.2)

Function 8 is harmonic in U; denoting by f its harmonic conjugate, we in-
troduce the following function that is holomorphic in U:

log 4'(z) = —(B(2) +iB(2)). (6.3)

In a small neighborhood V of J this function 4 is univalent. Let W=
h(V), Vi=f;1(V), W;=h(V;), and A(z) = hefoh~'(z) on W. By this defini-
tion of A,

K(f2) _ X(h(2))
(z)  fl(z)’
At the same time, combining (6.2) and (6.3) yields
|R'(f2)] _ Al
|h'() ||
Comparing (6.4) and (6.5), we conclude that
IN(w)|=A;, weW, i=1,...,d.

eV, i=1,...,d. (6.4)

zeV, i=1,...,d. (6.5)

But A’ is holomorphic on W; and so coincides with a constant.

The result is that (5.4) implies that the dynamics f is conformally equiva-
lent to linear dynamics. But for linear dynamics, assertion (5.5) was dis-
proved in Section 3. Finally, we conclude that for any Cantor repeller J with
the property (S), w L Hy holds and

dim w<dim J.

This completes the proof of Theorem 1.1.

7. Polynomial-like Mappings

In this section we would like to give another proof that (5.5) leads to a con-
tradiction. This proof will work only for polynomial-like mappings, but it
is short and worthy of inclusion.

In [DH], Douady and Hubbard introduced an important class of holo-
morphic dynamical systems—so-called polynomial-like (p.-1.) mappings. A
p.-l. mapping of degree d is a triple ( f, U, W), where U and W are conformal
discs with analytic boundaries with UC W, and f: U — W is a branched cov-
ering of degree d. One may consider sets

K f= n f _nU
nz=1

and J(f) = dK,. The following proposition reveals the topological structure
of K (see [DH, p. 296]).

ProposITION 7.1.  The set Ky is connected if and only if all the critical points
of f belong to K;. If none of them belongs to Ky, then K;=J(f) and is a
Cantor set.
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We will be interested in the last case, in which we deal with a certain sub-
family of the family of all Cantor repellers.

ProrosiTioN 7.2. Let f be a p.-l. mapping of degree d and J=J(f) be a
Cantor repeller. Let §=dim J. Let f {(U)= U, U;, where the U; are the
components of f~'U. Let p; be a fixed point of f;=f|U; and A\;=|f'(p;)|-
Then each nonnegative function 7 that is harmonic in U \J and satisfies

7(f2)=MN7(z) for zeU; and i=1,...,d (7.1)
must be zero.

Proof. As before, we conclude that (7.1) holds and so w is absolutely con-
tinuous with respect to Hj (see Section 2.4).
Now let us extend 7 to a harmonic function in W

#z) =A7(f12).

Locally 7 is a well-defined harmonic function on W. Furthermore, continua-
tion about the critical points of f shows 7 to be single-valued because of
(7.1). Thus

#Hf2)=N7(x)=X7(2), z€l,

and so A\;=); for all i,j=1,...,d. Taking (5.6) into account we see that
M =d, and we have shown that

d
(f2)=d7(z), zeUU, (7.2)
i=1

where 7 is nonnegative and harmonic in U \ J. Suppose now that 7 does not
vanish. Assertion (7.2) with positive harmonic function 7 in U \J implies
that the harmonic measure is absolutely continuous with respect to the mea-
sure m of maximal entropy of f:J <.

The mutual absolute continuity of w and m implies that f is conformally
equivalent to a polynomial. This is proved in [LV]. Using this conformal
change of variable we conclude that, for a polynomial p with Cantor-like
J(p), the harmonic measure is absolutely continuous with respect to the
Hausdorff measure H; and 6 = dim J(p). But this is impossible by a result
of Zdunik [Z]. ' O

8. Dynamical Dichotomy

Let 8;=dimw. We have proved that §;<é=dim J(f). But even more is
proved. Namely, let us show also that w1 Hj . Let us determine the order
of magnitude of w(Qx) when xe X, X —x for w a.e. x. Recall that p de-
notes the invariant harmonic measure. By the Manning formula ([ Man]; see
also (2.7)),

60= 5J¢F' dﬂ'
Llog|f’| dp
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where ¢, = —log G, is the potential of x and G, is the Jacobian of x as in
Section 2.

We introduce the function y defined on J by y = ¢,— 8, log| f’|, and con-
sider the sequence

Y,=y¢of" for n=0,1,2,...

of functions as a stationary process on the probability space (J, n). In Sec-
tion 2.2 it was shown that the sequence of random variables Xy(x) = x,,
X, =Xyof" on (J, n), consists of exponentially independent variables. Thus,

[, bensca| < ca”

for certain C and g € (0, 1). Such random variables are said to be asymptot-
ically independent. Hence there exists a finite number

] 1
o2= lim ;j(¢1+---+¢n>2du

n—oo

called the variance of the process {{,},>:. The condition ¢ # 0 plays a cru-
cial part in the theory of asymptotically independent random variables (see
(IL; PS]). In [IL] it is proved that only the following two possibilities can
occur:

(1) If 6 =0, then there exists y € L?(x) such that

y=vf—r. 8.
(2) If 0#0, then

ulS, > o~ nloglog n indefinitely often} =1. 8.2)

If (8.1) holds, then ¢, and §, log| f*| are L?*(p)-homological. As both func-
tions are Holder, it is easy to derive that they are Holder homological and

b, —8plog|f'|=vef—v, veA(J).
In particular,
¢;< Y (diamQx)=c,,
|X|=n
so dimw=4§,=6=dim J, contradicting our main result. In other words,
(8.1) is impossible and (8.2) implies that for w a.e. x for infinitely many
cylinders X’ (|.X'|=n;), we have

w(X") = (diam Q)% exp(ovn; loglog n;),

which means that w L H;,.

In conclusion, I would like to express my deep gratitude to the Department
of Mathematics of the University of Kentucky for their hospitality. I am also
very grateful to James Brennan, Alex Eremenko, and to Michael Lyubich
for valuable discussions of the subject of this paper. I am grateful to Pro-
fessor Douglas Dickson for improving the language and style in this article
and to a referee for the remarks concerning the reduction to the linear case.
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