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1. Introduction

In 1952 the author wrote an article [2] on close-to-convex functions. The
present paper shows how additional conclusions about univalent functions
can be obtained from the results and methods in [2]. We also provide a new
proof of the main result of [2] with the aid of the support angle function of
Study.

For a discussion of close-to-convex functions one is referred to [1], espe-
cially pages 46-51. We recall that a function f(z) analytic in the unit disc A
is called close-to-convex if Re(f'(z2)/¢'(z)) >0 for some convex function
¢(z) in A. Every close-to-convex function is necessarily univalent.

In [2], the following theorem is proved:

THEOREM A. Let f(z) be locally univalent in A. Then f is close-to-convex
in A if and only if

6, ” ,
Se, Re{l +z 5?,((2} do>—m, z=re", (1)

Jor each r, 0<r <1, and each pair of real numbers 0,, 6, with 6, <0,.
From Theorem 3 of {2], one deduces the following theorem.

THEOREM B. If f(z) # constant is analytic in A and continuous on A and
u = Rel[ f(z)] is monotone nondecreasing as z moves around 0A from z, to
21# Zp in the positive direction and monotone nonincreasing as 7 moves
around dA from z; to zy in the positive direction, then f is close-to-convex
in A.

2. The Support Angle Function

A basic tool will be the support angle function (Stiitzwinkelfunktion) intro-
duced by Study [4, p. 89]. If f is analytic in A and locally univalent, then
for the disc |z| < p <1 (0 < p <1), a support angle function is

S1,p(6) =Py (p,0)+0, —o0<B<os, (2)
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where py(r, §) = arg f'(re’®) is chosen to be continuous in A; hence p(r, )
has period 2 in . If the branch of arg f is changed, then S, ,(6) is changed
by addition of a constant. In general, we allow any function differing from
S; ,(0) by a constant as a support angle function for f on the disc |z]| <p.
If ps(r,0) is bounded on A, then it has radial limits as r — 1~ for almost
all 6:
lim pg(r,0)=ps(6) for @€k, 3)
r—1-
where py(8) has period 27 and E, N[0, 27] has linear measure 27w. We define
each function

S7(0)=ps(0)+06+const, 0eky, 4)

as a support angle function for f on A (denoted ©(f) by Study). (If f is
analytic at e'®, then S;(8) = p;(6) + 6+ w/2 gives the angle of inclination to
the u-axis in the w-plane, w=u+ iv, of the tangent to f(dA) at f(e’?).) By
the periodicity of p,(6),

S;(0+27) —S;(8) = 2. (5)

If S;(0) is defined for all # and is of bounded variation on [0, 27], then f
has an integral representation:

2r

f(z)=AS:exp[—H log(l——fi—o) de(O)] dz+B,

0
where A and B are constants [4, p. 103]. This is effectively the same as the
representation found by Paatero for the functions of bounded boundary
rotation [1, p. 270].

In general for f close-to-convex, S;(0) need not be of bounded variation
on [0, 27]. For, if v is an arbitrary bounded harmonic function in A with
|v(z)|< /2 in A, and ¢ is a convex function in A, then f can be chosen so
that arg f'=v+arge’ in A and Sy=v(e”®)+S,(0) a.e. (v(e’®) =limv(re’)
as r—17). Hence f is close-to-convex, but Sy is not generally of bounded
variation.

As pointed out in [2], the criterion (1) for close-to-convexity is equivalent
to the condition

Sﬁp(ez)_Sf’p(01)>_7l', 0<p<1, 01<92. (6)

A passage to the limit, p — 17, leads to a boundary form of the criterion. We
formulate this as part of a general theorem which includes Theorem 2 of [2]
(1, p. 48].

THEOREM 1. Let f be locally univalent in A and let a branch of arg f'(z) be
chosen in A. Then the following conditions are equivalent:

(a) fisclose-to-convexin A;
(b) condition (6) holds;
(c) arg f’ is bounded in A and

Sf(Bz)—Sf(Bl)Z—r, 01<02, 61,02 EEf. (7)
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Proof. The implication (a)= (b) is proved as in [1, pp. 48-49]. For the im-
plication (b) = (c) we need a lemma.

LEMMA 1. Let u(z) be harmonic in A and let u(z,) —u(z,) be bounded for
21,22 in A and |z)|=|z,|. Then u(z) is bounded in A.

Proof. Let w(z)=u(z)+iv(z) be analytic in A and let F(z) = exp(w(z)), so
that |F|=e". By the hypothesis, |F(z;)/F(z,)| is bounded for z;,z, in A,
|z;|=|z2| . Now the maximum modulus function M(r) for F is nondecreas-
ing. If F is not bounded, then M(r) — o as r — 1~ and hence, by the bound-
edness of |F(z,)/F(z,)|, |F(z)|— o uniformly as r — 17, so that 1/F(z) -0
uniformly as r — 17. This is impossible. Hence F is bounded and hence u is
bounded above; similarly, —u is bounded above and therefore u is bounded.
d
We now prove (b)=(c). From (6) we deduce that |u(z;)—u(z,)|<3= for
|z1]|=|z2], so that, by Lemma 1, u=arg f’ is bounded in A. Hence S;(0)
exists as above. Passage to the limit gives (7).
For the final step (c) = (a) we follow the ideas in [1, pp. 48-51] with some
modifications. For completeness we give the main steps.

LEMMA 2. Let E be a nonempty subset of the real line such that 0e E =
0+2weE. Let {(0) be a real function defined on E such that
tO+27)—t(@) =27
and
t(02)—'t(91)>—ﬂ', 01<02, BI,GZEE.
Then there exists a nondecreasing function s(0), 6 € E, such that

s(0+27)—s(0)=2n and |s(0)—t(0)|<n/2, G€E.

Here E is arbitrary except for its invariance under translation, and no con-
tinuity is involved (cf. [2, p. 174]). The proof is the same as in [1, p. 48], with
s(@)=supt(@)—=/2 (6,0’€E).

0'<¢
We apply Lemma 2 to #(0) = Sy(0) = ps(6)+0 (0 € E;) and obtain s(0),
nondecreasing, on Ey. Since Ef is dense in the reals, s(0) can be extended to
all 8, —o0 < 8 < o0, to remain nondecreasing. For z € A we let

. 2r pia
h(z) = — S e,- +Z(S(oz)—a)doz,
27 o €'“—z

¢(z)=j exp(h(t)) dt,

0
and verify that S;(0) =s(0) a.e. Hence

|Sr(0) —Sy(0)|==/2 a.e.,
so that
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|P7(0) —py(6)| = /2 a.e.

By the maximum principle, this implies that |arg f'(z) —arg ¢’(z)| < #/2 in
A, so that f is close-to-convex. (Equality for one z in the last inequality im-
plies that f is itself convex.) |

3. Schwarz-Christoffel Mappings

These form a class of mappings in A. All have the form

Z n
w=f@)=A| TI(-z)™"dt+B in 4, ®)

0/=1
where n=3, A+ 0, and B and the z; are complex constants. The y; are real
constants, and definite analytic branches of the functlons (t—z))""in A
are chosen. Further we assume that for j=1,...,n, z;=¢€' % and 0 < |#J| <1,
(01<0,<-<0,<0+27, 4 +p,=2). It is convenient to extend the
definitions of 6;, z;, and y; to all j € Z by requiring

Open=0;+2m, piy1=p» Zj4n=2; (9)
for all jeZ. Under these hypotheses it is known that f has a continuous
extension to A (also denoted by f), so that w; = f(z;) is defined for all j,
with w; ., =w; for all j; further, it is known that f maps each arcz = e’d,

0;—1=<0=0; on a line segment w;_;w;, with arg(w; —w;_;) = a;w. Here q;
can be chosen for all j to satisfy

Q1 — O = [, aj-}-n—aj:za (10)

and o; is uniquely determined by these conditions, once «; has been chosen.
The mapping f thus takes the circular path z=e'",0<7=<2r, onto a polyg-
onal path I'', with “exterior angles” u

ReEMARk. If we allow 0<|u;|<1, then the above conditions still yield a
Schwarz-Christoffel mapping. At least three of the y; must be nonzero, since
pp+ - +pn,=2, so that I' has at least three normal vertices. The vertices
with p; =0 are illusory vertices.

Each mapping (8) has a support angle function S;(0) defined for all 6,
—oo < § < oo. We can choose py(0) =arg f* (e’ for 6+ 0;, all j, so that

Sf(6)=pf(0)+9+7r/2=a17r for 6_,_1<6<01
and hence find, for @ so restricted, that
ojT=arg A— 3, p; arg(e’’—z;)+ 0+ /2. (11)

Thus S;(0) is a step function with jump p; at 6;. If 0 <py; <1 for all j, then
S¢(0) is nondecreasing and f is a convex function in A, as is well known.

THEOREM 2. Under the above hypotheses, f is close-to-convex in A if and
onlyifforO=sp<=m=<2nand m—p<an,
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ppt -t p,=—1 (12)

Furthermore, when f is close-to-convex in A, there is a convex Schwarz-
Christoffel mapping ¢ on A such that Re(f'/¢") > 0.

Proof. Condition (12) is equivalent to
Q4] T— QT = — . (13)

If this condition holds for 0 < p<m =<2n, m—p < n, then it holds for —oo <
p<m< oo, as follows from the second condition in (10). Further, the condi-
tion is equivalent to the condition

S;(6")—Sp(0)= —7 for 6”>,

provided 6’ # 6; and 6" +# 6; for all j. It now follows from Theorem 1 that (12)
holds if and only if f is close-to-convex.
The construction of the convex function ¢ in the proof of Theorem 1 uses
s(0) = sup[ps(0")+0'] — /2. (14)
0'<0
From (14) it follows that s(8) is also a step function, with jumps v; = 0 at the
6;. These facts alone show that ¢ is also a Schwarz-Christoffel mapping.
Pursuing the construction further, one finds that y; =0 when y; <0 and 0 <
'Yj_<_,l,€j<1 for P"j>0’ with Y1t +’)’n=2, and that

S,(0)=p,(0)+0=s(0). (15)
U

4. Discussion

The theorem just proved in Section 3 gives rise to a number of questions and
comments.

(a) The conclusion is that f is close to a convex Schwarz-Christoffel map-
ping. Accordingly one can introduce a new class “C-C-S-C” of univalent
functions f in A such that Re(f7¢’) >0 for a convex Schwarz-Christoffel
mapping ¢. Are these a// the close-to-convex functions in A? If not, how can
one further describe the class? How are these questions affected if one in-
cludes degenerate Schwarz-Christoffel mappings (8) with y; = 1 allowed?

(b) Theorem 2 describes a subclass of the class of univalent Schwarz-
Christoffel mappings. This subclass is described solely by a condition on the
exterior angles p; 7. Is this the largest subclass which can be so described?
For each set p = {u,, ..., p,} not satisfying (12), is there a Schwarz-Christofiel
mapping which is univalent? To study this question, it may be helpful to
consider the area functional

Af=SAS|f’|2rdrd0 (16)

in the class of functions (8) with given u (and, say, A=1, B=0). Here A is
finite and thus f’e L,(A) with || /' = A¥2. Thus the extreme points for A,
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have a simple geometric meaning. The question can also be considered as
one of pure Euclidean geometry: Given a closed polygonal path in the plane
with exterior angles u, ..., u,w, with all |u;|<1 and 3 p; =2, can one al-
ways modify the path without changing the angles so that it becomes a sim-
ple closed path? Perhaps the modification could be done by a homotopy
within the class of polygonal paths.

(c) Equations (14) and (15) allow one to find ¢ explicitly from a given
Schwarz-Christoffel mapping f: (14) gives s(8) in detail as a step function,
and hence gives the v; = 0. The z; are unchanged, so that ¢ can be taken as

Z n .
o@)=Ao | TI—z) vt dg=e™,
0j=1
and only « has to be found. For this we remark that in an interval (6;_,,6;)
for which y; >0,

arg o’(e’)+0=arg f' () +0—n/2= ;T —,

from which we find, as in (11), that

n
a= > (vi—u) arg(eie—zj)+argA—1r/2, (17)
ji=1

where 0 can be chosen arbitrarily in the interval described.

(d) Application of the criteria for close-to-convexity leads to Re(f7¢’) >
0 in A and hence to another univalent function F: namely, a primitive F of
Sf7¢’. For Re(F’) > 0in A implies that F is univalent [1, p. 47]. This process
fails to be invariant, in a certain sense: Let ¢ be convex in A, say ¢(A)=
D, and let f be close-to-convex in D: Re(f7¢’) >0 for a convex function
¢ in D. Then again, f is univalent in D, as is F such that F’'= f"/¢’. But
(fo)/(po¥) # (Foy) in general. One can take advantage of this lack of
invariance to obtain additional univalent functions. For example, if f and ¢
are Schwarz-Christoffel mappings in A, with Re(f"/¢’) > 0 as above, then
F’'= f'/¢’ defines a univalent mapping F in A which is not a Schwarz-
Christoffel mapping. But if one maps A onto the upper half-plane H, then f
becomes a univalent Schwarz-Christoffel mapping f; in H and ¢ becomes
a convex Schwarz-Christoffel mapping ¢, in H. However, F| = f{/¢iin H
defines a univalent Schwarz-Christoffel mapping in A, which is generally
degenerate in that some exponents may be greater than or equal to 1 in abso-
lute value; thus | maps H onto a domain bounded by rays, line segments,
and whole straight lines. (The condition X u; = 2 is essential for a Schwarz-
Christoffel mapping in A. The Schwarz-Christoffel mappings in A have the
same form as (8) but X p; =2 is not essential, since z= oo plays a special
role.)

One can go further, using ¢”/f” instead of f/¢’ and using linear combina-
tions of such functions with positive coefficients.
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(e) Condition (12) cannot be violated for n=3, 4, 5; that is, forn=3,4,5
each Schwarz-Christoffel mapping is univalent. For n= 6, violation is pos-
sible only if p;+pu;,; <—1 for some j, and one can give specific examples
(say with py=pu,=—0.8, pu3=ps=ps=pe=0.9), some having f univalent
and some not.

5. Closest Convex Function

One can regard sup,|arg f'—arg ¢’| as a measure of how close f and ¢ are.
This leads to the following definitions (see [3]).

DEerINITIONS. Let f be locally univalent in A. Then f is close-to-convex
of order 8, B3>0, if
|arg f'—arg¢’|<Bw/2 in A (18)

for some convex function ¢ in A (and appropriate choice of the argument
functions). The reentrancy of f is

Ree(f) =inf{fB| f is close-to-convex of order 8 in A}. (19)
If (18) holds for no 3 then Ree(f) = oo.

By the first definition, if f is close-to-convex of order 3, then it is close-to-
convex of order B’ for every B8’> . The term “reentrancy” is chosen be-
cause, for a mapping onto polygonal domains, it is the “reentrant angles”
that cause the mapping to deviate from convexity.

THEOREM 3. Let f be locally univalent in A and let a branch of arg f’ be

chosen in A. Then the following conditions are equivalent:

(@) fis close-to-convex of order 3>0in A;
(b) arg f’ is bounded in A and

St o(02) =S ,(0)) > -7, 0<p<1, 6,<8,;
(c) arg f' is bounded in A and
Sf(ez) —Sf((?l) = —fr, 01, 92 in Ef. (20)

COROLLARY. Under the hypotheses of Theorem 3, let B, = Ree(f) < co.
Then

1
BO=;SuD{Sf(ol)—Sf(02)|61<02s 01,0 € Ey}. (21)

Further, f is close-to-convex of order B if B> 0; if Bo=0, fis convex. If
Bo=<1 then f is close-to-convex and hence univalent.

REMARK. In general, there is no unique convex ¢ satisfying (18) for 8 = 3,,
nor is arg ¢’ unique. This can be seen from simple examples using Schwarz-
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Christoffel mappings. Thus we cannot refer to “the convex function closest
to f.”

The proof of Theorem 3 is like that of Theorem 1, with = replaced by 87
at appropriate places. It is of interest to observe that the construction of the
convex function ¢ = g satisfying (18) leads to the relation

0p(2) = ¢o(2) exp(—ifw/2),

where ¢((z) corresponds to the limiting case 3 =0. Thus, by varying 3 we
are simply rotating the convex function.

ExampLE. The following Schwarz-Christoffel mapping is considered by
Study [4, pp. 76-77]:

w= Sz(1+15)2’5(1 — 1343 dt. (22)
0

Here n=10 and the y; are alternately —2/5 and 4/5. The mapping is univa-
lent and the image is as shown in Figure 1. This can be justified (up to a rota-
tion) on symmetry grounds alone. For a Schwarz-Christoffel mapping (8),
one sees easily as in Section 3 that (21) becomes

Bo=max(—p,— - —py), 0=p<=m=<2n, m—p<n. 21"

Figure1 Example (22)

Thus, for the mapping (22), 8o=4/5 (which also proves the univalence).
One finds that, for proper numbering, a Schwarz-Christoffel mapping ¢
constructed as before to satisfy (18) with 3=4/5has y;=y3 =+ =7v9=2/5
and y,=---=+,=0, and that, for proper choice of the real positive con-
stant A, ¢ maps A onto the pentagonal region shown in Figure 1, the convex
hull of f(A).
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REMARKS. For each 8y = 0 there exist mappings f of reentrancy §y; in fact,
such f can be chosen as univalent Schwarz-Christoffel mappings, with the
aid of (21’). The ideas of this section are related to those in Section 5 of [2].
For functions of bounded boundary rotation, Theorem 3 is equivalent to
Theorem A of [3].

6. Mapping onto a Domain Convex in One Direction

The plane domains considered here have the property that, for some line L,
every line parallel to L meets the domain in a connected set; we say that the
domain is convex in the direction of L. We are concerned only with the case
of a domain G with polygonal boundary I' in the w-plane, w=u+iv. If L is
the v-axis, then the domain G is as suggested in Figure 2. Thus I' consists of

'

L
um
W1 : alll”
r
Figure 2
two broken lines wyw, --- w,, and w,,w,,,, -+ w,, as in Figure 2, one con-

sisting of directed segments w;_,;w; with angle of inclination o; 7 between
—x/2 and w/2 (inclusive), and the other of similar segments with angle of in-
clination between 7/2 and 3#/2 (inclusive). The two broken lines meet only
at their endpoints and the first lies below the second, in the obvious sense.

THEOREM 4. Let f be defined by (8), where the hypotheses of Section 3 are
satisfied: that is, n=3, A+0, B and z; =exp(if;) are complex constants,
the p; are real constants and 0 <|p;| <1 (py+ - +p,=2, 6,<0,<+--<0,<
0,4+ 27). Then fis a close-to-convex univalent mapping of A onto a domain
G convex in one direction if and only if the z; can be numbered to satisfy the
hypotheses of Section 3 in such a way that, for some integer m (0 <m<n),
the n closed intervals
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[aj—qj,bj——qj], Jj=0,1,...,n—1, (23)
have a nonempty intersection, where
q0=0a qj=ﬂ1+”'+l”'js j=1"“an_1; (24)

aj=—7 and b;=75 for j=0,1,...,m—1,
ai=%and b;=3% for j=m,...,n—1.

(25)

Proof. Sufficiency: Let 6 be a common point of the n intervals (23). We
can restrict attention to the case in which B=0 and A is chosen so that
arg(w; —wy) = 67 = o;w. Thus, by the hypothesis,

agr—qm<én=<b;r—q;w, j=0,1,...,n—1. (26)
From (10) and (24),
aj1=a;+qg;=6+gq;, j=0,1,...,n—1,
so that by (23) and (24),

{—71’/250:,-%5%/2, Jj=1,...,m,

27
T/2=ajm<37/2, j=m+l,...,n (27)

(see Figure 2). By these inequalities, u(e’) = Re(f(e')) is nondecreasing as
6 increases from 6, to 0,, and nonincreasing as # increases from 6,, to 6, =
0o+ 2. Since f is continuous in A and not identically constant, Theorem B
applies and f is close-to-convex, hence univalent. By (27), the boundary I’
of G=f(A) is formed of two broken lines as above, so that G is convex in
the direction of the v-axis.

Necessity: Let f be given by (8) and be univalent in A, and map A onto
a domain G convex in one direction. After rotation by an angle nw, G be-
comes a domain convex in the direction of the v-axis, as in Figure 2. This
rotation changes the angles ;7 to (o; +9) 7. Thus

—m/2=(j+n)m=<7/2, j=1,...,m;
/2= (j+n)w=37/2, j=m+1,...,n.
Hence 7 lies in all # intervals ‘
laj—a;, bj—0o;] for j=0,...,n—1,
so that 6 =%+« lies in all intervals
[aj—(cj— ), bj—(aj—ay)] for j=0,...,n—1
or in all intervals (23). ]

ReMARK. The proof shows that, in general, L is obtained by rotating the
v-axis by —nm = (a;—8) .
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