Convexity and the Schwarz-Christoffel Mapping

WILFRED KAPLAN

1. Introduction

In 1952 the author wrote an article [2] on close-to-convex functions. The present paper shows how additional conclusions about univalent functions can be obtained from the results and methods in [2]. We also provide a new proof of the main result of [2] with the aid of the support angle function of Study.

For a discussion of close-to-convex functions one is referred to [1], especially pages 46-51. We recall that a function f(z) analytic in the unit disc Δ is called *close-to-convex* if $\text{Re}(f'(z)/\phi'(z)) > 0$ for some convex function $\phi(z)$ in Δ . Every close-to-convex function is necessarily univalent.

In [2], the following theorem is proved:

THEOREM A. Let f(z) be locally univalent in Δ . Then f is close-to-convex in Δ if and only if

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left\{1 + z \frac{f''(z)}{f'(z)}\right\} d\theta > -\pi, \quad z = re^{i\theta}, \tag{1}$$

for each r, 0 < r < 1, and each pair of real numbers θ_1 , θ_2 with $\theta_1 < \theta_2$.

From Theorem 3 of [2], one deduces the following theorem.

THEOREM B. If $f(z) \neq constant$ is analytic in Δ and continuous on $\overline{\Delta}$ and u = Re[f(z)] is monotone nondecreasing as z moves around $\partial \Delta$ from z_0 to $z_1 \neq z_0$ in the positive direction and monotone nonincreasing as z moves around $\partial \Delta$ from z_1 to z_0 in the positive direction, then f is close-to-convex in Δ .

2. The Support Angle Function

A basic tool will be the support angle function (Stützwinkelfunktion) introduced by Study [4, p. 89]. If f is analytic in Δ and locally univalent, then for the disc $|z| \le \rho < 1$ (0 < $\rho < 1$), a support angle function is

$$S_{f,\rho}(\theta) = p_f(\rho,\theta) + \theta, \quad -\infty < \theta < \infty,$$
 (2)

where $p_f(r,\theta) = \arg f'(re^{i\theta})$ is chosen to be continuous in Δ ; hence $p_f(r,\theta)$ has period 2π in θ . If the branch of $\arg f'$ is changed, then $S_{f,\rho}(\theta)$ is changed by addition of a constant. In general, we allow any function differing from $S_{f,\rho}(\theta)$ by a constant as a support angle function for f on the disc $|z| \le \rho$.

If $p_f(r, \theta)$ is bounded on Δ , then it has radial limits as $r \to 1^-$ for almost all θ :

$$\lim_{r \to 1^{-}} p_f(r, \theta) = p_f(\theta) \quad \text{for } \theta \in E_f, \tag{3}$$

where $p_f(\theta)$ has period 2π and $E_f \cap [0, 2\pi]$ has linear measure 2π . We define each function

$$S_f(\theta) = p_f(\theta) + \theta + \text{const}, \quad \theta \in E_f,$$
 (4)

as a support angle function for f on Δ (denoted $\Theta(\theta)$ by Study). (If f is analytic at $e^{i\theta}$, then $S_f(\theta) = p_f(\theta) + \theta + \pi/2$ gives the angle of inclination to the u-axis in the w-plane, w = u + iv, of the tangent to $f(\partial \Delta)$ at $f(e^{i\theta})$.) By the periodicity of $p_f(\theta)$,

$$S_f(\theta + 2\pi) - S_f(\theta) = 2\pi. \tag{5}$$

If $S_f(\theta)$ is defined for all θ and is of bounded variation on $[0, 2\pi]$, then f has an integral representation:

$$f(z) = A \int_0^z \exp\left[-\frac{1}{\pi} \int_0^{2\pi} \log\left(1 - \frac{z}{e^{i\theta}}\right) dS_f(\theta)\right] dz + B,$$

where A and B are constants [4, p. 103]. This is effectively the same as the representation found by Paatero for the functions of bounded boundary rotation [1, p. 270].

In general for f close-to-convex, $S_f(\theta)$ need not be of bounded variation on $[0, 2\pi]$. For, if v is an arbitrary bounded harmonic function in Δ with $|v(z)| < \pi/2$ in Δ , and φ is a convex function in Δ , then f can be chosen so that $\arg f' = v + \arg \varphi'$ in Δ and $S_f = v(e^{i\theta}) + S_{\varphi}(\theta)$ a.e. $(v(e^{i\theta}) = \lim v(re^{i\theta})$ as $r \to 1^-$). Hence f is close-to-convex, but S_f is not generally of bounded variation.

As pointed out in [2], the criterion (1) for close-to-convexity is equivalent to the condition

$$S_{f,\rho}(\theta_2) - S_{f,\rho}(\theta_1) > -\pi, \quad 0 < \rho < 1, \ \theta_1 < \theta_2.$$
 (6)

A passage to the limit, $\rho \to 1^-$, leads to a boundary form of the criterion. We formulate this as part of a general theorem which includes Theorem 2 of [2] [1, p. 48].

THEOREM 1. Let f be locally univalent in Δ and let a branch of $\arg f'(z)$ be chosen in Δ . Then the following conditions are equivalent:

- (a) f is close-to-convex in Δ ;
- (b) condition (6) holds;
- (c) $\arg f'$ is bounded in Δ and

$$S_f(\theta_2) - S_f(\theta_1) \ge -\pi, \quad \theta_1 < \theta_2, \ \theta_1, \theta_2 \in E_f. \tag{7}$$

Proof. The implication (a) \Rightarrow (b) is proved as in [1, pp. 48-49]. For the implication (b) \Rightarrow (c) we need a lemma.

LEMMA 1. Let u(z) be harmonic in Δ and let $u(z_1) - u(z_2)$ be bounded for z_1, z_2 in Δ and $|z_1| = |z_2|$. Then u(z) is bounded in Δ .

Proof. Let w(z) = u(z) + iv(z) be analytic in Δ and let $F(z) = \exp(w(z))$, so that $|F| = e^u$. By the hypothesis, $|F(z_1)/F(z_2)|$ is bounded for z_1, z_2 in Δ , $|z_1| = |z_2|$. Now the maximum modulus function M(r) for F is nondecreasing. If F is not bounded, then $M(r) \to \infty$ as $r \to 1^-$ and hence, by the boundedness of $|F(z_1)/F(z_2)|$, $|F(z)| \to \infty$ uniformly as $r \to 1^-$, so that $1/F(z) \to 0$ uniformly as $r \to 1^-$. This is impossible. Hence F is bounded and hence u is bounded above; similarly, -u is bounded above and therefore u is bounded.

We now prove (b) \Rightarrow (c). From (6) we deduce that $|u(z_1) - u(z_2)| < 3\pi$ for $|z_1| = |z_2|$, so that, by Lemma 1, $u = \arg f'$ is bounded in Δ . Hence $S_f(\theta)$ exists as above. Passage to the limit gives (7).

For the final step (c) \Rightarrow (a) we follow the ideas in [1, pp. 48-51] with some modifications. For completeness we give the main steps.

Lemma 2. Let E be a nonempty subset of the real line such that $\theta \in E \Rightarrow \theta \pm 2\pi \in E$. Let $t(\theta)$ be a real function defined on E such that

$$t(\theta + 2\pi) - t(\theta) = 2\pi$$

and

$$t(\theta_2)-t(\theta_1) > -\pi$$
, $\theta_1 < \theta_2$, θ_1 , $\theta_2 \in E$.

Then there exists a nondecreasing function $s(\theta)$, $\theta \in E$, such that

$$s(\theta+2\pi)-s(\theta)=2\pi$$
 and $|s(\theta)-t(\theta)| \le \pi/2$, $\theta \in E$.

Here E is arbitrary except for its invariance under translation, and no continuity is involved (cf. [2, p. 174]). The proof is the same as in [1, p. 48], with

$$s(\theta) = \sup_{\theta' \le \theta} t(\theta') - \pi/2 \quad (\theta, \theta' \in E).$$

We apply Lemma 2 to $t(\theta) = S_f(\theta) = p_f(\theta) + \theta$ ($\theta \in E_f$) and obtain $s(\theta)$, nondecreasing, on E_f . Since E_f is dense in the reals, $s(\theta)$ can be extended to all θ , $-\infty < \theta < \infty$, to remain nondecreasing. For $z \in \Delta$ we let

$$h(z) = \frac{i}{2\pi} \int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} (s(\alpha) - \alpha) d\alpha,$$

$$\phi(z) = \int_0^z \exp(h(t)) dt,$$

and verify that $S_{\phi}(\theta) = s(\theta)$ a.e. Hence

$$|S_f(\theta) - S_\phi(\theta)| \le \pi/2$$
 a.e.,

so that

$$|p_f(\theta) - p_\phi(\theta)| \le \pi/2$$
 a.e.

By the maximum principle, this implies that $|\arg f'(z) - \arg \varphi'(z)| \le \pi/2$ in Δ , so that f is close-to-convex. (Equality for one z in the last inequality implies that f is itself convex.)

3. Schwarz-Christoffel Mappings

These form a class of mappings in Δ . All have the form

$$w = f(z) = A \int_{0}^{z} \prod_{j=1}^{n} (t - z_{j})^{-\mu_{j}} dt + B \text{ in } \Delta,$$
 (8)

where $n \ge 3$, $A \ne 0$, and B and the z_j are complex constants. The μ_j are real constants, and definite analytic branches of the functions $(t-z_j)^{-\mu_j}$ in Δ are chosen. Further we assume that for $j=1,\ldots,n$, $z_j=e^{i\theta_j}$ and $0<|\mu_j|<1$, $(\theta_1<\theta_2<\cdots<\theta_n<\theta_1+2\pi,\ \mu_1+\cdots+\mu_n=2)$. It is convenient to extend the definitions of θ_j , z_j , and μ_j to all $j\in \mathbb{Z}$ by requiring

$$\theta_{j+n} = \theta_j + 2\pi, \quad \mu_{j+1} = \mu_j, \quad z_{j+n} = z_j$$
 (9)

for all $j \in \mathbb{Z}$. Under these hypotheses it is known that f has a continuous extension to $\bar{\Delta}$ (also denoted by f), so that $w_j = f(z_j)$ is defined for all j, with $w_{j+n} = w_j$ for all j; further, it is known that f maps each arc $z = e^{i\theta}$, $\theta_{j-1} \le \theta \le \theta_j$ on a line segment $w_{j-1}w_j$, with $\arg(w_j - w_{j-1}) = \alpha_j \pi$. Here α_j can be chosen for all j to satisfy

$$\alpha_{j+1} - \alpha_j = \mu_j, \quad \alpha_{j+n} - \alpha_j = 2, \tag{10}$$

and α_j is uniquely determined by these conditions, once α_1 has been chosen. The mapping f thus takes the circular path $z = e^{i\tau}$, $0 \le \tau \le 2\pi$, onto a polygonal path Γ , with "exterior angles" $\mu_j \pi$.

REMARK. If we allow $0 \le |\mu_j| < 1$, then the above conditions still yield a Schwarz-Christoffel mapping. At least three of the μ_j must be nonzero, since $\mu_1 + \dots + \mu_n = 2$, so that Γ has at least three normal vertices. The vertices with $\mu_i = 0$ are illusory vertices.

Each mapping (8) has a support angle function $S_f(\theta)$ defined for all θ , $-\infty < \theta < \infty$. We can choose $p_f(\theta) = \arg f'(e^{i\theta})$ for $\theta \neq \theta_j$, all j, so that

$$S_f(\theta) = p_f(\theta) + \theta + \pi/2 = \alpha_j \pi$$
 for $\theta_{j-1} < \theta < \theta_j$

and hence find, for θ so restricted, that

$$\alpha_i \pi = \arg A - \sum \mu_i \arg(e^{i\theta} - z_i) + \theta + \pi/2. \tag{11}$$

Thus $S_f(\theta)$ is a step function with jump μ_j at θ_j . If $0 < \mu_j < 1$ for all j, then $S_f(\theta)$ is nondecreasing and f is a convex function in Δ , as is well known.

THEOREM 2. Under the above hypotheses, f is close-to-convex in Δ if and only if for $0 \le p \le m \le 2n$ and m-p < n,

$$\mu_p + \dots + \mu_m \ge -1. \tag{12}$$

Furthermore, when f is close-to-convex in Δ , there is a convex Schwarz–Christoffel mapping φ on Δ such that $\text{Re}(f'/\varphi') > 0$.

Proof. Condition (12) is equivalent to

$$\alpha_{m+1}\pi - \alpha_n\pi \ge -\pi. \tag{13}$$

If this condition holds for $0 \le p \le m \le 2n$, m-p < n, then it holds for $-\infty , as follows from the second condition in (10). Further, the condition is equivalent to the condition$

$$S_f(\theta'') - S_f(\theta') \ge -\pi$$
 for $\theta'' > \theta'$,

provided $\theta' \neq \theta_j$ and $\theta'' \neq \theta_j$ for all j. It now follows from Theorem 1 that (12) holds if and only if f is close-to-convex.

The construction of the convex function φ in the proof of Theorem 1 uses

$$s(\theta) = \sup_{\theta' \le \theta} [p_f(\theta') + \theta'] - \pi/2. \tag{14}$$

From (14) it follows that $s(\theta)$ is also a step function, with jumps $\gamma_j \ge 0$ at the θ_j . These facts alone show that φ is also a Schwarz-Christoffel mapping. Pursuing the construction further, one finds that $\gamma_j = 0$ when $\mu_j < 0$ and $0 \le \gamma_j \le \mu_j < 1$ for $\mu_j > 0$, with $\gamma_1 + \dots + \gamma_n = 2$, and that

$$S_{\varphi}(\theta) = p_{\varphi}(\theta) + \theta = s(\theta). \tag{15}$$

4. Discussion

The theorem just proved in Section 3 gives rise to a number of questions and comments.

- (a) The conclusion is that f is close to a convex Schwarz-Christoffel mapping. Accordingly one can introduce a new class "C-C-S-C" of univalent functions f in Δ such that $\text{Re}(f'/\varphi') > 0$ for a convex Schwarz-Christoffel mapping φ . Are these *all* the close-to-convex functions in Δ ? If not, how can one further describe the class? How are these questions affected if one includes degenerate Schwarz-Christoffel mappings (8) with $\mu_i = \pm 1$ allowed?
- (b) Theorem 2 describes a subclass of the class of univalent Schwarz-Christoffel mappings. This subclass is described solely by a condition on the exterior angles $\mu_j \pi$. Is this the largest subclass which can be so described? For each set $\mu = \{\mu_1, \dots, \mu_n\}$ not satisfying (12), is there a Schwarz-Christoffel mapping which is univalent? To study this question, it may be helpful to consider the area functional

$$A_f = \int_{\Lambda} \int |f'|^2 r \, dr \, d\theta \tag{16}$$

in the class of functions (8) with given μ (and, say, A=1, B=0). Here A_f is finite and thus $f' \in L_2(\Delta)$ with $||f'|| = A_f^{1/2}$. Thus the extreme points for A_f

have a simple geometric meaning. The question can also be considered as one of pure Euclidean geometry: Given a closed polygonal path in the plane with exterior angles $\mu_1 \pi, ..., \mu_n \pi$, with all $|\mu_j| < 1$ and $\sum \mu_j = 2$, can one always modify the path without changing the angles so that it becomes a simple closed path? Perhaps the modification could be done by a homotopy within the class of polygonal paths.

(c) Equations (14) and (15) allow one to find φ explicitly from a given Schwarz-Christoffel mapping f: (14) gives $s(\theta)$ in detail as a step function, and hence gives the $\gamma_i \ge 0$. The z_i are unchanged, so that φ can be taken as

$$\varphi(z) = A_0 \int_0^z \prod_{j=1}^n (t-z_j)^{-\gamma_j} dt, A_0 = e^{i\alpha},$$

and only α has to be found. For this we remark that in an interval (θ_{j-1}, θ_j) for which $\gamma_i > 0$,

$$\arg \varphi'(e^{i\theta}) + \theta = \arg f'(e^{i\theta}) + \theta - \pi/2 = \alpha_i \pi - \pi,$$

from which we find, as in (11), that

$$\alpha = \sum_{j=1}^{n} (\gamma_j - \mu_j) \arg(e^{i\theta} - z_j) + \arg A - \pi/2, \tag{17}$$

where θ can be chosen arbitrarily in the interval described.

(d) Application of the criteria for close-to-convexity leads to $Re(f'/\phi') >$ 0 in Δ and hence to another univalent function F: namely, a primitive F of f'/φ' . For Re(F') > 0 in Δ implies that F is univalent [1, p. 47]. This process fails to be invariant, in a certain sense: Let ψ be convex in Δ , say $\psi(\Delta) =$ D, and let f be close-to-convex in D: $Re(f'/\varphi') > 0$ for a convex function φ in D. Then again, f is univalent in D, as is F such that $F' = f'/\varphi'$. But $(f \circ \psi)'/(\varphi \circ \psi)' \neq (F \circ \psi)'$ in general. One can take advantage of this lack of invariance to obtain additional univalent functions. For example, if f and φ are Schwarz-Christoffel mappings in Δ , with Re $(f'/\varphi') > 0$ as above, then $F' = f'/\varphi'$ defines a univalent mapping F in Δ which is not a Schwarz-Christoffel mapping. But if one maps Δ onto the upper half-plane H, then fbecomes a univalent Schwarz-Christoffel mapping f_1 in H and φ becomes a convex Schwarz-Christoffel mapping φ_1 in H. However, $F_1' = f_1'/\varphi_1'$ in H defines a univalent Schwarz-Christoffel mapping in H, which is generally degenerate in that some exponents may be greater than or equal to 1 in absolute value; thus F_1 maps H onto a domain bounded by rays, line segments, and whole straight lines. (The condition $\sum \mu_j = 2$ is essential for a Schwarz-Christoffel mapping in Δ . The Schwarz-Christoffel mappings in H have the same form as (8) but $\sum \mu_i = 2$ is not essential, since $z = \infty$ plays a special role.)

One can go further, using φ'/f' instead of f'/φ' and using linear combinations of such functions with positive coefficients.

(e) Condition (12) cannot be violated for n=3,4,5; that is, for n=3,4,5 each Schwarz-Christoffel mapping is univalent. For n=6, violation is possible only if $\mu_j + \mu_{j+1} < -1$ for some j, and one can give specific examples (say with $\mu_1 = \mu_2 = -0.8$, $\mu_3 = \mu_4 = \mu_5 = \mu_6 = 0.9$), some having f univalent and some not.

5. Closest Convex Function

One can regard $\sup_{\Delta} |\arg f' - \arg \varphi'|$ as a measure of how close f and φ are. This leads to the following definitions (see [3]).

DEFINITIONS. Let f be locally univalent in Δ . Then f is close-to-convex of order β , $\beta > 0$, if

$$|\arg f' - \arg \varphi'| < \beta \pi/2 \text{ in } \Delta$$
 (18)

for some convex function φ in Δ (and appropriate choice of the argument functions). The *reentrancy* of f is

Ree
$$(f) = \inf\{\beta \mid f \text{ is close-to-convex of order } \beta \text{ in } \Delta\}.$$
 (19)

If (18) holds for no β then Ree $(f) = \infty$.

By the first definition, if f is close-to-convex of order β , then it is close-to-convex of order β' for every $\beta' > \beta$. The term "reentrancy" is chosen because, for a mapping onto polygonal domains, it is the "reentrant angles" that cause the mapping to deviate from convexity.

THEOREM 3. Let f be locally univalent in Δ and let a branch of arg f' be chosen in Δ . Then the following conditions are equivalent:

- (a) f is close-to-convex of order $\beta > 0$ in Δ ;
- (b) $\arg f'$ is bounded in Δ and

$$S_{f,\rho}(\theta_2) - S_{f,\rho}(\theta_1) > -\beta \pi$$
, $0 < \rho < 1$, $\theta_1 < \theta_2$;

(c) arg f' is bounded in Δ and

$$S_f(\theta_2) - S_f(\theta_1) \ge -\beta \pi$$
, θ_1, θ_2 in E_f . (20)

COROLLARY. Under the hypotheses of Theorem 3, let $\beta_0 = \text{Ree}(f) < \infty$. Then

$$\beta_0 = \frac{1}{\pi} \sup \{ S_f(\theta_1) - S_f(\theta_2) \mid \theta_1 < \theta_2, \, \theta_1, \, \theta_2 \in E_f \}. \tag{21}$$

Further, f is close-to-convex of order β_0 if $\beta_0 > 0$; if $\beta_0 = 0$, f is convex. If $\beta_0 \le 1$ then f is close-to-convex and hence univalent.

REMARK. In general, there is no unique convex φ satisfying (18) for $\beta = \beta_0$, nor is arg φ' unique. This can be seen from simple examples using Schwarz-

Christoffel mappings. Thus we cannot refer to "the convex function closest to f."

The proof of Theorem 3 is like that of Theorem 1, with π replaced by $\beta\pi$ at appropriate places. It is of interest to observe that the construction of the convex function $\varphi = \varphi_{\beta}$ satisfying (18) leads to the relation

$$\varphi_{\beta}(z) = \varphi_0(z) \exp(-i\beta\pi/2),$$

where $\varphi_0(z)$ corresponds to the limiting case $\beta = 0$. Thus, by varying β we are simply rotating the convex function.

EXAMPLE. The following Schwarz-Christoffel mapping is considered by Study [4, pp. 76-77]:

$$w = \int_0^z (1+t^5)^{2/5} (1-t^5)^{-4/5} dt.$$
 (22)

Here n = 10 and the μ_j are alternately -2/5 and 4/5. The mapping is univalent and the image is as shown in Figure 1. This can be justified (up to a rotation) on symmetry grounds alone. For a Schwarz-Christoffel mapping (8), one sees easily as in Section 3 that (21) becomes

$$\beta_0 = \max(-\mu_p - \dots - \mu_m), \quad 0 \le p \le m \le 2n, \ m - p < n.$$
 (21')

Figure 1 Example (22)

Thus, for the mapping (22), $\beta_0 = 4/5$ (which also proves the univalence). One finds that, for proper numbering, a Schwarz-Christoffel mapping φ constructed as before to satisfy (18) with $\beta = 4/5$ has $\gamma_1 = \gamma_3 = \cdots = \gamma_9 = 2/5$ and $\gamma_2 = \cdots = \gamma_{10} = 0$, and that, for proper choice of the real positive constant A, φ maps $\bar{\Delta}$ onto the pentagonal region shown in Figure 1, the convex hull of $f(\bar{\Delta})$.

REMARKS. For each $\beta_0 \ge 0$ there exist mappings f of reentrancy β_0 ; in fact, such f can be chosen as univalent Schwarz-Christoffel mappings, with the aid of (21'). The ideas of this section are related to those in Section 5 of [2]. For functions of bounded boundary rotation, Theorem 3 is equivalent to Theorem A of [3].

6. Mapping onto a Domain Convex in One Direction

The plane domains considered here have the property that, for some line L, every line parallel to L meets the domain in a connected set; we say that the domain is convex in the direction of L. We are concerned only with the case of a domain G with polygonal boundary Γ in the w-plane, w = u + iv. If L is the v-axis, then the domain G is as suggested in Figure 2. Thus Γ consists of

Figure 2

two broken lines $w_0w_1 \cdots w_m$ and $w_mw_{m+1} \cdots w_n$, as in Figure 2, one consisting of directed segments $w_{j-1}w_j$ with angle of inclination $\alpha_j \pi$ between $-\pi/2$ and $\pi/2$ (inclusive), and the other of similar segments with angle of inclination between $\pi/2$ and $3\pi/2$ (inclusive). The two broken lines meet only at their endpoints and the first lies below the second, in the obvious sense.

Theorem 4. Let f be defined by (8), where the hypotheses of Section 3 are satisfied: that is, $n \ge 3$, $A \ne 0$, B and $z_j = \exp(i\theta_j)$ are complex constants, the μ_j are real constants and $0 < |\mu_j| < 1$ ($\mu_1 + \dots + \mu_n = 2$, $\theta_1 < \theta_2 < \dots < \theta_n < \theta_1 + 2\pi$). Then f is a close-to-convex univalent mapping of Δ onto a domain G convex in one direction if and only if the z_j can be numbered to satisfy the hypotheses of Section 3 in such a way that, for some integer m (0 < m < n), the n closed intervals

$$[a_j - q_j, b_j - q_j], \quad j = 0, 1, ..., n-1,$$
 (23)

have a nonempty intersection, where

$$q_0 = 0,$$
 $q_j = \mu_1 + \dots + \mu_j,$ $j = 1, \dots, n-1;$ (24)

$$\begin{cases} a_j = -\frac{1}{2} \text{ and } b_j = \frac{1}{2} \text{ for } j = 0, 1, ..., m-1, \\ a_j = \frac{1}{2} \text{ and } b_j = \frac{3}{2} \text{ for } j = m, ..., n-1. \end{cases}$$
(25)

Proof. Sufficiency: Let δ be a common point of the *n* intervals (23). We can restrict attention to the case in which B=0 and A is chosen so that $\arg(w_1-w_0)=\delta\pi=\alpha_1\pi$. Thus, by the hypothesis,

$$a_j \pi - q_j \pi \le \delta \pi \le b_j \pi - q_j \pi, \quad j = 0, 1, ..., n-1.$$
 (26)

From (10) and (24),

$$\alpha_{j+1} = \alpha_1 + q_j = \delta + q_j, \quad j = 0, 1, ..., n-1,$$

so that by (23) and (24),

$$\begin{cases} -\pi/2 \le \alpha_j \, \pi \le \pi/2, & j = 1, ..., m, \\ \pi/2 \le \alpha_j \, \pi \le 3\pi/2, & j = m+1, ..., n \end{cases}$$
 (27)

(see Figure 2). By these inequalities, $u(e^{it}) = \text{Re}(f(e^{it}))$ is nondecreasing as θ increases from θ_0 to θ_m and nonincreasing as θ increases from θ_m to $\theta_n = \theta_0 + 2\pi$. Since f is continuous in $\bar{\Delta}$ and not identically constant, Theorem B applies and f is close-to-convex, hence univalent. By (27), the boundary Γ of $G = f(\Delta)$ is formed of two broken lines as above, so that G is convex in the direction of the v-axis.

Necessity: Let f be given by (8) and be univalent in Δ , and map Δ onto a domain G convex in one direction. After rotation by an angle $\eta \pi$, G becomes a domain convex in the direction of the v-axis, as in Figure 2. This rotation changes the angles $\alpha_j \pi$ to $(\alpha_j + \eta) \pi$. Thus

$$-\pi/2 \le (\alpha_j + \eta)\pi \le \pi/2, \quad j = 1, ..., m;$$

 $\pi/2 \le (\alpha_j + \eta)\pi \le 3\pi/2, \quad j = m+1, ..., n.$

Hence η lies in all n intervals

$$[a_j - \alpha_j, b_j - \alpha_j]$$
 for $j = 0, ..., n-1$,

so that $\delta = \eta + \alpha_1$ lies in all intervals

$$[a_i - (\alpha_i - \alpha_1), b_i - (\alpha_i - \alpha_1)]$$
 for $j = 0, ..., n-1$

or in all intervals (23).

REMARK. The proof shows that, in general, L is obtained by rotating the v-axis by $-\eta \pi = (\alpha_1 - \delta) \pi$.

References

- [1] P. L. Duren, Univalent functions, Springer, New York, 1983.
- [2] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
- [3] A. Pfluger, Close-to-convex functions and functions of bounded boundary rotation, Complex Variables Theory Appl. 3 (1984), 205-210.
- [4] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, vol. 2, Konforme Abbildung einfach-zusammenhängender Bereiche. Teubner, Leipzig, 1913.

Department of Mathematics University of Michigan Ann Arbor, MI 48109