A Conjecture of L. Carleson and Applications

ALEXANDRU ALEMAN

1. Introduction

Let m be the area measure on C. For a meromorphic function f in the unit disc U, let

(1.1)
$$A(r,f) = \int_{\{|z| \le r\}} \frac{|f'|^2}{(1+|f|^2)^2} dm, \quad 0 \le r < 1,$$

be the spherical area of the image of $\{|z| \le r\}$ by f, counting multiplicities. In his thesis Carleson [6] considered the classes T_{α} , $0 \le \alpha < 1$, of meromorphic functions f in U satisfying

(1.2)
$$|f|_{\alpha} = \int_{0}^{1} A(r, f) (1-r)^{-\alpha} dr < \infty,$$

and the class T_1 of meromorphic functions f in U with the property that A(r, f) remains bounded when r tends to 1, that is,

(1.3)
$$|f|_1 = \sup_{r < 1} A(r, f) < \infty.$$

We obviously have $T_1 \subset T_\alpha \subset T_\beta \subset T_0$ for all $\alpha, \beta \in (0,1)$ with $\alpha > \beta$. The class T_0 coincides with the class of functions with bounded characteristic, and a well-known theorem of F. and R. Nevanlinna asserts that each $f \in T_0$ is the quotient of two bounded analytic functions in U. In [6, p. 39] Carleson proved an analogue of this theorem for the classes T_α just defined, namely, the fact that each function in T_α is the quotient of two bounded functions, each of which is in T_β for all $\beta < \alpha$, and conjectured that one cannot take $\beta = \alpha$, that is, not every function in T_α is the quotient of two bounded functions in T_α . For all $\alpha \in [0,1]$, T_α contains the weighted Dirichlet space $D_{1-\alpha}$ of analytic functions f in U satisfying

(1.4)
$$\int_{U} |f'(z)|^{2} (1-|z|)^{1-\alpha} dm < \infty$$

Recently, in their paper [11] on invariant subspaces of the multiplication operator on the Dirichlet space D_0 , Richter and Shields found a partial "negative" answer to Carleson's conjecture for $\alpha = 1$ by showing that every function in

 D_0 is the quotient of two bounded functions in D_0 ; their result was extended to all spaces D_{α} , $0 < \alpha < 1$, in [3]. The aim of the present paper is to give a complete answer to this conjecture. Using a similar method to the one in [3], we shall prove that each function in T_{α} , $0 < \alpha \le 1$, is the quotient of two bounded functions in T_{α} .

The proof occupies the next three sections of this paper. In Sections 5 and 6 we discuss some applications of the main theorem. First of all, this result holds also for other classes of meromorphic functions between T_1 and T_0 that are defined by means of growth restrictions of the form

$$(1.5) |f|_{\omega} = \int_0^1 A(r,f) \, \omega(r) \, dr < \infty,$$

where $\omega \in C^1[0,1)$ is a positive increasing function with $\int_0^1 \omega(r) dr < \infty$. Similar to T_{α} , the class T_{ω} of meromorphic functions in U satisfying (1.5) contains the Hilbert space H_{ω} of analytic functions f in U with the property that

$$(1.6) \qquad \int_{U} |f'(z)|^2 w(|z|) \, dm < \infty,$$

where w is defined on [0,1) by $w(r) = \int_{r}^{1} \omega(\rho) d\rho$. In Section 5 we show that the outer factor of a function in T_{ω} or H_{w} belongs to the same class, and following the ideas in [1], [2], and [6] we prove some characterizations of the inner functions in T_{ω} . As was pointed out in [11] (see also [3]), results of this type have interesting consequences concerning the properties of the multiplication operator on the spaces H_{w} or on the Dirichlet space $D = D_{0}$. In Section 6 we prove that every invertible function in H_{w} is a cyclic vector for this operator, that is, its polynomial multiples are dense in the space. The result answers affirmatively Question 4 in [5] (see also [13]) for the spaces H_{w} . For the Dirichlet space it was recently proved by Brown [4].

The author is very grateful to the referee for his helpful suggestions and for pointing out some errors in the first version of the paper.

2

In order to prove the main theorem, our first purpose is to obtain a suitable equivalent expression for $|f|_{\alpha}$. We begin with a simple observation. Let f be a meromorphic function in U. Then A(r, f) is an increasing function of r; hence for all $\alpha \in [0, 1)$ it satisfies the inequality

(2.1)
$$(1-r)^{1-\alpha}A(r,f) \leq \int_{r}^{1} A(\rho,f)(1-\rho)^{-\alpha} d\rho, \quad r \in [0,1).$$

If $f \in T_{\alpha}$ it follows that $\lim_{r \to 1} (1-r)^{1-\alpha} A(r, f) = 0$, so that, integrating by parts in (1.2), we obtain in this case

(2.2)
$$|f|_{\alpha} = \frac{1}{1-\alpha} \int_{U} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} (1-|z|)^{1-\alpha} dm.$$

Assume that f is not constant. For $0 < \beta < 1$ and $\zeta \in f(U)$ we consider the generalized counting functions

(2.3)
$$N_{\beta}(f,\zeta) = \sum_{f(z)=\zeta} (1-|z|)^{\beta},$$

and for $0 \le r < 1$ the usual Nevanlinna counting function of f,

(2.4)
$$N(r, f, \zeta) = \sum_{\substack{f(z) = \zeta \\ |z| < r}} \log \frac{r}{|z|}, \quad \zeta \in f(U) \setminus \{f(0)\},$$

where multiplicities are counted in the above sums (that may not converge). From the following general change-of-variable formula,

(2.5)
$$\int_{U} (u \circ f) v |f'|^2 dm = \int_{f(U)} u(\zeta) \left(\sum_{f(z) = \zeta} v(z) \right) dm(\zeta),$$

valid for any two nonnegative measurable functions u, v on \mathbb{C} and for meromorphic nonconstant functions f in U, using (2.2) we obtain that if $f \in T_{\alpha}$, $0 \le \alpha < 1$, then

(2.6)
$$|f|_{\alpha} = \frac{1}{1-\alpha} \int_{f(U)} (1+|\zeta|^2)^{-2} N_{1-\alpha}(f,\zeta) dm,$$

A proof of formula (2.5) may be found in [12] or [3] in the case when f is analytic. For meromorphic f the proof is identical, and may be obtained by dividing the disc U into a set of planar measure zero and a countable disjoint union of open sets R_n such that $f \mid R_n$ is analytic and injective. Then (2.5) follows with the usual change-of-variable formula.

LEMMA 1. Let f be nonconstant and meromoprhic in U. For $z, \lambda \in U$ let $\varphi_z(\lambda) = (z+\lambda)/(1+\overline{z}\lambda)$. Then for $0 < \beta < 1$ and $\zeta \in f(U)$,

(2.7)
$$N_{\beta}(f,\zeta) = -\frac{1}{2\pi} \int_{U} \Delta(1-|z|)^{\beta} N(1, f \circ \varphi_{z}, \zeta) \, dm(z),$$

where Δ denotes the Laplace operator.

Proof. By Green's formula we have, for every $\lambda \in U$,

$$(2.8) \qquad (1-|\lambda|)^{\beta} = -\frac{1}{2\pi} \int_{U} \Delta (1-|z|)^{\beta} \log \left| \frac{1-\overline{z}\lambda}{\lambda-z} \right| dm(z).$$

Since $\Delta(1-|z|)^{\beta} < 0$ in *U*, by the monotone convergence theorem

$$(2.9) N_{\beta}(f,\zeta) = -\frac{1}{2\pi} \int_{U} \Delta (1-|z|)^{\beta} \left(\sum_{f(\lambda)=\zeta} \log \left| \frac{1-\overline{z}\lambda}{\lambda-z} \right| \right) dm(z).$$

We have $(\lambda - z)/(1 - \bar{z}\lambda) = \varphi_z^{-1}(\lambda)$ and

(2.10)
$$\sum_{f(\lambda)=\zeta} \log \left| \frac{1-\overline{z}\lambda}{\lambda-z} \right| = N(1, f \circ \varphi_z, \zeta) \quad m\text{-a.e. on } U$$

which proves (2.7).

Every function f in T_0 with $f \neq 0$ has a nontangential limit at $e^{i\theta}$ a.e. on $[0, 2\pi]$, denoted by $f(e^{i\theta})$, and $\log |f(e^{i\theta})|$ belongs to $L^1[0, 2\pi]$. Further, f may be written as f = IF/J, where I, J are inner functions whose greatest common divisor (I, J) is the constant function 1 and where F is an outer function. Up to some unimodular constants, the functions I, J, F are uniquely determined in this case. The next lemma is derived from a formula of Ahlfors and Shimizu.

LEMMA 2. Let $f \in T_0$, $f \neq 0$, and f = IF/J, with I, J inner functions satisfying (I, J) = 1 and F outer. For $z, \lambda \in U$ and $\theta \in [0, 2\pi]$, let $\varphi_z(\lambda) = (z + \lambda)/(1 + \overline{z}\lambda)$ and $P_z(\theta) = \text{Re}((e^{i\theta} + z)/(e^{i\theta} - z))$ be the Poisson kernel. If $z \in U$ is not a pole of f then

$$\frac{2}{\pi} \int_{U} \frac{|(f \circ \varphi_{z})'(\lambda)|^{2}}{(1+|f \circ \varphi_{z}(\lambda)|^{2})^{2}} \log \frac{1}{|\lambda|} dm(\lambda)$$

$$= -\log(1+|f(z)|^{2}) - 2\log|J(z)| + \frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1+|f(e^{i\theta})|^{2}) d\theta.$$

Proof. Let $f \in T_0$ with $f \neq 0$ and f = IF/J, where I, J, F are as in the statement of the lemma. Let $I = B_I S_I$ and $J = B_J S_J$, where B_I, B_J are Blaschke products and S_I, S_J are singular inner functions. Also let

$$v_{f}(z) = \frac{2}{\pi} \int_{U} \frac{|(f \circ \varphi_{z})'(\lambda)|^{2}}{(1+|f \circ \varphi_{z}(\lambda)|^{2})^{2}} \log \frac{1}{|\lambda|} dm(\lambda) + \log(1+|f(z)|^{2})$$

$$+2\log|B_{f}(z)| - \frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1+|f(e^{i\theta})|^{2}) d\theta.$$

We prove first the following double inequality. If 0 is not a pole of f then

$$(2.13) 0 \le v_f(0) \le -2\log|S_J(0)|.$$

Indeed, integrating by parts we obtain

(2.14)
$$\int_{U} \frac{|f'|^{2}}{(1+|f|^{2})^{2}} \log \frac{1}{|\lambda|} dm = \int_{0}^{1} \log \frac{1}{r} \left[\frac{d}{dr} A(r,f) \right] dr = \int_{0}^{1} A(r,f) \frac{dr}{r},$$

and by the formula mentioned previously (see [10, p. 11]) for $0 \le \rho < 1$,

(2.15)
$$\frac{2}{\pi} \int_0^{\rho} A(r, f) \frac{dr}{r} = \frac{1}{2\pi} \int_0^{2\pi} \log(1 + |f(\rho e^{i\theta})|^2) d\theta -\log(1 + |f(0)|^2) + 2N(\rho, 1/f, 0).$$

Since $\lim_{\rho \to 1} N(\rho, 1/f, 0) = -\log |B_J(0)|$, the first inequality follows by Fatou's lemma. We have also

$$\limsup_{\rho \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \log(1 + |f(\rho e^{i\theta})|^{2}) d\theta$$

$$(2.16) \leq \limsup_{\rho \to 1} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \log(1 + |F(\rho e^{i\theta})|^{2}) d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log|J(\rho e^{i\theta})|^{2} d\theta \right]$$

$$= \limsup_{\rho \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \log(1 + |F(\rho e^{i\theta})|^{2}) d\theta - 2\log|S_{J}(0)|.$$

Using the fact that F is outer and $|F(e^{i\theta})| = |f(e^{i\theta})|$ a.e. on $[0, 2\pi]$, we apply Jensen's inequality to the convex function $x \mapsto \log(1+e^x)$ to obtain

(2.17)
$$\int_{0}^{2\pi} \log(1+|F(\rho e^{i\theta})|^{2}) d\theta \leq \int_{0}^{2\pi} \int_{0}^{2\pi} P_{\rho e^{i\theta}}(t) \log(1+|F(e^{it})|^{2}) \frac{dt}{2\pi} d\theta$$
$$= \int_{0}^{2\pi} \log(1+|f(e^{it})|^{2}) dt,$$

and the second inequality in (2.13) follows by (2.15) and (2.16). We shall use the double inequality to prove that $v_f(z) = -2\log|S_f(z)|$, $z \in U$. The first step is to show that v_f is harmonic in U, as follows. The function

(2.18)
$$\log(1+|f|^2) + 2\log|B_J| = \log(|B_J|^2 + |fB_J|^2)$$

is twice continuously differentiable on U, because B_J and fB_J have no common zeros there and if $z \in U$ is not a pole of f then

(2.19)
$$\Delta(\log(1+|f|^2)+2\log|B_J|)(z) = \Delta(\log(1+|f|^2))(z) = \frac{4|f'(z)|^2}{(1+|f(z)|^2)^2}.$$

For every compactly supported function $u \in C^{\infty}(U)$ we have, by Green's formula,

(2.20)
$$u(\lambda) = -\frac{1}{2\pi} \int_{U} \log \frac{1}{|\varphi_{z}^{-1}(\lambda)|} \Delta u(z) dm(z), \quad \lambda \in U.$$

If we denote by $\mathfrak{I}(z)$ the area integral in (2.12) and use the substitution $\varphi_z(\lambda) = \zeta$, then

$$\int_{U} \Im \Delta u \, dm = \int_{U} \Delta u(z) \left(\frac{2}{\pi} \int_{U} \frac{|f'|^{2}}{(1+|f|^{2})^{2}} \log \frac{1}{|\varphi_{z}^{-1}|} \, dm \right) dm(z)$$

$$(2.21) \qquad = -\int_{U} \frac{4|f'|^{2}}{(1+|f|^{2})^{2}} u \, dm = -\int_{U} u \Delta (\log(1+|f|^{2}) + 2\log|B_{J}|^{2}) \, dm$$

$$= -\int_{U} (\log(1+|f|^{2}) + 2\log|B_{J}|^{2}) \, \Delta u \, dm.$$

From (2.12) and another application of Green's formula, we obtain

(2.22)
$$\int_{U} v_f \Delta u \, dm = \int_{U} (\mathfrak{I} + \log(1 + |f|^2) + 2\log|B_J|^2) \, \Delta u \, dm = 0,$$

which shows that v_f is harmonic in U.

Now if $z \in U$ then $F \circ \varphi_z$ is outer, $I \circ \varphi_z$ and $J \circ \varphi_z$ are inner, $(I \circ \varphi_z, J \circ \varphi_z) = 1$, and their Blaschke and singular inner factors are obtained by composing B_I , S_I , B_J , S_J respectively with φ_z . Using some computations with the Poisson kernel, it follows that

$$(2.23) v_f(z) = v_{f \circ \varphi_z}(0);$$

hence if $z \in U$ is not a pole of f then by (2.13) we have

$$(2.24) 0 \le v_f(z) \le -2\log|S_J \circ \varphi_z(0)| = -2\log|S_J(z)|.$$

This leads to $v_f = -2\log|S|$ for some singular inner function S, because v_f is harmonic. From (2.24) it follows also that S divides S_J . If in addition we have $f(z) \neq 0$, applying the above argument to 1/f after some simple computations we obtain

(2.25)
$$0 \le v_{1/f}(z) = v_f(z) - 2\log \left| \frac{S_I(z)}{S_J(z)} \right|;$$

that is, $\log |S_J/S| \ge \log |S_I|$. Thus S_J/S divides both S_J and S_I , which shows that $S = S_J$ and the proof is complete.

Recalling that $T_{\alpha} \subset T_0$ for all $\alpha \in (0, 1]$, we now put together the preceding results in order to obtain the following.

PROPOSITION 3. Let $0 < \alpha < 1$ and $f \in T_{\alpha}$ be nonconstant with f = IF/J, where I, J are inner functions satisfying (I, J) = 1 and F is outer. For $z \in U$ and $\theta \in [0, 2\pi]$, let $P_z(\theta) = \text{Re}((e^{i\theta} + z)/(e^{i\theta} - z))$ be the Poisson kernel. Then

$$|f|_{\alpha} = -\frac{1}{4(1-\alpha)} \int_{U} \Delta (1-|z|)^{1-\alpha} \left[\frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1+|f(e^{i\theta})|^{2}) d\theta - \log(1+|f(z)|^{2}) - 2\log|J(z)| \right] dm(z).$$
(2.26)

Proof. Let E(z, f) be the inner bracket in the above integral. From Lemma 2 and (2.5) we have

(2.27)
$$E(z,f) = \frac{2}{\pi} \int_{f(U)} (1+|\zeta|^2)^{-2} N(1,f \circ \varphi_z,\zeta) \, dm(\zeta).$$

Using Lemma 1 and Fubini's theorem we obtain

$$(2.28) \quad -\frac{1}{4} \int_{U} \Delta (1-|z|)^{1-\alpha} E(z,f) \, dm = \int_{f(U)} (1+|\zeta|^{2})^{-2} N_{1-\alpha}(f,\zeta) \, dm,$$

and the result follows by (2.6).

3

A final lemma is needed for the proof of our main theorem.

LEMMA 4. Let (X, μ) be a probability space, and let $f \in L^1(\mu)$ with f > 0 μ -a.e. on X and $\log f \in L^1(\mu)$. For $0 \le \gamma \le 1$ let

(3.1)
$$E_{\gamma}(f) = \int_{X} \log(1+f) d\mu - \log\left(1+\gamma \exp\int_{X} \log f d\mu\right).$$

Then

$$(3.2) E_{\gamma}(\min\{1, f\}) \leq E_{\gamma}(f).$$

Proof. Let $A = \{x \in X, f(x) \ge 1\}$ and assume that $a = \mu(A) > 0$; otherwise the inequality is trivial. Then (3.2) is equivalent to

(3.3)
$$\int_{A} \log \left(\frac{1+f}{2} \right) d\mu \ge \log \left(\frac{1+\gamma \exp \int_{X} \log f \, d\mu}{1+\gamma \exp \int_{X \setminus A} \log f \, d\mu} \right).$$

Let $b = \exp \int_{X \setminus A} \log f d\mu$. We have 0 < b < 1 and

$$\log\left(\frac{1+\gamma b \exp \int_{A} \log f \, d\mu}{1+\gamma b}\right) \leq \log\left(\frac{1+\exp \int_{A} \log f \, d\mu}{2}\right)$$

$$\leq a \log\left(\frac{1+\exp(1/a) \int_{A} \log f \, d\mu}{2}\right),$$

where the last inequality is just

$$\left(\frac{1+x}{2}\right)^{1/a} \le \frac{1+x^{1/a}}{2}, \quad x > 0, \ a \le 1.$$

We claim that

(3.5)
$$a \log \left(\frac{1 + \exp(1/a) \int_A \log f \, d\mu}{2} \right) \le \int_A \log \left(\frac{1 + f}{2} \right) d\mu.$$

Indeed, this inequality is equivalent to

(3.6)
$$\exp\left(-\frac{1}{a}\int_{A}\log(1+f)\,d\mu\right) + \exp\left(\frac{1}{a}\int_{A}\log\left(\frac{f}{1+f}\right)d\mu\right) \le 1,$$

which follows by Jensen's inequality

(3.7)
$$\exp\left(\frac{1}{a}\int_{A}\log\left(\frac{1}{1+f}\right)d\mu\right) + \exp\left(\frac{1}{a}\int_{A}\log\left(\frac{f}{1+f}\right)d\mu\right)$$
$$\leq \frac{1}{a}\int_{A}\frac{1}{1+f}d\mu + \frac{1}{a}\int_{A}\frac{f}{1+f}d\mu = 1.$$

4

For a meromorphic function $f \in T_0$, $f \neq 0$, let ϕ_f be the outer function in U satisfying $|\phi_f(e^{i\theta})| = \min\{1, 1/|f(e^{i\theta})|\}$ a.e. on $[0, 2\pi]$; that is, let

(4.1)
$$\phi_f(z) = \exp \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log \min\{1, 1/|f(e^{i\theta})|\} d\theta.$$

The main result of this paper is the following.

THEOREM 1. Let $0 < \alpha \le 1$ and $f \in T_{\alpha}$ be nonconstant with f = IF/J, where I, J are inner functions such that (I, J) = 1 and F is outer. Then $J\phi_f$ and $fJ\phi_f$ are in T_{α} and satisfy

$$(4.2) |J\phi_f|_{\alpha} \leq |f|_{\alpha} \quad and \quad |fJ\phi_f|_{\alpha} \leq |f|_{\alpha}.$$

Proof. Assume first that $0 < \alpha < 1$. Since $|fJ\phi_f(e^{i\theta})|^2 = \min\{1, |F(e^{i\theta})|^2\}$ a.e. on $[0, 2\pi]$, an application of Lemma 4 with $X = [0, 2\pi]$ and $d\mu = (1/2\pi)P_z d\theta$, where $z \in U$ is fixed, yields

$$\frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1 + |fJ\phi_{f}(e^{i\theta})|^{2}) d\theta - \log(1 + |fJ\phi_{f}(z)|^{2})$$

$$(4.3) = E_{|I(z)|^{2}}(\min\{1, |F|^{2}\}) \le E_{|I(z)|^{2}}(|F|^{2})$$

$$\le \frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1 + |f(e^{i\theta})|^{2}) d\theta - \log(1 + |f(z)|^{2}) - 2\log|J(z)|,$$

and the second inequality in (4.2) follows by Proposition 3. We have also $|J\phi_f(e^{i\theta})|^2 = \min\{1, 1/|F(e^{i\theta})|^2\}$ a.e. on $[0, 2\pi]$, and another application of Lemma 4 gives

$$\frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1+|J\phi_{f}(e^{i\theta})|^{2}) d\theta - \log(1+|J\phi_{f}(z)|^{2})$$

$$= E_{|J(z)|^{2}}(\min\{1, 1/|F|^{2}\}) \le E_{|J(z)|^{2}}(1/|F|^{2})$$

$$\le \frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) \log(1+1/|f(e^{i\theta})|^{2}) d\theta$$

$$-\log(1+1/|f(z)|^{2})|^{2} - 2\log|I(z)|.$$

Using again Proposition 3 we obtain $|J\phi_f|_{\alpha} \le |1/f|_{\alpha}$, and from (1.2) we have $|1/f|_{\alpha} = |f|_{\alpha}$, which finishes the proof in the case $\alpha < 1$. For the limit case $\alpha = 1$ we simply observe that for any increasing nonnegative function u on [0,1),

(4.5)
$$\lim_{r \to 1} u(r) = \lim_{\alpha \to 1} \sup_{r \to 1} (1 - \alpha) \int_{0}^{1} u(r) (1 - r)^{-\alpha} dr.$$

If we apply this equality to the functions $A(r, J\phi_f)$ and A(r, f), then

$$(4.6) |J\phi_f|_1 = \limsup_{\alpha \to 1} (1-\alpha)|J\phi_f|_{\alpha} \le \limsup_{\alpha \to 1} (1-\alpha)|f|_{\alpha} = |f|_1.$$

Analogously we obtain the second inequality, and the proof is now complete.

For any nonconstant $f \in T_{\alpha}$ with f = IF/J, where I, J are inner functions satisfying (I, J) = 1 and F is outer, we have that $J\phi_f$ and $fJ\phi_f$ are bounded in U and $f = fJ\phi_f/J\phi_f$. Thus we obtain the following corollary.

COROLLARY 1. For $0 < \alpha \le 1$, every function in T_{α} is the quotient of two bounded functions in T_{α} .

It follows easily from (2.2) that each bounded function in T_{α} , $0 \le \alpha \le 1$, belongs actually to the Hilbert space $D_{1-\alpha}$ defined by means of (1.4). Then from the above corollary it turns out that every function in T_{α} , $\alpha \in [0, 1]$, is the quotient of two bounded functions in $D_{1-\alpha}$.

5. Applications. The Spaces T_{ω} and H_{w}

We shall continue the investigation of the classes T_{α} in a slightly more general context obtained by replacing, in the definition of T_{α} , the function $r \mapsto (1-r)^{-\alpha}$ by any positive increasing function $\omega \in C^1[0,1)$ with $\int_0^1 \omega(r) dr < \infty$. More precisely, for such a function ω , let T_{ω} be the class of meromorphic functions f in U satisfying

$$(5.1) |f|_{\omega} = \int_0^1 A(r,f) \, \omega(r) \, dr < \infty.$$

We obviously have $T_1 \subset T_\omega \subset T_0$, and if $w \in C^2[0, 1)$ is defined by

(5.2)
$$w(r) = \int_{r}^{1} \omega(\rho) d\rho$$

then an integration by parts shows that, for every $f \in T_{\omega}$,

(5.3)
$$|f|_{\omega} = \int_{U} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} w(|z|) dm.$$

It is not difficult to see that Theorem 1 holds for the classes T_{ω} as well. Indeed, the formulas proved in Section 2 remain true if $\Delta(1-|z|)^{1-\alpha}$ is replaced by $\Delta w(|z|)$, and the inequalities $|J\phi_f|_{\omega} \leq |f|_{\omega}$ and $|fJ\phi_f|_{\omega} \leq |f|_{\omega}$ follow as above from Lemma 4. We shall continue to refer to these results even if the more general context is concerned.

The class T_{ω} contains the spaces H_{w} of analytic functions f in U with the property that

(5.4)
$$||f||_{w}^{2} = |f(0)|^{2} + \int_{U} |f'(z)|^{2} w(|z|) dm < \infty,$$

and a bounded analytic function in U belongs to T_{ω} if and only if it belongs to H_{w} . Consequently, every function in T_{ω} is the quotient of two bounded analytic functions in H_{w} .

Some simple computations with the Parseval formula show that for every function $f \in H_w$ with $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $z \in U$, we have

(5.5)
$$||f||_w^2 = \sum_{n=0}^\infty w_n |a_n|^2,$$

where $w_0 = 1$ and, for $n \ge 1$,

(5.6)
$$w_n = 2\pi n^2 \int_0^1 r^{2n-1} w(r) dr.$$

It follows that H_w is a separable Hilbert space of analytic functions in U and that polynomials are dense in H_w . Since w is decreasing and concave and since $\lim_{r\to 1} w(r) = 0$, we have $w(0) \ge w(r) \ge (1-r)w(0)$, $r \in [0,1)$, which shows that $D \subset H_w \subset H^2$, where $D = D_0$ (see (1.4)), is the usual Dirichlet space and $H^2 = D_1$ is the Hardy space on U. The other weighted Dirichlet spaces D_α , $0 < \alpha < 1$, are obtained by letting $w(r) = (1-r)^\alpha$, $r \in [0,1)$. The spaces T_1 and D appear as a limit case, namely when the function w is constant. As for the classes T_ω , we have the following useful identity for the norm on the Hilbert space H_w .

PROPOSITION 5. Let $f \in H_w$. Then

$$||f||_{w}^{2} = |f(0)|^{2} - \frac{1}{4} \int_{U} \Delta w(|z|) \left[\frac{1}{2\pi} \int_{0}^{2\pi} P_{z}(\theta) |f(e^{i\theta})|^{2} d\theta - |f(z)|^{2} \right] dm(z).$$

A proof of this result may be found in [3]. It is very similar to the one of Proposition 3, using (2.5), Lemma 1, and the Littlewood-Paley formula instead of Lemma 2.

REMARK. An immediate consequence of Proposition 5 is that if $f \in H_w$ (or D) and I_1 is an inner divisor of the inner factor of f then $f/I_1 \in H_w$ (or D). This property is called the (\mathfrak{F}) property (see [14]) and is shared by the classes T_ω and T_1 as well. Proposition 3 shows this. The fact that D has this property follows also by Carleson's formula for the Dirichlet integral [7]. Consequently, we obtain

COROLLARY 2. Let $f \in T_{\omega}$ (or T_1) with $f \neq 0$ and f = IF/J, where I, J are inner functions satisfying (I, J) = 1 and F is outer. Then F, IF, F/J are in T_{ω} (or T_1). If $f \in H_{\omega}$ (or D) then $F \in H_{\omega}$ (or D).

Proof. F/J and 1/IF are obtained by dividing respectively f by I and 1/f by J. Also F = IF/I. The result follows from the above remark.

Proposition 5 may be also used to give a simple proof of the following characterization of inner functions in certain H_w -spaces in terms of the growth restrictions satisfied by their derivatives, or by conditions concerning the distribution of values of such functions. The result is known for the usual weights $w(r) = (1-r)^{\alpha}$ and may be found in P. Ahern's paper [1] (see also [2] and [6]). Actually, for inner functions in weighted Dirichlet spaces the norms of the form (5.7) were first considered in [1].

PROPOSITION 6. Assume that there exists a positive constant c such that

$$(5.8) -(1-r)^2 w''(r) \ge cw(r), \quad r \in [0,1).$$

For an inner function I, the following assertions are equivalent.

- (i) $I \in T_{\omega}$.
- (ii) $I \in H_w$.

- (iii) $\int_0^1 (1-r) \omega'(r) (\int_0^{2\pi} |I'(re^{i\theta})| d\theta) dr < \infty$.
- (iv) There is a set A of logarithmic capacity zero such that $\sum_{I(z)=\zeta} w(|z|) < \infty$ for every $\zeta \in U \setminus A$.

Proof. If (ii) holds then (iii) follows immediately from Proposition 5 and the inequality

(5.9)
$$|I'(z)| \le \frac{1 - |I(z)|^2}{1 - |z|^2} \le \frac{1 - |I(z)|^2}{1 - |z|} for z \in U.$$

Conversely, we have by (5.2) and (5.8) that $(1-r)\omega'(r) \ge c\omega(r)$ on [0, 1). If $W(r) = \omega'(r) + \omega(r)$ then, for all $r \in [0, 1)$,

(5.10)
$$\int_0^r W(\rho) d\rho \le \omega(r) - \omega(0) + r\omega(r) < \frac{2}{c} (1 - r) \omega'(r)$$

and $\Delta w(|z|) \le 2W(|z|)$ for $1/2 \le |z| < 1$. Further, the following inequality holds for all $\theta \in [0, 2\pi]$ with $\lim_{r \to 1} |I(re^{i\theta})| = 1$:

(5.11)
$$1 - |I(re^{i\theta})|^2 \le 2 \int_r^1 |I'(\rho e^{i\theta})| \, d\rho.$$

Now use (5.10), (5.11), and Fubini's theorem to obtain

$$\int_{0}^{1} W(r)(1-|I(re^{i\theta})|^{2}) dr \leq 2 \int_{0}^{1} W(r) \int_{r}^{1} |I'(\rho e^{i\theta})| d\rho dr$$

$$= 2 \int_{0}^{1} |I'(\rho e^{i\theta})| \int_{0}^{\rho} W(r) dr d\rho$$

$$\leq \frac{2}{c} \int_{0}^{1} (1-\rho) \omega'(\rho) |I'(\rho e^{i\theta})| d\rho$$

a.e. on $[0, 2\pi]$, and this implies (ii).

Let us prove the equivalence of (ii) and (iv). For $\zeta \in U$ consider the inner function $I_{\zeta} = (I - \zeta)/(1 - \overline{\zeta}I)$. Then $I \in H_w$ if and only if $I_{\zeta} \in H_w$, and $I(z) = \zeta$ if and only if $I_{\zeta}(z) = 0$. For all $\zeta \in U$ we have from the factorization formula that $-\log |I_{\zeta}(z)| \ge N(1, I_{\zeta} \circ \varphi_{z}, 0)$; hence, by Lemma 1,

(5.13)
$$\int_{U} \Delta w(|z|) \log |I_{\xi}(z)| dm \ge 2\pi \sum_{I_{\xi}(z)=0} w(|z|).$$

If I_{ζ} is a Blaschke product then (5.13) holds with equality, and by Frostman's theorem [9, p. 117] there exists a set A of capacity zero such that I_{ζ} is a Blaschke product for all $\zeta \in U \setminus A$.

Now assume that the sum $\sum_{I(z)=\zeta} w(|z|)$ is finite for some $\zeta \in U \setminus A$. From Proposition 5 and (5.13) (with equality) we obtain

$$(5.14) ||I_{\zeta}||_{w}^{2} - |I_{\zeta}(0)|^{2} \le \frac{1}{2} \int_{U} \Delta w(|z|) \log |I_{\zeta}(z)| dm = \pi \sum_{I(z) = \zeta} w(|z|);$$

that is, $I \in H_w$. The converse is similar to the proof of Frostman's theorem. Let $I \in H_w$ and denote by A_1 the set of points $\zeta \in U$ with $\sum_{I(z)=\zeta} w(|z|) = \infty$. If A_1 has positive logarithmic capacity then it contains a compact set K with positive capacity; hence there exists a probability measure μ supported on K such that the logarithmic potential defined by $-\int \log|z-\zeta| d\mu(\zeta)$ is bounded above on \mathbb{C} . Consider the function

(5.15)
$$v(z) = \int \log \left| \frac{1 - \overline{\xi}z}{z - \zeta} \right| d\mu(\zeta).$$

Since v is bounded in U and the support of the measure μ does not intersect ∂U , we deduce that there exists a positive constant c_1 such that $v(z) \le c_1(1-|z|^2)$, $z \in U$. Then

$$(5.16) -\int_{U} v \circ I(z) \Delta w(|z|) dm \leq 4c_{1}(||I||_{w}^{2} - |I(0)|^{2}),$$

and by Fubini's theorem and (5.13) the integral on the left-hand side becomes

$$(5.17) \qquad \int \left(\int_{U} \Delta w(|z|) \log |I_{\zeta}(z)| \, dm(z) \right) d\mu(\zeta) \geq 2\pi \int \left(\sum_{|I(z)|=\zeta} w(|z|) \right) d\mu(\zeta).$$

Combining the last two relations, we obtain that $\sum_{I(z)=\zeta} w(|z|)$ belongs to $L^1(\mu)$, in particular, the sum is finite μ -a.e. This contradiction shows that A_1 has capacity zero.

It turns out from the above that the inner factors of a function in T_{ω} are not necessarily in T_{ω} . Indeed, if w satisfies (5.8) then we can find a sequence $\{r_n\}$ in [0,1), tending to 1 such that $\sum_{n\geq 1} (1-r_n)$ is finite, but $\sum_{n\geq 1} w(r_n) = \infty$. If B is the Blaschke product with zeros r_n for $n\geq 1$ then B is not in H_w , but the function $f(z)=(1-z)^2B(z)$ belongs to the Dirichlet space [7].

6. Cyclic Vectors in H_w

We consider the multiplication operator M_z defined on the Hilbert spaces H_w by

(6.1)
$$(M_z f)(\zeta) = \zeta f(\zeta) \quad \text{for } \zeta \in U, f \in H_w;$$

it is a bounded weighted shift on these spaces. A closed subspace \mathfrak{M} of H_w is called invariant for M_z if $M_z\mathfrak{M}\subset\mathfrak{M}$. For a function $f\in H_w$ we denote by [f] the smallest invariant subspace containing f, and we say that f is a cyclic vector for M_z if $[f]=H_w$; that is, the polynomial multiples of f are dense in H_w . In the case when $H_w=H^2$ (i.e., w(r)=1-r on [0,1)), the invariant subspaces and the cyclic vectors are described by Beurling's theorem, but for other H_w -spaces it is considerably more difficult to do this (see e.g. [5]). A useful instrument to attack such problems is the following lemma.

LEMMA 7. If $f \in H_w$ (or D) and g is a bounded function in U such that $gf \in H_w$ (or D), then $fg \in [f]$.

A result of this type was first proved for the Dirichlet space in [5] and [11], and a proof of Lemma 7 may be found in [3]; we shall omit the details. Using

Theorem 1 and the above lemma, we obtain the weighted version of Brown's theorem [4] mentioned at the beginning.

COROLLARY 3. If $f, 1/f \in H_w(or D)$, then f is a cyclic vector for M_z .

Proof. For t > 0 consider the functions $h_t = (f/t)\phi_{f/t}$. We have $|h_t| \le 1$ in U and, by Lemma 7, $h_t \in [f]$. Since H_w and D are contained in H^2 , it follows that f is an outer function; hence the h_t are also outer. We obtain $\lim_{t\to 0} h_t(z) = 1$ for $z \in U$ and, by Theorem 1,

Then $\lim_{t\to 0} h_t = 1$ in the norm of H_w , and f is cyclic because $1 \in [f]$. \square

References

- 1. P. R. Ahern, *The mean modulus and the derivative of an inner function*, Indiana Univ. Math. J. 28 (1979), 311–347.
- 2. P. R. Ahern and D. N. Clark, *On inner functions with B^p derivative*, Michigan Math. J. 23 (1976), 107-118.
- 3. A. Aleman, Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Amer. Math. Soc., 115 (1992), 97-104.
- 4. L. Brown, *Invertible elements in the Dirichlet space*, Canad. Math. Bull. 33 (1990), 419–422.
- 5. L. Brown and A. Shields, *Cyclic vectors in the Dirichlet space*, Trans. Amer. Math. Soc. 285 (1984), 269–304.
- 6. L. Carleson, On a class of meromorphic functions and its associated exceptional sets, Thesis, University of Uppsala, 1950 (MR. 11, p. 427).
- 7. ——, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190–196.
- 8. ——, On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952), 289–295.
- 9. S. D. Fisher, Function theory on planar domains, Wiley, New York, 1983.
- 10. W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
- 11. S. Richter and A. Shields, *Bounded analytic functions in the Dirichlet space*, Math. Z. 198 (1988), 151-159.
- 12. J. H. Shapiro, *The essential norm of a composition operator*, Ann. of Math. (2) 125 (1987), 375–404.
- 13. A. Shields, Cyclic vectors in spaces of analytic functions, Linear and complex analysis problem book, Lecture Notes in Math., 1043, pp. 382–385, Springer, Berlin, 1984.
- 14. N. A. Shirokov, *Analytic functions smooth up to the boundary*, Lecture Notes in Math., 1312, Springer, Berlin, 1988.

Fachbereich Mathematik und Informatik Fernuniversität Hagen Postfach 940, 5800 Hagen 1 Germany

