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1. Introduction

Let m be the area measure on C. For a meromorphic function f in the unit
disc U, let

7|2
(1.1) A(r,f)zS WP 0<r<,

tel=ry (14]f]2)2 77

be the spherical area of the image of {|z| <r} by f, counting multiplicities.
In his thesis Carleson [6] considered the classes 7,,, 0 < a <1, of meromor-
phic functions f in U satisfying

(1.2) fla={ A NHA=Ddr <o,

and the class 7; of meromorphic functions f in U with the property that
A(r, f) remains bounded when r tends to 1, that is,

(1.3) |fly=sup A(r, f) <co.
r<l1

We obviously have T} C T, C T3 C T for all «, 8 € (0, 1) with o > 8. The class
T, coincides with the class of functions with bounded characteristic, and a
well-known theorem of F. and R. Nevanlinna asserts that each fe 7 is the
quotient of two bounded analytic functions in U. In [6, p. 39] Carleson
proved an analogue of this theorem for the classes 7, just defined, namely,
the fact that each function in 7}, is the quotient of two bounded functions,
each of which is in 73 for all 8 < a, and conjectured that one cannot take
B = «a, that is, not every function in 7, is the quotient of two bounded func-
tions in 7,,. For all «€[0, 1], T,, contains the weighted Dirichlet space D, _,
of analytic functions f in U satisfying

(1.4) Sulf’(z)lz(l—]zl)“"‘dm<oo

Recently, in their paper {11] on invariant subspaces of the multiplication oper-
ator on the Dirichlet space Dy, Richter and Shields found a partial “negative”
answer to Carleson’s conjecture for o =1 by showing that every function in

Received April 19, 1991. Final revision received January 16, 1992.
Michigan Math. J. 39 (1992).

537



538 ALEXANDRU ALEMAN

D, is the quotient of two bounded functions in D,; their result was ex-
tended to all spaces D,, 0 < a <1, in [3]. The aim of the present paper is to
give a complete answer to this conjecture. Using a similar method to the
one in [3], we shall prove that each function in 7,,, 0 < o <1, is the quotient
of two bounded functions in 7.

The proof occupies the next three sections of this paper. In Sections 5 and
6 we discuss some applications of the main theorem. First of all, this result
holds also for other classes of meromorphic functions between 7; and 7
that are defined by means of growth restrictions of the form

1.5) o= { At N dr<e,

where w e C![0, 1) is a positive increasing function with [§ w(r)dr < co. Sim-
ilar to 7, the class T, of meromorphic functions in U satisfying (1.5) con-
tains the Hilbert space H,, of analytic functions f in U with the property that

(16) | |7 @Pwilz]ydm <o,

where w is defined on [0, 1) by w(r) = |} w(p) dp. In Section 5 we show that
the outer factor of a function in 7, or H, belongs to the same class, and
following the ideas in [1], [2], and [6] we prove some characterizations of
the inner functions in 7;,. As was pointed out in [11] (see also [3]), results
of this type have interesting consequences concerning the properties of the
multiplication operator on the spaces H,, or on the Dirichlet space D = D,.
In Section 6 we prove that every invertible function in H,, is a cyclic vector
for this operator, that is, its polynomial multiples are dense in the space. The
result answers affirmatively Question 4 in [5] (see also [13]) for the spaces
H,,. For the Dirichlet space it was recently proved by Brown [4].

The author is very grateful to the referee for his helpful suggestions and
for pointing out some errors in the first version of the paper.

2

In order to prove the main theorem, our first purpose is to obtain a suitable
equivalent expression for | f],. We begin with a simple observation. Let f
be a meromorphic function in U. Then A(r, f) is an increasing function of
r; hence for all a €{0, 1) it satisfies the inequality

@.1 (l—r)‘”"‘A(r,f)sS:A(p,f)(l—p)""‘dp, relo,1).

If feT, it follows that lim, _, (1—r)!=2A(r, f) =0, so that, integrating by
parts in (1.2), we obtain in this case

1 S | £(2)]?
1—a Ju (1+]f(2)}2)?

(2.2) [fle= (1—[z])~>dm.
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Assume that f is not constant. For 0 <8 <1 and { e f(U) we consider the
generalized counting functions

(2.3) Ns(f,8)= 5 (1—[z])¥,
Az)=¢
and for 0 =< r <1 the usual Nevanlinna counting function of f,
2.4) N, f,9)= 3 log, tefUNS(O),
s=t |z]
zZi<r

where multiplicities are counted in the above sums (that may not converge).
From the following general change-of-variable formula,

e [uenulrtan=| o) 3 v@)dne)

v J) f@R)=¢
valid for any two nonnegative measurable functions «#, v on C and for mero-
morphic nonconstant functions f in U, using (2.2) we obtain that if fe 7,
0<a<l, then

1
2.6) Ha=1=21,
A proof of formula (2.5) may be found in [12] or [3] in the case when f is
analytic. For meromorphic f the proof is identical, and may be obtained by
dividing the disc U into a set of planar measure zero and a countable disjoint
union of open sets R,, such that f|R, is analytic and injective. Then (2.5)
follows with the usual change-of-variable formula.

U)(1+|§|2)”2N1-a(f, ) dm,

LEMMA 1. Let f be nonconstant and meromoprhic in U. For z, A€ U let
¢;(N)=(2+N)/(1+ZN). Then for 0<B<1land { e f(U),

@.7) Na(f,6) = —% [, AQ=12DPNG, Sop 8 dm(2),

where A denotes the Laplace operator.

Proof. By Green’s formula we have, for every Ae U,

1 1—-Z\

2.8 1-\)P=——\ AU—|z])? .
2.8) (1=]A] 5 §u (1~[z])? log|——">| dm(z)
Since A(1—|z[)# <0 in U, by the monotone convergence theorem

1 1—-ZN
2. N, = —— — B .
2.9) 5(f, §) . SU A(l1-]z]) (f(}?ﬂlog - ')dm(z)

We have (A—2z)/(1—2Z\) = ¢, }(\) and

1—2ZMN
2.10) D 1og|
S =¢ A—2z

which proves (2.7). O

=N, fep,,§) m-ae.onU
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Every function f in Ty with £ 0 has a nontangential limit at e’® a.e. on
[0, 27], denoted by f(e®), and log|f(e’?)| belongs to L'[0, 2x]. Further,
S may be written as f = IF/J, where I, J are inner functions whose greatest
common divisor (7, J) is the constant function 1 and where F is an outer func-
tion. Up to some unimodular constants, the functions 7, J, F are uniquely
determined in this case. The next lemma is derived from a formula of Ahlfors
and Shimizu.

LEMMA 2. Let feTy, f#0, and f = IF/J, with I,J inner functions
satisfying (I,J)=1 and F outer. For z,Ne U and 6€[0,27], let ¢,(\)=
(z+N)/(1+2Z\) and P,(0) =Re((e’? +z)/(e® —z)) be the Poisson kernel. If
ze U is not a pole of f then

2 (oo WP 1
7 Ju U+ feo, (V)2 8 |\
@.11)

dm(\)

= —log(l +|f(Z)l2)—210glJ(z)l+2—17; gz” P,(0)log(1+]f(e")|?)db.

Proof. Let feT, with f#0 and f=1F/J, where I,J, F are as in the state-
ment of the lemma. Let 7= B;S; and J=B;S;, where By, B; are Blaschke
products and S;, S, are singular inner functions. Also let

2 S [(forr) (N)]? 1

—_— 2
7 o A4 Fro R 08 Ta] MmN Hlog 4171

Uf(Z) =

+2log|B,(z)|— 5!; S;” P,(0)log(1+]f(e')|?) db.

We prove first the following double inequality. If O is not a pole of f then

(2.13) 0 =< vp(0) = —2log|S,(0)].
Indeed, integrating by parts we obtain
Pk 1 1 1[d
1 dm=\ log —|— A(r, d
SU(1+|f|2)2 I So Ogr[dr (r. 1) |dr

.14) 1 ,
={ a0.n =
0 r

and by the formula mentioned previously (see [10, p. 11]) for 0= p <1,

2 ar_ 1 i0y[2
(2.15) G gOA(r’f) r 2 So log(14+|f(pe®)|*) do

~log(1+{£(0)|*) +2N(p, 1/f, 0).

Sincelim, _,; N(p, 1/f, 0) = —log| B,(0)|, the first inequality follows by Fatou’s
lemma. We have also
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27 .
lim sup é};r_ 50 log(1+]|f(pe’®)|?) do

p—1

T , 27 .
(2.16) <lim sup lgz 10g(1+|F(pe'9)|2)d0———1—S log|J(pe®®)[? db
27 Jo 27 Jo

p—1

27 .
= lim sup — [ 10g(1 +{F(pe®)[?) do—210g]5,(0)].
p—1 27r 0
Using the fact that F is outer and |F(e*?)| =] f(e'%)| a.e. on [0, 27], we apply
Jensen’s inequality to the convex function x ~ log(1+e*) to obtain
2% . 27 27 .
[ ogt1+|F(pe)ydo < [ 7 | Pty log(1+|Fe™)?) 4 g

@.17) 0 0 Jo 27

- S;’r log(1+] f(e™)[?) dt,

and the second inequality in (2.13) follows by (2.15) and (2.16). We shall use
the double inequality to prove that vs(z)=—2log|S;(z)|, z€ U. The first
step is to show that vy is harmonic in U, as follows. The function
(2.18) log(1+|f|*)+2log|B,| =log(|B,|* +|fB,|*)
is twice continuously differentiable on U, because B; and fB; have no com-
mon zeros there and if z € U is not a pole of f then

A(log(1+]f]?) +2log|By|)(z) = A(log(1+| f1*))(z)

(1+]f(z)]2)?

For every compactly supported function ue C*(U) we have, by Green’s
formula,

(2.20) u(\) = — - fu log — Au(z)dm(z), AeU.

27 lo1(N)
If we denote by 9(z) the area integral in (2.12) and use the substitution
@.(N\) =¢, then

_ 2 Pk 1
SU SIAua'm—SU Au(z)(; §U A+ log o] dm) dm(z)
(2.21) =-S L,Izudm=—§ uA(log(1+|f|2)+2log|B,|*)dm
' u (1+]f]?)? U g

= —5U(Iog(1+|f|2)+210g|BJ|2) Audm.
From (2.12) and another application of Green’s formula, we obtain

2.22) §U v Audm = SU(S+log(1 +|f]?)+2log|By|2) Audm =0,

which shows that vy is harmonic in U.
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Now if z € U then Fe ¢, is outer, Iep, and Jo¢, are inner, (Iop,, Jop,) =1,
and their Blaschke and singular inner factors are obtained by composing
By, Sy, By, S; respectively with ¢,. Using some computations with the Poisson
kernel, it follows that

(2.23) vr(z) = vy, (0);
hence if z € U is not a pole of f then by (2.13) we have
(2.24) 0 < vy(z) = —2log|S;°0,(0)| = —21og|S,(2)|.

This leads to v, = —2log| S| for some singular inner function S, because v, is
harmonic. From (2.24) it follows also that S divides S;. If in addition we
have f(z) # 0, applying the above argument to 1/f after some simple com-
putations we obtain

S57(z)
2.25 O0=v,r(z)=vs(z)—2l0 ;
(2.25) 17 (2)=v7(2) g S,®)
that is, log|S;/S|=log|S;|. Thus S;/S divides both S; and S;, which shaws
that S=S; and the proof is complete. OJ

Recalling that T, C T, for all a € (0, 1], we now put together the preceding
results in order to obtain the following.

PROPOSITION 3. Let 0<a<1 and feT, be nonconstant with f=IF/J,
where I, J are inner functions sqtisfying (_I ,J)=1and F is outer. For ze U
and 6 € [0, 2], let P,(0) =Re((e’® +z)/(e”® —z)) be the Poisson kernel. Then

— —1zht-e | L (P i0y]2
4(1-a) SUA(I &) [ fﬂ P, (0)log(1+]f(e)|*) db

/= S

(2.26) —log(l+|f(Z)|2)—-210g|J(z)|] dm(z).
Proof. Let E(z, f) be the inner bracket in the above integral. From Lemma

2 and (2.5) we have

@2y E@NH=2{  A+EPTN fop, §)dms).
T JfU)
Using Lemma 1 and Fubini’s theorem we obtain
.__1_ — -« = 2y-2
@28) -7 | AQ=[e)'"E@ Ndm={ ~(1+[FF)2N_o(f,§)dm,

and the result follows by (2.6). O

3
A final lemma is needed for the proof of our main theorem.

LEMMA 4. Let (X, pn) be a probability space, and let fe L\(p) with f>0
p-a.e. on X and log fe LY (u). For 0<vy <1 let
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@3.1) E,(f)= log(1+/)dp~log (1 +7exp SX log fd,u).
Then
(3.2) E,(min(1, 1)) < E,(f).

Proof. Let A={xe X, f(x)=1} and assume that a = u(A)>0; otherwise
the inequality is trivial. Then (3.2) is equivalent to

14+ f 1+yexp |y log fdu
3.3 log{ —= )dp=1 .
3-3) SA og( 2 ) # 0g(1+7 exij\Alogfdu>
Let b=expfx\ 4log fdu. We have 0<b<1and

log 1+ybexp|4log fdu <log 1+expf4log fdu
1++vb - 2

Salog(l+exp(1/a2)jA logfd,u)’

(3.4)

where the last inequality is just

<1+x>‘/" 1+xYe
) =<

<<
5 > x>0, a=<l.

We claim that

(3.5) a log(1+eXp(1/a2) I logfdp.)s L logG%{) du.

Indeed, this inequality is equivalent to

1 1
(3.6) exp(—?‘— XA Iog(1+f)du)+exp( S log(l_{f) )<1
which follows by Jensen’s inequality
1 1 1 Vi
exp( S Iog(l+f>du)+exp< S log(H_f)d,u)

1 1 1 S _
=2 SA1+fd+;SA1+fdp'_l' =

(3.7)

4

For a meromorphic function fe€ Ty, f#0, let ¢, be the outer function in U
satisfying |¢,(e'®)|=min{1,1/|f(e’)|} a.e. on [0, 2= ]; that is, let

log min{1, 1/| f(e")|} 6.

1 Svrele-i-

@D s@=epo—| T

The main result of this paper is the following.
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THEOREM 1. Left 0<a=<1land fe T, be nonconstant with f = IF/J, where
1, J are inner functions such that (I, J) =1and F is outer. Then Jo; and fJ¢;
are in T,, and satisfy

(4.2) [Jorla=<|fle and |fI¢sla=<|fla-

Proof. Assume first that 0<a<1. Since |fJ¢,(e’?)|>=min{l, |F(e)|?}
a.e. on [0,27], an application of Lemma 4 with X =[0,27] and du =
(1/27) P, db, where z € U is fixed, yields

1

— S;”Pz(e)log(l+|fJ¢f(e"")|2) do—log(1+] f76,(2)|?)

(4.3)  =Ej2(minfl, [F|*}) < Ejj,)2(|F|?)

= -2—11; ferz(e)mg(l +]£(e')|?) do—log(1+| f(2)|*)—2log|J(2)],

and the second inequality in (4.2) follows by Proposition 3. We have also
|J¢,(e"®)|> = min{1, 1/|F(e*®)|?} a.c. on [0, 27], and another application of
Lemma 4 gives

517‘; S;r P,(0)log(1+|Jo,(e?)|*) df —log(1+|J¢(z)]?)

= E|jg(min{1, 1/|F|*)) < Ejy)2(1/|F |?)

1

4.4) 9x '
<5 .7 PO log(1+1/|7(e™)[%) b

—log(1+1/|f(2)|>)|?) —21log|1(z)]-

Using again Proposition 3 we obtain |J¢,|, <|1/f|,, and from (1.2) we have
[1/f|o=|f|a» Which finishes the proof in the case o <1. For the limit case
o =1 we simply observe that for any increasing nonnegative function u on
[0,1),

4.5) lim u(r) = lim sup(1 — a) S:) u(r)(1=r)=*dr.

r—1 a—1

If we apply this equality to the functions A(r, J¢,) and A(r, f), then
4.6) |Jor|y =limsup (1 —a)|Jos|, <limsup(1—a)| fl, =]|S];.

a—1 a—1

Analogously we obtain the second inequality, and the proof is now complete.

O
For any nonconstant fe T, with f=1IF/J, where I,J are inner functions
satisfying (1, J) =1 and F is outer, we have that J¢, and fJ¢, are bounded
in U and f= fJ¢;/J¢p;. Thus we obtain the following corollary.

COROLLARY 1. For 0<a =<1, every function in T, is the quotient of two
bounded functions in T,.
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It follows easily from (2.2) that each bounded function in 7, 0<=a =<1,
belongs actually to the Hilbert space D,_, defined by means of (1.4). Then
from the above corollary it turns out that every function in 7,,, a € [0, 1], is
the quotient of two bounded functions in D;_,,.

S. Applications. The Spaces 7, and H,,

We shall continue the investigation of the classes 7, in a slightly more general
context obtained by replacing, in the definition of 7, the function 7~ (1—r)~¢
by any positive increasing function we C'[0,1) with {§ w(r)dr <. More
precisely, for such a function w, let T, be the class of meromorphic functions
fin U satisfying

5.1) |f|w=S;A(r,f)w(r)dr<oo.

We obviously have T; C T, C Ty, and if we C?[0, 1) is defined by

(5.2) w(r) = j’ (o) dp

then an integration by parts shows that, for every fe T,

lf'(2)?
v (1+]/(2)[*)

It is not difficult to see that Theorem 1 holds for the classes T, as well. In-
deed, the formulas proved in Section 2 remain true if A(1—|z])!~¢is replaced
by Aw(|z|), and the inequalities |J¢/|,<|f|, and | fJ¢/|,=<|f]|, follow as
above from Lemma 4. We shall continue to refer to these results even if the
more general context is concerned.

The class T, contains the spaces H,, of analytic functions f in U with the
property that

(5.4) /B =1+ 17 @Pw(z) dm <o,

(5.3) 1l = g w(|z|) dm.

and a bounded analytic function in U belongs to 7, if and only if it belongs
to H,,. Consequently, every function in 7, is the quotient of two bounded
analytic functions in H,,.

Some simple computations with the Parseval formula show that for every
function fe€ H,, with f(z)=2X27-¢a,z", z€ U, we have

0

(5.5) "f"%v: Wn,an'z’

n=0

where wy=1 and, for n=1,

1
(5.6) w, = 27n? SO r2=ly(r) dr.
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It follows that H,, is a separable Hilbert space of analytic functions in U and
that polynomials are dense in H,,. Since w is decreasing and concave and
since lim, _,; w(r) =0, we have w(0) =w(r)=(1—r)w(0), re[0,1), which
shows that D C H,,C H?, where D= D, (see (1.4)), is the usual Dirichlet
space and H? =D, is the Hardy space on U. The other weighted Dirichlet
spaces D,, 0 <a <1, are obtained by letting w(r)=(1-r)%, re[0,1). The
spaces 77 and D appear as a limit case, namely when the function w is con-
stant. As for the classes 7;,, we have the following useful identity for the
norm on the Hilbert space H,,.

PROPOSITION 5. Let fe H,,. Then
(5.7)
1 1 2= .
I/ =lroP-4 |, Aw(lzl)[g J; Pz(e)lf(e"’)lzd0—1f<z)|’-] dm(z).

A proof of this result may be found in [3]. It is very similar to the one of
Proposition 3, using (2.5), Lemma 1, and the Littlewood-Paley formula
instead of Lemma 2.

REMARK. An immediate consequence of Proposition 5 is that if fe H,
(or D) and 1, is an inner divisor of the inner factor of f then f/I, € H,, (or
D). This property is called the (F) property (see [14]) and is shared by the
classes T, and 7} as well. Proposition 3 shows this. The fact that D has this
property follows also by Carleson’s formula for the Dirichlet integral [7].
Consequently, we obtain

COROLLARY 2. Let feT, (or Ty) with f#0 and f=1F/J, where I,J are
inner functions satisfying (I,J)=1 and F is outer. Then F,IF,F/J are in
T, (orTy). If fe H, (or D) then Fe H,, (or D).

Proof. F/J and 1/IF are obtained by dividing respectively f by I and 1/f
by J. Also F=IF/I. The result follows from the above remark.

Proposition 5 may be also used to give a simple proof of the following char-
acterization of inner functions in certain H,,-spaces in terms of the growth
restrictions satisfied by their derivatives, or by conditions concerning the
distribution of values of such functions. The result is known for the usual
weights w(r) = (1—r)® and may be found in P. Ahern’s paper [1] (see also
[2] and [6]). Actually, for inner functions in weighted Dirichlet spaces the
norms of the form (5.7) were first considered in [1].

PROPOSITION 6. Assume that there exists a positive constant ¢ such that
(5.8) —(1=ryw"(ry=cw(r), rel0,1).

For an inner function I, the following assertions are equivalent.

() IeT,.
(i) IeH,,.
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(iii) (1 =r)w'(r)(J37|I’(re®)| d8) dr < co.
(iv) There is a set A of logarithmic capacity zero such that
Yizy=¢ W(z]) <o forevery e U\ A.

Proof. If (ii) holds then (iii) follows immediately from Proposition 5 and
the inequality

1-[1(z)]* _1-]1(z)]?
1=z = 1|z
Conversely, we have by (5.2) and (5.8) that (1—r)w’(r) = cw(r) on [0,1). If

W(r)=w'(r)+w(r) then, for all r€[0,1),

(5.9) 1I'(z)| < for ze U.

(5.10) jo W(p) dpSw(r)—w(O)+rw(r)<%(1-—r)w’(r)

and Aw(|z|) =2W((z]) for 1/2=<|z|<1. Further, the following inequality
holds for all 6 € [0, 27] with lim,_, ,|I(re’®)|=1:

. 1 .

(5.11) 1—|I(re®)[? szg |I'(pe'®)| dp.
r

Now use (5.10), (5.11), and Fubini’s theorem to obtain

§; W(r)(1—|I(re'®)|?) dr <2 S; w(r) SIII’(pei0)| dp dr

(5.12) ) S;l]'(,oeie)l [Cwwyarap

IA

2 a=pw(@)Ioe™)| do
Cc Jo

a.e. on [0, 27], and this implies (ii).

Let us prove the equivalence of (ii) and (iv). For { € U consider the inner
function I, = (I—¢)/(1—¢I). Then e H, if and only if I; € H,,, and I(z) = ¢
if and only if I;(z) = 0. For all { € U we have from the factorization formula
that —log|/(z)| = N(1, I~ ¢,, 0); hence, by Lemma 1,

(5.13) g Aw(|z))log|l(z)|dm=2r 3 w(z]).
v I(z)=0
If I, is a Blaschke product then (5.13) holds with equality, and by Frostman’s
theorem [9, p. 117] there exists a set A of capacity zero such that I; is a
Blaschke product for all {e U\ A.
Now assume that the sum X, - ; w(|z]) is finite for some { € U \ 4. From
Proposition 5 and (5.13) (with equality) we obtain

(5.14) llfrllfv—lfg(O)IzS%S Aw(|z))log|l(z)|dm== 3 w(|z]);
v I()=¢

that is, / € H,,. The converse is similar to the proof of Frostman’s theorem.
Let I € H, and denote by A4, the set of points { € U with X ;)- w(|z|) = .



548 ALEXANDRU ALEMAN

If A, has positive logarithmic capacity then it contains a compact set K with
positive capacity; hence there exists a probability measure u supported on K
such that the logarithmic potential defined by —{log|z — | du(¢) is bounded
above on C. Consider the function

1-¢z
z—¢
Since v is bounded in U and the support of the measure x does not inter-

sect dU, we deduce that there exists a positive constant c¢; such that v(z) <
¢,(1—|z|?), z€ U. Then

(5.16) ~| ver@aw(z) dm = a1~ 1O,

(5.15) v(z) = Slog du(t).

and by Fubini’s theorem and (5.13) the integral on the left-hand side becomes

(5.17) Kj Aw([z]) log| /()| dm(z)) du() = 2w | ( ) W(Izl)) du(t).

v Iz)=¢%
Combining the last two relations, we obtain that X, w(|z|) belongs 1o
LY(p), in particular, the sum is finite p-a.e. This contradiction shows that A4,
has capacity zero. 1

It turns out from the above that the inner factors of a function in 7, are not
necessarily in 7. Indeed, if w satisfies (5.8) then we can find a sequence
{r,} in [0, 1), tending to 1 such that %, ,(1—r,) is finite, but ¥, , w(r,)=
co. If B is the Blaschke product with zeros r, for n=1 then B is not in H,,
but the function f(z) = (1—z)?B(z) belongs to the Dirichlet space [7].

6. Cyclic Vectors in H,,

We consider the multiplication operator M, defined on the Hilbert spaces
H, by

(6.1) (M, f)E)=C/(§) for $eU, feH,;

it is a bounded weighted shift on these spaces. A closed subspace I of H,,
is called invariant for M, if M, 0 C M. For a function fe H,, we denote by
[ f] the smallest invariant subspace containing f, and we say that f is a cyclic
vector for M, if [ f]1=H,,; that is, the polynomial multiples of f are dense
in H,,. In the case when H,,= H? (i.e., w(r) =1—r on [0, 1)), the invariant
subspaces and the cyclic vectors are described by Beurling’s theorem, but
for other H,,-spaces it is considerably more difficult to do this (see e.g. [5]).
A useful instrument to attack such problems is the following lemma.

LEMMA 7. If fe H, (or D) and g is a bounded function in U such that
gfeH, (or D), then fge(f].

A result of this type was first proved for the Dirichlet space in [5] and [11], and
a proof of Lemma 7 may be found in [3]; we shall omit the details. Using
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Theorem 1 and the above lemma, we obtain the weighted version of Brown’s
theorem [4] mentioned at the beginning.

COROLLARY 3. If f,1/fe H,(or D), then fis a cyclic vector for M,.

Proof. For t >0 consider the functions h, = (f/t)¢s,. We have |#,|<1in U
and, by Lemma 7, A, €[f]. Since H,, and D are contained in H?2, it fol-
lows that f is an outer function; hence the A, are also outer. We obtain
lim,_, o h,(z) =1 for ze U and, by Theorem 1,

t2 712
6.2) |h,—h(0)2<4|h|,<4 ’j: Sgu'(% —f

!
Then lim, _, 3 A, =1in the norm of H,,, and f is cyclic because 1e[f]. U

2
wdm < t?

w w
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