Localization of Hilbert Modules

XIAOMAN CHEN & R. G. DOUGLAS

In [6] it was shown how to reformulate the study of bounded linear oper-
ators on Hilbert spaces into the study of Hilbert modules. Here we study
modules over a function algebra which have also a Hilbert space structure
relative to which the multiplication is jointly continuous.

Localization is a useful method in the study of Hilbert modules. Many
important invariants can be obtained via localization. For example, one can
recover the characteristic operator function for the canonical model of Sz.-
Nagy and Foias as well as the curvature of some hermitian holomorphic vec-
tor bundles. Some examples [6] show that localization seems to be related to
the index and spectral theory of Hilbert modules.

Localization of Hilbert modules was introduced in [6] using the module
tensor product. Tensoring with a finite-dimensional module whose spec-
trum consists of a single point yields another finite-dimensional module
with the same spectrum. Analyzing the latter module yields the sought-after
invariants.

A finite-dimensional module with spectrum a single point involves various
partial derivatives and their evaluation at that point. One defines the order
of such a module to be the order of the highest derivative that is needed.

In this note, we show that zero'™® order localization is not enough to get
much information about a Hilbert module. In particular, in the several-
variables case (which is our main interest in the Hilbert module approach
to operator theory), zero'" order localization determines just the first stage
of the Koszul complex introduced by Taylor [7]. In [5], first-order local-
ization was considered and some interesting calculations were made. How-
ever, much groundwork needs to be developed to obtain efficient localiza-
tion techniques for finding invariants for Hilbert modules via localization.

In this paper, we confine our attention to Hilbert modules over A({2),
AQ)={f|fe C(Q)NHol(2)}, where Q is a bounded connected domain in
C”". We define higher-order localizations for this kind of Hilbert module.
As an application we study the relation between modules being locally uni-
tarily equivalent and globally unitarily equivalent. We obtain an extension
of the Cowen-Douglas theory [1; 2] to the context of Hilbert modules.
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1. Preliminaries

A Hilbert module 9 over A(R) is a Hilbert space M together with a unital
module multiplication

A(Q2) x M - M.

We assume that there is a constant k> 0 such that | f-x| < k| f||x| for fin
A(©) and x in IN. (By the uniform boundedness principle this is equivalent
to joint continuity.)

If 9N, and O, are Hilbert modules over A(Q) we let ;@ N, denote the
Hilbert space tensor product of 9; and MN,. There are two ways of making
M, ® M, into a Hilbert module over A(f2), one using the action on 9, and
the other using the action on M ,. By making these two actions equal we ob-
tain the module tensor product. This is accomplished by forming the quo-
tient of M, QN, by the closure N of the linear span of the vectors

xRy —xQfy| feA(Q), xe M, ye M,).

Since the latter is a submodule, the quotient of ;@ M, by I is a Hilbert
module which we denote by M, ®4q) N,.

Let C, be the local module over A(Q2) for z in @, where C, is the Hilbert
space C and module multiplication is defined by f-A= f(z)\.

DEFINITION 1.1.  If M is a Hilbert module over A({2), then M K 4q,C; is
called the Jocalization of the Hilbert module M at z.

The following lemma is used often in this paper.

LEMMA 1.2 [6, Thm. 5.14]. Let £ be a finite-dimensional Hilbert A(Q)-
module with cyclic vector ey, and set J={f|fe A(RQ), f-e;=0}. If Misa
Hilbert A(Q)-module, then M & 4q) £ and the quotient M /[JM]~ are sim-
ilar A(Q)-modules.

In particular, M ®,(q) C, is unitarily module equivalent to /[, N]~, where
Ah={f|feARQ), f(A)=0}isanideal of A(2). We set M, =M /[J5;IM ] for
X in Q. The complex conjugate is necessary to make 91, holomorphic in \.

REMARK 1.3. In the proof of Lemma 1.2 we see that the map ¥ from
[JIM]L > MR, £ defined by ¥(h) = h&®, e, is an invertible module mapping.

Many examples [4] show that the invariants for Hilbert modules depend on
the behavior of the localization in a neighborhood of a point and not just on
what happens at the point. So we must consider how the localizations fit
together as z varies. Thus we view 2~ M &, C, as a sheaf over { called the
spectral sheaf. The details can be found in [4]. Here, we just introduce a
class of Hilbert modules over A(2) for which the localizations fit together
very well and the sheaf is actually a vector bundle.
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Let Gr(n, 9) denote the Grassmann manifold of all n-dimensional sub-
spaces of the Hilbert space 9 and let 2* be the conjugate domain of Q.

DEFINITION 1.4. Let 9 be a Hilbert module over A(2). We say 9 is
locally free at \y in Q* if there exists a neighborhood A of Xy, an integer n
with

A= f(N) =, (A- Gr(n, M)),

and holomorphic IM-valued functions {v;(A)}7-; such that
SN =Vi{yi(N), ..o, v,(N)}  for Nin A.

We say that 9 is locally free on the open set Qf C Q* if at each \yin QF, M
is locally free.

EXAMPLE 1.5. Consider H?(D?) as a Hilbert module over A(D?) and the
submodule, Hp ,(D?) = {g|g e H*(D?), g(0, 0)=0}. It is easy to prove that
H?*(D?) is locally free on D?. However, while Hp (,(D?) is locally free on
D?\{0, 0}, H} ,(D?) is not locally free at (0, 0).

If I is an ideal in the polynomial ring C[z,, ..., 2, ], then the closure [/] of
I in H*(D") is an A(D")-module. For Z, not in Z[I]={z|ze C", f(z)=0
for every f in I}, we see that J; I has codimension 1 in 7. Therefore, it fol-
lows that [/ ]zO has dimension 1 for Z, in Z[7]N D", Moreover, if we choose
p(z) in I such that p(Z,) #0, then y(N\) = p &, 1, (wWhere 1, is 1 in C,) de-
fines a holomorphic spanning section for [I], for z in a neighborhood of
Zo- Thus [7] is locally free on the complement of Z[7] in D”, and we can use
the vector-bundle point of view to try to classify Hilbert modules of the
form [I]. (Actually we use such sections of the spectral sheaf to define the
holomorphic structure.)

PROPOSITION 1.6. If [1}1®4m"C,=[1,1Q4mC, as hermitian holo-
morphic vector bundles on some open set Q5 C D", then [1}]=[1,] as Hil-
bert modules.

Using the fact that V, 696[1 1x=1[1] for any open set 2, on which [I] is lo-
cally free, this proposition is easily proved using ideas from [1]. The spanning
property for [I] follows from the analogous result for H2(D”) since pro-
jecting a holomorphic section y for H2(D") into [/] yields one for [I] off
the zero set of . This proposition shows that global properties of the spec-
tral sheaf determine the module in the case of [/].

2. Higher-order Derivative Localization

Since local invariants depend on the behavior of 91, in a neighborhood of z,
naturally we want to define some kind of localization which depends on the
higher derivatives of the functions. In the one-variable case, it seems obvious
how to define such a Hilbert module structure on C” at A\. Namely, one sets
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f-h=Afh,
where
(fOY LN 2N e G P00 ()
0 SO SO .. hy
Afich=| 0 0 f(\) S (N) hs
; : S SN :
_ 0 0 0 SN JIL

It is easy to show that such a multiplication yields a module action.

In the several-variables case, however, defining a module multiplication
on C” is more complicated. But the difficulty is more notational than con-
ceptual. Thus we begin by introducing some notation.

Let I=(i,1,...,i,) be an n-tuple of positive integers, 7! =iliy! -+ i1,
[I|=ii+iy+ - +i, and L+DL=(il+if,ij+i3,...,i}+i%), where I;=
(i, i3, ...,i)), j=1,2. If there is a K such that J+ K =1, we say J<1.

Set f1=alllf/dz" and s = (i; +1)! (i +1)! --- (i, +1)! for fin A(Q) and [ =
(i158y,...51,). Since ol I/az’ determines a jet, we sometimes refer to [ as a
jet. For a jet 7 and a X in Q we want to define a multiplication on C*, making
it into the Hilbert module which we will denote by C{. Let {e,;}; denote an
orthogonal basis for C*®, where J ranges over the jets J < 1. We define a ma-
trix A] of differential operators, where the general matrix element ay; is

defined by
—-—-1 i if H+K=J
Apy= K! BZK ! o

0 if H£J.

For fin A(Q) and X\ in Q we let A{ f denote the action of the operator ma-
trix A{ on the function f with the resulting function evaluated at A. Hence
we obtain a multiplication

AR)xCS - C5,
that is,
fox=(A f)x

for x =23, b;e;in C°.

THEOREM 2.1. The above multiplication makes C° into a Hilbert module
over A(Q).

Proof. We have to prove the above mapping is a module action. All of this
is easy to verify except the associativity (f-g)-x=f-(g-x) for f and g in
A(Q) and x in C°.

Fix f and g in A(f2) and let the matrix elements for A{ f, A{ g, and A} fg be
denoted by a,x, bk, and ¢k, respectively. The product matrix is defined by

Cixk=2a;bk,
3
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where the sum is over all jets L < I. However, the product a;; b; x = 0 unless
J=L=K=1I; since c;x =0 unless this is valid, we can restrict to this case.
Using the Leibniz rule we have

Ck= X apbik
J=L=<K

1 oIL—JI 1 |K—L|
=J__L5K((L—J)! 6z(L"J)f)(>‘)((K_L)! 9z &-1) g)()\)

— 1 1 glK—Jl
TPk (L= (K—=L)! 9z K- (f2)(N)
1 a|K—Ji

~(K=D)! 3z&=D (Sg)(N).

Using this formula, it is easy to verify f-e=A{ f-e is a module multipli-
cation. U

1A

EXAMPLE 2.2. Inthe two-variable case, with 7= (2, 1), we have the matrix

rao L0 EICR) 1 820 EYER)) 1 8D 0
3% o9LOz Oz _2_ 9207 ghz E 92z
3° 1Y) 8@ a1
O oz 0 Gio; on; ung
0 (1,0) 2,0
0 0 _30_ 0 a1 0 l a2 0
Ae 3%z a0z 2 920z
- aO 3(0,1)
0 0 0 _3—0; 0 ———6(0’1&
aO 3(1,0)
0 0 0 0 e 300y
0
0 0 0 0 0 —30—
_ %z

Denoting the above Hilbert module by C{, we have the following definition.

DEFINITION 2.3. Suppose M is a Hilbert module over A(2). We call
M @ 4.q) Ch the I-localization at \.

COROLLARY 2.4. For 9 a Hilbert module over A(Q), M Q) C} and
M/ [J{M]~ are similar A(Q)-modules, where Ji={f|feARQ), ff(\)=0
forall I'<1I}.

Proof. We only need to observe that e; is a cyclic vector in C{. 1

REMARK 2.5. We don’t know whether M ®4q)C{ and M/[J{M]~ are
unitarily module equivalent.
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DEFINITION 2.6. Denote 9/[J{91]~ by M. A quasi-vector bundle for
the Hilbert module 9N is defined by ! = U, . q- ML, which is the disjoint
union of the M.

DEFINITION 2.7. For f in A() and A in H?(Q) we set f*h=T}h, where
Ty is the operator on H*(Q) defined by T;h= f-h.

3. Cowen-Douglas Theory

According to the Cowen-Douglas theory [1; 2], the higher-order local oper-
ators determine completely a global operator in the B,(£)-class. Since we
have now introduced higher-order localization, we want to know how the
higher-order localizations are related to the global Hilbert module. Thereis
a difference, however, from the Cowen-Douglas theory, because in general
I is not the kernel of some commuting n-tuple of operators. One reason
is that the function algebra A4(Q) may not be generated by the coordinate
functions z;, 23, ..., Z,-

THEOREM 3.1. Suppose U, .- M, is locally free at \y and {v;(\)}f_, is a
Jframe on a neighborhood of \y. Then for any I, \U, c o WS, is locally free
at N\o and {y} Y\ <1 is a frame for Uy o MY on the same neighborhood

Of )\0.

COROLLARY 3.2. If Uy M, is locally free at Ny, then dim MY =
(Z+1)!dim M, where I =(i},...,i,) and 1=(1,1,...,1).

The assumption that M is locally free is necessary. For example, if we take
M = Hp,0(D?) = (f| f € H*(D?), £(0,0) =0}, then dim M, ) =2 while
dim 9y ) = 3. From Example 1.5 we know that 91 is not locally free at
(0, 0).

Proof of Theorem 3.1. We prove this theorem by induction on |7|. Assume
Theorem 3.1 holds when |/|<m. We show Theorem 3.1 holds when |I|=
m+1.

Since (f—f(A)*yv;(\) =0, i=1,2,...,k, for any f in A(Q) and \ in Q*,
it follows that
3.1 =3

n+n=1 115!

: WAL ONEVLICN

for any jet I. Hence, we claim that y/(\) is orthogonal to J{9N for i=
1,2,...,k, I'<I. In particular,

(1) for Iy < I, (z—=N)"0*y2(\) = (L1 /(L,— 1)) v2~11(\); and

(2) for Iy £ L, (z—N)P*y2(\) =0,
where (z—X)'" = (21— X)1 (22— X2)"2 -+ (2, = \,))"™.

Using (3.1), it is easy to show the {y/}; < ;X are independent at each
point A\ belonging to the neighborhood of \, and that V{y/(\)} is orthog-
onal to J{9M. We must prove that
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k
V (v} =,
rsi
i=1
Without loss of generality, assume I = (i;+1, i5, ..., i,) and I'= (i}, i5, ..., i,,).
It is sufficient to prove that for any x in MO [J{M]~, we can choose con-
stants b{" such that x—X,. b} "7,-’”()\0) is orthogonal to JY'91, where I”=
(ll+1 j29- ’jn)’ jk—ik and k= 2
It is clear that (21 — Not)*x is in sm »» since for any f in J)\O we have
(21— Ngp)f in J)\O Hence, by the induction hypothesis,

(z1—Nor)*x = E aF v N).
K=r
i=1
At first, we want to choose b/" such that x—X, ;X b7y} (\g) is in
Ker(z;—Nop)*1* 1. Obviously,

S vkl K. (0K, ... K .
(Zy—Ao))*1" ' x= > ajt vk ONSTAN
K=(i,Kpn Ky <I’
i=1

But
— - k " ” k ” - .
(=N 3 By (N) = 3 (i + D) by 0Tz I (N g);
1” II/

i=1 i=1
hence we take

bi(tl_*'l)fZ)"-,j ) — a(’l!.lz J )
11+1

which yields that X— E, K b (M) is in Ker(z, — XOI)*"I“ It is also clear
that x — 2,, i1 b, v} ()\0) isin 9]1)\0 But for any f in J,\O, we can construct a
function g in J)\O as follows:

1 L Sy -
g=f_ 2 " - - f(‘l+l9.l2,’---sjn)(x0)
(j2s---,jn)5(i2,---,in) (ll+1)! JZ! ...Jn!
hence

k
g"‘(x—"lﬁ; i 71 (XO))

i=

k
f*(x— p> b,-’”v,-’”(xo))=o,
Z

i=1

This implies

since

. k ” (4
(23— Nop)*1t! (x—- > by (>\0)>= 0
1”
i=1
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Using the hypothesis of induction, we get

k k
x=3 bFvFO)+ S cKvEON). O
I K=<l

PROPOSITION 3.3. Suppose M is locally free at N\, that is, there is a ho
Iomorphtc frame (7; (M52, on a neighborhood of No- Then E)TL®A(Q)CM
(= SIAOC E)TL®C)\0) has the holomorphtc Jframe

Hny= 3 e 'yK()\)®eK, I'sl, i=1,2,...,k.
K=r

Proof. Obviously, the {A/'}¥_, ;. are linearly independent. We only need
to show A" L 95, since M ®,q)Cf, and M are similar. We see that
Ny, = fx®e—x@fe| fe A(Q), xe M, and e C{ }~.

It is sufficient to show

I (N), [xRey—xR fey)=0 for H=<I.
But we have

fx@ey—x@fey=(f—f(A))x@ey— 3 G,fG(ko)x®eF,
F+G=H
F#0
and by (3.1) we have
O F=SEND= % et O), SX R0
K+J=rI
K#0
Hence
B o)y (F=SFo)¥®emd= S — L (ho), K (o).
K+J=H A
K#0
r K K
(o0, 3 G Gox@e)= 3 oo, fKRom,
F#0 K#0
which means
ChI(No), fxRey—xR@ feyy=0 for H=<I'. O

DEFINITION 3.4 [1]. Let 2C C” be a connected open subset. Two holo-
morphic curves f, f: @ - Gr(n, M) have order of contact I if for each Aoin
Q2 there exists a unitary U on 9 such that Uf and f agree to order 7 at \,.
That is, if v, ..., v, are holomorphic spanning cross-sections for E at A,
then there exist holomorphic spanning Cross- -sections i, ..., yx for Ef at
Ao such that

Url(ho)=7/(No), I'sI, i=1,2,...,k.
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LEMMA 3.5[1]. If f: Q- Gr(n, M) is a holomorphic curve and vy, v, ...,
Yx are holomorphic cross-sections of the vector bundle E; defined over
such that v1(Ng)s ---» Ye(No) is an orthonormal basis for f(\o), then there
exist holomorphic cross-sections 4, ..., i of Es defined on some open set A
about \y such that v;(Ag) =7v;(N\o) fori=1,...,k and

GiN)s 7N =0 for 1=<i, j<k, and I#0.
The proof given for Lemma 2.4 in [1] goes through without change.

PROPOSITION 3.6. Suppose M and S are Hilbert modules over A(Q)
such that both are locally free at Xy in Q. If we set t(\) =M, and F(\) =M,
then t(\) and £(\) have contact of order I if and only if ML and ML are
unitarily module equivalent at \,, for any I'<1.

Proof. Assume that ¢ and 7 have contact of order 7 at \,. Then there exist

a unitary U on I, holomorphic spanning cross-sections Y15 -5 Yk fOr My,

and holomorphic spanning cross-sections ¥y, ..., yx for smM such that
UviN) =% (o), i=1,2,....k, I'<1.

For f in A(2), by (3.1) we have

, I’
Uf*vf(ho) =
Pane J+1§{:IJ'K'

= f*U~r{(N\o);

hence ur Imz)‘ = f *U lsm)‘o Let Py, (P”O) denote the projection from 9N to
(from 3]’6 to MY o). We have UPp, f-h= P“O SUh, since

<UPI)\0f Yi ()\O)a ()‘0» (PI )\OfU'Yz a’Yj O\O))
for I'1”"<1 and 1 <1, j < k. Therefore, for any 4 in Em)\o,
Uf-h=fUh.

This shows that the unitary U defines a module mapping between 9{ and
oMY, .

Conversely, if v1(Ng), .- 7x(Ng) is an orthonormal basis for My, then
¥i(No) =Uvi(No), i=1,2,..., k, defines an orthonormal basis for M, . Us-
ing Lemma 3.5, we can choose holomorphic cross-sections v, ...,y for
Uyea My and 94, ..., Fx for U, < » M, on some open set A containing Ao and
satisfying

K(No)

rEN)s YiNa)Y = (T (No)s 1(No)y =0
for I#0, 1<i, /] <k. We claim that
UvF(ho) =77 (Ng) for i=1,2,....k, I'<I.

The above statement is valid for 7’=0, and we assume it holds for |I'| <
kq. Suppose I'= (i}, ..., i), |I'|=ky, and I"= (i} +1, ..., i,). Then for any f
in Jx, we have
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FHUY o) =7 (No)}
=Uf*v{' o) =S*¥ ' (\o)

/f' —_—— ”n
o3 FnFCaton)-(_ 3 T aa00)

k+i=1 K1J! k+7=1 K!J!

=0,
since f(Xo) = 0. This means that Uy/'(\g) =7/ (o) is in 9, . But

(U No) =7 (M), (M) =0, 1<i, j=<k,
and hence
Ur¥(ho) =5 (No)- C

The following proposition does not involve the language of Hilbert mod-
ules. Its proof is an extension of that of Proposition 2.18 in [1] to the several-
variable case. We begin by recalling a definition from [3].

DEFINITION 3.7. Let E and E be hermitian vector bundles over €, an
open subset of C¥, with metric-preserving connections D and D. Let j be a
positive integer. Then E and F are equivalent to order j at a point z in Q if
there exists an isometry ®, from E, to £, such that

Prox [y =X [Py

for each covariant derivative x and % of the curvature of E and £ (respec-
tively) of total order less than or equal to j.

PROPOSITION 3.8. Let f and f be holomorphic maps from Q into
Gr(n, M), and let E; and Ej be the associated hermitian holomorphic vec-
tor bundles with canomcal connections D and D, respectively. The holo-
morphic curves f and f have contact of order I at \, for all I if and only if
E; and Ef are equivalent to order j at Ny, 0 < j < +co.

EQUIVALENCE THEOREM [3]. Let E and E be n-dimensional hermitian
vector bundles over Q, an open subset of C*, with metric-preserving con-
nections D and D which are equivalent to order n on ). Then, on an open
dense subset of Q, the bundles are locally equivalent.

Now we give the main result of this section. Using the above propositions
and theorems, we obtain the following theorem.

THEOREM 3.9. Suppose that W and M are Hilbert modules over A(),
and that U\ ¢q, 91"6}\ and U\ ¢q, M, are locally free on Qy C Q*. Then, if for
any \g in Q, Em)\o sm’ as Hzlbert modules for all jets I, then there exists a
dense open subset Qg C 90 such that Uy ¢ q,, My, and U ¢ g, I, are locally
equivalent as hermitian holomorphic vector bundles.
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LEMMA 3.10. Suppose M is a Hilbert module over A(Q) and M is locally
Jree on an open subset Qy C Q*. If V, . 0, My =M, then for any open subset
QOOC:QO,

V ?ﬁl)\ = IN.

)\EQOO

The proof is just like the proof of Corollary 1.13 in [1].

COROLLARY 3.11. Sljppose the conditions of Theorem 3.9 hold for Hil-
bert modules I and M. Furthermore, assume that

V 5]"(,)\=fm and V STZ)\=9'TIZ.
Aelly Aeldg
If 9§ =9MS, as Hilbert modules for any \o in Qq and for all jets I, then
M and I are unitarily module equivalent.

Just as in the geometrical context, one does not need local unitary equiva-
lence for jets of all orders. A careful examination of the arguments above
yields the following refinement.

THEOREM 3.12. Suppose I and M are Hilbert modules over A(Q) such
that Ug, M, and Uy, M, are locally free on Some connected open set {1y C 0*
which satisfies V\¢q, My =M and Vycq, M, =M. Let s be the dimension
of My, for Nin Qo. If M, =M as Hilbert modules for \q in Qg and all jets
I, |I|<s, then M and I are unitarily module equivalent.

One advantage to this coordinate-free version of the Cowen-Douglas theory
is that it can be extended to modules that are not locally free. In particular,
for a quotient module H2(D")/[I], the spectrum coincides with the zero
variety Z(I), to which the approach presented in this paper can be applied.
This will be considered in future work.
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