Examples of Nonproper Affine Actions

TODD A. DRUMM

0. Introduétion

Margulis ([Mal], [Ma2]) was the first to show that complete affinely flat
manifolds with free fundamental groups of rank = 2 exist. These “Margulis
space-times” correspond to free subgroups of the affine group that act prop-
erly discontinuously on R3. These subgroups of the affine group are conju-
gate to free subgroups of VX G =H, where V is the group of parallel trans-
lations in R? and G =S0°(2,1) [FG].

Margulis also presented in [Mal] and [Ma2] a test that identifies some free
subgroups of H that do not act properly discontinuously on R3. Although
Margulis’s constraints are necessary to ensure that a free subgroup of H acts
properly discontinuously on R3, it will be shown here that they are not suffi-
cient. Margulis’s proof that these constraints are necessary will also be pre-
sented here, to correct the many mistakes that are in the translation and to
isolate and clarify the ideas in the proof as they appear in [Mal] and [Ma2].

1. Geometry of R%*!

Consider subgroups of the affine group of the form I' =(A;, h,) CH. I" acts
on & =R?1 with its inner product B(x, y) =X, ¥, +X, ¥, — X3 y3 invariant un-
der the action of G. For the null cone C={xe&|B(x,x)=0}, let W=
{x € C|x; > 0}. Also, the Euclidean length of a vector is

] = (x> +x3 +x3)'/2

and the Euclidean distance between two vectors is p(X, y) =|x —y| or (more
generally) the Euclidean distance between two sets

p(A, B)=min{p(a, b)|ae A and b € B}.

Note that if z is the vector {x;, X3, —X3) tﬁen B(x, y) is equal to the Eu-
clidean inner product of z and y and the Lorentzian Schwartz inequality,
B(x,y)=<|z||y|=|x||y], holds.
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Let /: H— G be the projection of H onto the linear part of elements of H.
If a free group I' acts properly discontinuously on &, then /(I") is free. / is
injective, for otherwise the kernel would be an abelian normal subgroup.
The subgroups of G that will be of interest are purely hyperbolic, that is,
those in which every nonidentity element of the group is hyperbolic.

g in G is hyperbolic if it has three distinct positive eigenvalues, A(g) <1<
Ng)~L. Corresponding repelling, fixed, and attracting eigenvectors Xg xg,
and x; , respectively, are defined so that X, and x; are in WNS2, where
S? is the Euclidean unit sphere and B(x2, x?) =1 with {x?, x;, x;7} a right-
handed basis for &. Further, g is said to be e-hyperbolic if o(x;,x;)>¢ and
hyperbolic g and f are said to be e-transversal if p({x;, x; L {x7, xf)) >e
for 0 <e<2!/2,

v in & is said to be spacelike if B(v, v) > 0. For spacelike v, define unique
vectors x5 and x;” in WNS? so that B(v, xF) =0 and {v, x;, x;}} is a right-
handed basis for &. v is said to be an e-spacelike vector if p(x,, x;}')>e.
Note that if v =xJ then x; = x;.

h in H is hyperbolic only if /(h) = g is hyperbolic. Let x{ =x? and x;," =
x;‘, and let C, be the unique A-invariant 1-dimensional subspace that is
parallel to x,?. For x in Cy, let d, = hx—x and a(h) ={d,, xJ). Define the
sign of A to be the sign of a(h). Since B(x!, x;7) =B(x{, x;) =0, a(h)=
B(hx—x, x;) for each x in §. Also, define Ej;" to be the plane containing C,
that is parallel to <xf, x;), and define B; (v) to be the line that contains v
and is parallel to x;;. |

If I" acts properly discontinuously on &, define « to be the projection from
& onto &/T'. w(Cy) is seen to be the simple closed geodesic in §/T". The di-
rection and “Lorentzian length” of this geodesic are given by B(d,, x!) =
a(h). In addition, a(#) is related to min, p(hx, x) for x in E. Let P, be the
plane parallel to x;, x;7 and containing x. Note that #(P,)= P,, and that
p(hx, x) = p(Py, Py,). Let y = P, N C,, which may be chosen to be the origin
modulo conjugation of 4 by a translation. Choose x;; = B[cos 8, sin 6, 1],
xi =pB[cosB, —sin,1], and x{ =[csch,0,cotd], with 8=2"12 and 0<
6 < . For e-hyperbolic #, 2/2sin @ > ¢, and by elementary plane geometry
we have

a(h)sind
(14cos? §)1/2

p(hxs x) = p(Px:Phx) =

D
> |a(h)|§.

Define a “conical neighborhood” A C W of v in W to be an open connected
subset containing v, such that if we A then kwe A for all k> 0. Conical
neighborhoods A and B in W are e-separated if p(a/|a|, b/|b|) > e for all
a€ A and b € B. The closure of the neighborhood A in the usual topology is
denoted cl(A).

For hyperbolic g;, conical neighborhoods AF of xgi,., respectively, can be
chosen so that cl(g;(A;)) = (W—A4}). Note that for g, = g?, A} and A; can
be chosen to be g;(A}) and g/ 1(A4;), respectively. A group in G generated
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by hyperbolic elements g, g, ..., g, acts as a Schottky group on W if there
exist 2n conical neighborhoods AF, as above, which are mutually distinct.

2. Generators with Opposite Signs

THEOREM 1. Given 3e-hyperbolic and 3e-transversal h; and h, in H with
opposite signs, I' ={hy, h,) does not act properly discontinuously on &.

To prove Theorem 1, inequalities from Margulis’s Basic Lemma ([Mal],
[Ma2]) will be established in Lemmas 1 and 2.

LEMMA 1. For 3e-hyperbolic and 3e-transversal h, k € H such that hk is e-
hyperbolic,

o 1)t —a(o)]< SIa(C(h), CRNIatl

+ (Ndul i — x5+ | il Xz — X DI
Proof. First, note that
B(d),+ d., xp) = B(dy, xix) +B(dy, Xi%)
due to the bilinearity of the inner product. The left side of (2) can then be
written as
(3)  |(B(dy, xik) — c(h)) + (B(dy, Xix) — (k) + (e (k) = B(d + dye, Xp)|-

Interestingly, B(d,, x;) =0 and a(h) =B(dy, B (xf)), since each element
of B;f (xJ) can be expressed as the sum of xJ and a real multiple of x;7. (3) is
then bounded above by

B(dy, Xix — Bif (xp )|+ [B(dy, X5k~ B (x))]
+]Ol(}'lk)—B(dh+dk, X}?k)l.
Of the first two terms in (4), which are similar, only the first will be ex-

amined. By the Schwartz inequality, the first term in (4) is bounded above
by [dull xS —Bif (xP)]. If r is the x3-coordinate of xf and

s=By (xiH)N{x|x3=r]},

4

then
lxf —s) = xpe = Bif (x))].

Note that xJ, and s belong to the circle defined by {x|x; =r}N{x|B(x, x) =1}
with radius (#2+41)/2. The triangles

{x2.,5,(0,0,r)) and {x,xF,(0,0,2712)
are similar and
S)  e—sl=102+D/212 |k —xH = 12+ 1/212 xih — x|
The x;-coordinate of xJ; is bounded above by 2/e. Thus

|B(dy, X — By (ep )| < 4/€> | dy b | X3t — x|
(6) and
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Figure 1

|B(dy, X — Bi (xi D] < 4/ |l X — X .

The third term of (4) can be controlled using u € C;, and z € C, chosen so
that p(Cy, Cy) = p(u,2), v=B; (u)NEY, and w=B;f (v)NC(k). See Fig-
ure 1. Noting that a(hk) can be written as B(hv—k~1v, xJ;), the third term
of (4) is seen to be equal to

) |B((hv—v)+ (v+ ko) —dy,—dy, X))

v can be regarded as u+r or w+¢, where r is a multiple of x; with norm
p(u,v) and ¢ is a multiple of x;t with norm p(v, w). (7) is bounded above
by (p(u, v)+ p(v, w))|xP|. By the law of sines applied to the triangle with
vertices u, v, and z, p(u, v) < p(u, z)/sin(« (¥ —v,z—v)) <2p(u, z)/e>. For
the triangle with vertices u, v, and w, p(v, w) < p(v, 2)/sin(2(v—u,z—u)) <
p(v, z)/e, which can be bounded above by 2p(u, z)/e3 by use of the triangle
inequality for the triangle with vertices «, v, and z. Thus we have established

®) (k) —B(dy +dy, )| < 40(C, Cl XMkl /3.
The application of (6) and (8) to (4) results in (2). O

The following proposition will be used in the proof of Lemma 2.

PROPOSITION. For each p in & and e-hyperbolic h in H,

Nh)

-1
1_Mh)p(h D, D).

) p(p, Ef) =<
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Proof. For each p in & let s in E;' be chosen so that p—s is parallel to
x5 . There exists a constant k£, 0 < k <1, such that o(p, E}f)=k-p(p,s) for
all p in &, and p(h~'p, E;}f) =\(h)"'p(p, Ef). By the triangle inequality,
p(h”lp,E;',")Sp(h_lp,p)-i-p(p,Ej,") and

(10) ANR)o(p, Ef) < p(h™'p, p)+ p( D, E}}).
(10) can then rewritten in the form of (9). O

LEMMA 2. For e-hyperbolic h in H and for each q in &,

2 MNh)

(11) p(q, Cp) <—

. -1
TN min{p(q, #(q)), p(q, h~"(q))}.

Proof. First, we will estimate p(q, C(h)) by examining the plane Q which
contains ¢ and is perpendicular to C,=E;}fNE; . Let {w}=QNC,, y in
QN E;t, and z in QN E; be chosen so that p(gq, C,) = p(q, w), o(q, Ejt) =
p(q,¥), and p(q, E;) = p(q, z). See Figure 2.

Figure 2

Consider the right triangles having vertices (g, y, w) and (q, z, w). Because
h is assumed to be e-hyperbolic, max(z(z—w,g—w), 2(qg—w,y—w))>¢/2
since z(z—w,y—w) >e. p(q, w), the length of the hypotenuse of both trian-
gles, is equal to p(q, y)/sin(2(qg—w,y—w)) and p(q, z2)/sin(2(qg—w, z—w)),
with an upper bound of either wpo(q, ¥)/e or wp(q, z)/e since sin § = 26/w for
O0<0=<mn/2;
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o(q, Cy)=p(q,w)
(12) <2(p(q,y)+p(g,2))/c
=2(p(q, Ef)+ p(q, E;))/e.

Apply the Proposition to (12), and (11) is proven since A(A)=\(2"1). O

Proof of Theorem I. 1t suffices to construct a compact set X so that there
are infinitely many elements §; in I' of the form A4 with h(K)NK #0.
Suppose that a(#;) > 0 and a(h,) < 0. By replacing #; and A, with sufficiently
large powers of h; and A,, respectively, one may assume that the correspond-
ing conical subsets Af and Af of W, as described in Section 1, are separated
by e. By Lemma 2.2 of [DG], the §;’s are e-hyperbolic and |x°(5;)| < 2/e.

To construct the set K, first find upper bounds for a(};) and p(q, Cy,) for
a chosen ¢ in &. For x in Cy,, p(h;x, x) <20(h;)/e. If L =sup;(c(h;)) and
M =sup;(p(g, Cy))), then K={xe€ &|p(q, x) =M+2L/e} is constructed to
be a ball with center g so that §;(g) is in X for all i. K is compact if both L
and M are finite.

In order to construct a sequence of §;’s for which L is bounded, examine

(13) | (h;) — (h]) — a(h7")].

a(hf) +a(hd)=no(h)+ma(h,), and if (13) is bounded above for all §; =
hiih5' where n;, m; >0 and 0 < n; a(h) + m; a(hy) < k, then the set of a(¥;)’s
is bounded. This sequence is infinite since 4; and A, have different signs.
(13) is the left side of inequality (2). The first term on the right side of
inequality (2), p(Cy,, Cy), is independent of i since Cyn=C,,.
The second and third terms on the right side of inequality (2) are similar
and only the second will be examined. For )= A"k™, this term is

(14) || X — xgn| = nldy || x5 — xiF .

For a particular v in W, p(x;7, h"v/|h"v|) provides an upper bound for
|25 — x5 o(xi7, h"v/|h"v]) < CN(h)" for some C > 0. Thus, (14) is bounded
for any sequence of §;’s and the same can be said for a(¥;), for each term in
the sum is bounded from above.

For the sequence of §,’s described above, we will show that p(q, Gy is
bounded for all ;. Examining (11),

min{p(q, (), o(q, " (@)} <[p(q, h(q))+ (g, "1 (q))]1/2

and 1/(1—X(8;)) =<1/(1—\(h)) so that the terms in (11) are bounded above
by a constant times N(A"k™)(p(q, h"k™(q)) + p(q, (h"*k™)"1(q))). For con-
venience, choose g in E;f N E;” and let py = k™(q) and p, =h~"(q). p(q, Cy,)
is bounded above by a constant times

A5)  NR"k™)p(q, p1) + p(P1, B (P1))+ p(q, P2) + p(D2, K~ (P2 )]

In the following discussion about (15), the C;’s denote positive constants
depending only on e. That is, they depend upon 4 and ., but do not depend
upon n and m.
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g was chosen to be in Ep so that p(q, p;) < mC; for some C;, and g
was chosen to be in E; so that o(q,p,) <nC, for some C,. Further,
p(p1, h"(py)) = C3mN(h)™" for some C3 and p(p3, k~"(p2)) = Cani(k)™"
for some C4. But

IRk ()| = MK [A" ()| < Cs MR A (k)™

for some Cs, and N(h"k™) < Cs\(h)"N(k)™. Thus, the terms in (11) are
bounded above for all §;. U]

3. Generators of the Same Sign
It is interesting to note that the converse of Theorem 1 is not true.

THEOREM 2. There exist I' ={hy, h,y), hy and h, in H with the same sign,
and I(T") acting on W as a Schottky group such that T" does not act properly
discontinuously on &.

Proof. 1t suffices to construct #; and 4, with positive sign such that A, s, has
negative sign. Then by Margulis’s sign condition, I"' would not act properly
discontinuously on &.

Choose g; and g, so that {g;, g,) acts as a Schottky group on W, the line
X(g1,8)= (xgl, xg )ﬂ(xgz, Xg,) lies inside of C, and B(xgl, xgz) > 0. Choose
vy so that B(vy, xg) >0 and ||01|[ =1. Let h;(x) = g;x+ v, and then a(h )>0.

Choose w, € (W (AT UATUAT UAS })ﬂS2 so that B(w,, xg,) >0 and
{wy, Xg, Xg ] is a left-handed basis for &. See Figure 3.

A

Xg,
+ + - -
Az xgq, Xg, Az
gz (w2)

w2

-

Xq,

.

Ay

Figure 3
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B(w,, xg,) =B(g2 w2, 82x0.) = B(g2 w2, x0).
2

For any k >0, if v, = kg, w, and h,(x) = g, x+ v, then a(h,) > 0.
Note that

(h1hy)(x) =(g182)x + (g0 +vy)
and

au(hyhy) = Bgyv + vy, X2 5 ) = B(g10, X0, ) +B(oy, X2, ).

lvi]=1and |x{,,| is bounded since {g;, &) acts as a Schottky group on W.
Thus |B(vy, x0.,)| is bounded. (g18,)7' (A7) C A7 and (g,8,)(Af) C At
so that x; ., € A7 and X;},, € (g:8,)(A{). The choice of w, ensures that
B(g18,(W,), Xg,4,) <0. k can be chosen so that k{B(g g,(w,), Xg,,) >

O

£18
B(v;, x° . )| and (k1) <O. .
g

182l
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