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1. Introduction

Tarski and Jonsson raised the question whether every integral represent-
able relation algebra (RA) was representable over a group. McKenzie [MK1;
MK?2] answered this question in the negative. In fact, McKenzie introduced
the notion of a permutational relation algebra, and he showed that every
group representable RA is permutational, but that not every permutational
RA is group representable. Moreover, he showed that the class G of all
group representable RAs is not finitely axiomatizable relative to the class @
of all permutational RAs. He then raised the problem of whether a nonper-
mutational representable integral relation algebra exists. In this paper, we
answer this question in the affirmative. We also prove that the class of all
permutational relation algebras is not finitely axiomatizable over the class
of representable integral relation algebras.

1.1. NOTATION AND DEFINITIONS. A relation algebra
g: (A’ +, 'y Ty 9y —1: O’ 1, 1,)
is a structure of type (2,2,1, 2,1, 0,0, 0), where

R1 (A4, +,:, —,0,1) is a Boolean algebra;
R2 (A4,;,” L 1’) is an involuted monoid; and
R3 for all a, b, c € A, the conditions

(a;b).c=0, (@ ';¢)-b=0, (c;b™YH-a=0
are equivalent.

For history and context of the theory of relation algebras, the reader is in-
vited to consult [TG] or [J].

For a nonempty set U, we set ¥V = U X U and consider the following oper-
ations on P(V), the power set of V:

(1) the Boolean operations U, N, —, together with the constants @ and
UxU.
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(2) The relative operations | (relative multiplication) and v (conversion),
as well as the constant E =id U.

Any subset of P(V') which is closed under these operations and contains the
constants is an RA, if the operations and constants are interpreted natu-
rally. Relation algebras of this kind are called proper on U. An RA is called
a representable relation algebra (RRA) or relation set algebra if it is iso-
morphic to a subdirect product of RAs each of which is proper on some
nonempty set.

An RA { is called integral if for all R,Se A, R;S=0 implies R=0 or
S=0. This is equivalent to the fact that 1’ is an atom of ${. It is well known
that an integral representable RA is isomorphic to a proper RA on some set
U; thus we can speak of an integral RRA as being representable on a set U,
or just integral on U.

A permutation group G on a set U is called

(1) transitive, if for all x, y € U there exists some ¢ € G such that y = ¢px;

(2) semiregular, if the identity on U is the only element of G that fixes a
point, or, equivalently, if for all ¢, y € G the fact that ¢x = yx for
some x € U implies ¢ = y;

(3) regular, if G is semiregular and transitive.

An orbit of G is a set of the form {px: ¢ € G}, where x € U, and the degree
of G is the cardinality of {xe€ U: px# x for some ¢ € G}. If G is transitive
then G has only one orbit, namely U, and its degree is just |U|. With some
abuse of notation we speak of an orbit of a permutation ¢ when we mean a
set containing all elements of a cycle of ¢. A subset M of U is called a block
of G, if for each ¢ € G we have either p[M]=M or o[MINM=0. If M
is a block of G then ¢[M] is a block of G for every ¢ € G, and two such
blocks are called conjugate. The system of blocks conjugate to a given block
is called a complete block system. If G is transitive then a complete block
system partitions U. For other group-related notions not defined here, the
reader is referred to [W].

For a positive integer n, K,, is the complete graph on #n vertices; if n is a
prime power then GF(n) is the finite field with n elements. Finally, w denotes
the first infinite ordinal.

1.2. BACKGROUND. Let us denote the class of all integral RRAs by 4.
If f{is an integral proper RA on U, then we denote by Auty# the group of
base automorphisms of §, that is, the set of all permutations ¢ of U such
that for all Re A and all x, ye U,

(x,y)€eR if and only if (¢x, ¢y)€R.

If fis a proper RA on U, then §{{ is called c-permutational on U if Auty§l is
transitive. More generally, an algebra f{ € 9 is called permutational if it is
isomorphic to a c-permutational one. Following McKenzie, we denote the
class of these algebras by @.
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An integral RRA which is not c-permutational on some set can still be
permutational, as the following example from [ADN] shows. Let

Uu={0,1,...,6}) and S={0,1,2}x{0,1,2}U{3,4,5,6}%(3,4,5,6};

that is, S is the disjoint union of a Kj and a K,. S generates a three-atom
integral proper RA $fl on U. Since, for example, 0 is an even vertex and 3 is
an odd vertex, Autyf{ cannot be transitive. Since SUFE is an equivalence
relation and § is integral, and both properties can be read off the multiplica-
tion table of #{, S must be a union of complete graphs each of which has at
least three vertices. Hence no representation of f{ on a seven-element set can
be c-permutational. On the other hand, §{ is isomorphic to a c-permutational
RAon U={0,1,...,5}: Just let S be the union of two disjoint K3s and let B
be the proper integral RA on U generated by S; then f{ = 9. (This algebra is
also considered in [TG] in a different context.)

McKenzie [MK1; MK2] raised the problem of whether there is a nonpermu-
tational integral RRA, that is, if ® # 9. This question arose from his negative
solution to a problem of Tarski and Jonsson: Is every integral RRA represent-
able over a group? In fact, he showed that each group representable RA is per-
mutational, but that not every permutational RA is group representable. To
complete the picture, we shall exhibit many $#{ € 9 that are not permutational.

The rest of the paper is organized as follows: In Section 2 we present an
example of a nonpermutational integral RRA. Section 3 generalizes this to
show that @ is not finitely axiomatizable over 9. This complements a result
by McKenzie [MK2], where he proves that the class of group representable
RAs is not finitely axiomatizable over ®. There, as well as in what follows,
the construction is made via ultraproducts.

The main result of this paper has certain logical consequences; these are
easier to explain in terms of certain cylindric algebra investigations that are
strongly related to the present result. They are based on the strong and well-
investigated connection between cylindric algebras and relation algebras, as
summarized in [HMT, §5.3] and [N]. The connections among relation al-
gebras, cylindric algebras and logic are discussed, for example, in [HMT,
§§4.3, 5.6], [N], [S], and [V]. Since the applications we have in mind are
best presented after some discussion of cylindric algebras - which would be
beyond the scope of the present article - they will be described in a separate
paper. Here, we restrict ourselves to mentioning that some of the applica-
tions are related to questions investigated in the expanded version of [S].

2. The Example

THEOREM 1. There is a nonpermutational integral relation set algebra.

Proof. We shall proceed in two steps: First, we construct an f{ € 9 on a base
set of 45 elements which is not c-permutational; then we show that no repre-
sentation of # is c-permutational.
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To facilitate notation, we let n={0, 1, ..., n—1} for each positive integer
n. Also, if (x, y) € w X w then we shall usually just write xy instead of (x, y).
If R, SeRe U, and if no confusion can arise, we shall write RS instead of
R|S. Finally, let U=5xX9.

2.1. AUXILIARY RELATIONS. We shall start the construction by defining
certain relations on the set 9 X9, and deriving their basic properties. These
then will be used to define the atoms of f. The auxiliary relations fall into
two groups.

A. Permutations of 9 (in cycle form):

S=(012) (345) (678), SV=(021) (354) (687),

G = (036) (147) (258), GV =(063) (174) (285),

H = (048) (156) (237), HY=(084) (165) (273),

K =(057) (138) (246), KV=(075) (183) (264).
Set

F={S,SY,G,GY,H,H",K,K",id 9}.

Observe that the nontrivial orbits of these permutations are the lines of the
affine plane over GF(3). Consequently:

P1 & is a partition of 9x9.
P2 Each two orbits from different elements of {S, G, H, K} intersect in
exactly one element; each two-element subset of 9 is contained in ex-

actly one such orbit.
The basic connections among these permutations are as follows:

P3 ForallTeF, TT=TY and TTT =id9.
P4 H=GS=SG and K=SH=HS.
P5 & is a regular abelian subgroup of Sym(9).

B. Relations derived from the permutations. In defining a relation 7, the
notation

ijk—Ilmn
means that if e e {i, j, k} and b e {l/, m, n} then (a, b) € T. Now define

Ry: 036012, 147 — 345, 258 — 678,

R;: 036 — 345, 147 - 678, 258 - 012,

R,: 036 —» 678, 147 —» 012, 258 — 345;

By: 048 — 057, 156 — 138, 237 — 246,

B,: 048 — 138, 156 — 246, 237 — 057,

B,: 048 — 246, 156 — 057, 237 — 138.
Observe that R,, R;, R, take orbits of G into orbits of S, and By, B,, B, take
orbits of H into orbits of K. Also,
P6 {R,,R,,R,} and {B,, B,, B,} are partitions of 9x9.
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2.2. THE CONSTRUCTION OF 4. Recall that U=5x9. In what follows
we shall use + and — mod 5. Now define

s={(ij,iS(j)):ieS, je9},
g={(ij,iG(j)):ieS,je9),
h={(ij,iH(j)):i€$5, je9},
k={(ij,iK(j)):i€5,je9},
and, for each me 3,
rm=ij,(i+1)k):i€$, jkeR,,},

b, ={(ij,(i+2)k):i€5, jkeB,,).
Let
Wy=1{s,g, h,k,s",g",h", k"},

Wi={r;:ie3}U{b;:ie3},
Wy={rY:ie3}U(b):ie3).

A is now defined to be the relation algebra on U which is generated by
WoUWUW,; it turns out that At A =W,UW,UW,U{id U}. A complete
list of products of atoms is given in Table 1. Note that {g, s, ry, by} is a gen-
erating set of . Since id Ue At f{, {l is integral.

Let W=W,U{id U}. For things to come, it is worthwhile to note the fol-
lowing general facts concerning W:

P7 (a) W is a semiregular abelian subgroup of Sym U, isomorphic as a
group to &.

(b) The centralizer Z(W) of W in Sym(U) is transitive and contains
W as a normal subgroup. Consequently, the orbits of W form a
complete block system of Z(W') [W, 7.1] and thus for every sub-
group of Z(W).

(c) The set e=UW is the corresponding equivalence relation on U,
and the classes of e are the blocks of W.

(d) If L isaclass of e, then the action of W on L is a regular subgroup
of Sym L isomorphic to §. Thus, if fe Z(W') agrees with t € W on
one point on L, then f|L=t|L.

Note that P7 follows only from W < f{ and the group structure of W, and
does not depend on the representation of #.

2.3. 1 IS NOT ¢-PERMUTATIONAL. Let fe Autyf. Then, as a relation
on U, f commutes with every element of ${; in particular, Aut, # is a sub-
group of Z(W). By (P7), every block of W then is a block of Auty,#. Since
no element of W\ {id U} commutes with every element of f{, Aut, ANW =
{idU]}.

Let g: U — U be defined by ij~ (i+1)/j; then ge AutyfA. Let Q be the
subgroup of Auty#fl generated by q. Since every element of U is moved by
g, the degree of Auty§ is equal to [U]|.
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Let us collect these facts:

P8 (a) frt=tf, forall fe Autyf, teHA;

(b) AutgA<Z(W) and Auty ANW ={idU};

(c) every block of W is a block of Auty#;

(d) the degree of AutyHis |U]|.
In the sequel, let L;={i}x9 for each i€ 5. Each L; is a block of W (or,
equivalently, of e), and every block has this form. Since Auty{A < Z (W),
we infer from P7(d) that if f € Aut, f{ agrees with some ¢ € W on one point of
L;, then f|L;=t|L;. Furthermore, if f[L;] = L; for some i e S then f[L;]=
L; for all jeS5. This follows from the fact that each fe Aut,fl commutes
with r,.
P9 Suppose that f(00) =0k, and f(10)=1m; then f is completely deter-

mined by these values.

Proof. Since fe AutyH, f(20)eimb0(0k)ﬂim,o(1m). Now B, takes ele-
ments of 9 into orbits of K, and R, takes elements of 9 into orbits of S. By
P2, these intersect in exactly one element. It follows that f(20) is deter-
mined, and therefore, by P7, f is determined on L,. O

More generally, let us define ¢:9x9— 9 by
¢(k, m) =the unique u € 9 with (k, u) € By, (m,u) € R,.
Thus, if f(i0) =ik and f((i+1)0) = (i +1)m, then
SW(i+2)0)=(i+2)p(k, m).

Thus, given k and m, we can define a sequence Fy ,, by setting

Fim0) =k, Fp,()=m, Fy,(i+2)=oF (i), Fp,n(i+]1)).
P10 If fe Autyfl and f(00) =0k, f(10) =1m, then for all i € w, Fy (i) =

Fy, m(imod 5), and if i € § then f(i0) = (iFy, ,,(i)).
The first 26 terms of Fy ; are as follows:

01,5,8,8,7,5,6,1,3,1,4,3,0,2,7,4,4,5,7,3,2,6,2,8,6,

and F 1(26) = F; 1(0), Fp 1(27) = Fy,;(1). Thus, Fp ; has a period of 26.

Assume that fe Auty{{ and that f(00) =0k, f(10)=1m. Then (k,m)e
Ry, since f commutes with ry and (00,10) € ry. Note that for every pair
(k, m) e Ry with km 00, k and m occur in consecutive places in the 26-
long period of Fj ;. This, together with P10, shows that no fe Auty#{ can
move a point within L;, since f cannot move {0 within Z;, and therefore
neither can it move any other point within L;. Consequently, Auty# is not
transitive.

2.4. §1 IS NOT PERMUTATIONAL. Let B be a proper RA on a set 7, and
let p: f{ > B be an isomorphism. Recall that e= U W; from Table 1 we infer
that p(e) is an equivalence relation ocn 7" with each block M containing
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exactly nine elements, and that the subgroup of Sym M which is generated
by { par(s), Pas(g)} is isomorphic to F. Here, py,(s) and p,,(g) are the re-
strictions of p(s), p(g) to M.

As before, set r=rgUriUr, and b=byUb,Ub,. From

ex=xe=x and xVx=e

for each x € {r, b}, it follows that p(r) and p(b) are functions on the blocks
of p(e) in the following sense: If u is the set of blocks of p(e), then there are
functions p, 8: u — p such that

p(r)=U{MXp(M): M e p},

pb)=UMXB(M): Me p}.
From
rr=b and bb=rVv
we infer that
pp=f and BB=pY,

whence it follows that both p and b have order five. Thus p(e) consists of
exactly five blocks M,, ..., M,, and p and 3 are as shown in Figure 1. Hence,

Figure 1

there is an isomorphism between (7, p(s), p(g), p(r), p(b)) and (U, s, g, r,b),
and we may suppose that T=U, p(s)=s, p(g)=g, p(r)=r,and p(b)=>,
and consequently that p(e) =e. Note that f{ and B differ only on how r and

b are split into three parts.
For i, je€Ss, let T;;=L; X L;. We now want to show that

P11 roNT; 1= p(r;)NT;; 4y for some je3;
boN T 42 =p(b;}NT;;,, for some je3.

Proof. By p(ro)Up(r))Up(ry)= p(r)=r, we have (i0, (i+1)0) € p(r;) for
some j € 3. Since

p(r;))s=sp(r;) g =g"p(r;) = gp(r;) = p(r;),
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from (i0, (i +1)0) € p(r;) and from the fact that every element of roN T;(; 1y
can be obtained from (i0, (i+1)0) by successively applying g from the left
and s from the right, we can infer

roNTi ey E L) N Tty
and that
p(r))gNp(r;)=p(r))g'Np(r;) =90

implies p(r;) NN T;; 11y =0 for k # 0. To see this, assume for example that
p(rj)NrNT; 1y #0. Since ryg¥ =ry, we then have p(r;)g"NroN T 1) %0
and therefore p(r;) N p(r;)g" # @, a contradiction.

The proof for the second statement of P11 is analogous and is left to the
reader. L]

Now, assume that f e AutyB such that f(ij) =ik forsomeieSand j, k€9,
J#k. Since p(x)=x for xe{s, g,r, b}, f preserves the latter relations and
P7 implies that f[L,]=L, for each neS. By P11, f then preserves ry, and
b, as well; hence, it is also an automorphism of #{. As shown in Section 2.3,
this is not possible. This proves Theorem 1. ]

The example of a nonpermutational integral RA just exhibited is not the
smallest possible. We next outline the construction of such an RA on a base
set of 32 elements with 17 atoms. Checking that this algebra is integral and
nonpermutational is analogous to the previous example, and we leave this
to the reader. We shall use the notational conventions introduced so far.

Let U=8x4,andlet S, G: 4 - 4 with §=(01)(23) and G =(02)(13). Also,
let R, B, T be the relations on 4 defined by

R: 0102, 23 - 13,

B: 02-03, 13512,

T: 01 -03, 23 - 12.
Next, define

s={(ij,iS(j)):i€8, jed},
g=(ij,iG(j)):ie8, jed),
r={(ij,i+1)k):ie8, jke R},
b={
t

(ij,(i+2)k):ie8, jke B},
={(ij,(i+3)k):i€8, jkeT}].

HA is defined to be the relation algebra on U generated by {s, g,r, b, t}.

It may be interesting to note that for # <7 the corresponding algebra on
U=nX4 is not integral, and that for U=7 x4 the algebra is integral and
permutational. f{ as above is thus the smallest example of a nonpermuta-
tional integral RRA which can be obtained by using this construction. It is
unknown to us whether any smaller examples exist.
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PROBLEM: What is the smallest cardinality that an integral nonpermuta-
tional RRA can have?

3. Many Integral and Nonpermutational RRAs

In this section we shall construct an infinite family of representable, inte-
gral, and nonpermutational RA’s, and then show that a nonprincipal ultra-
product of these is permutational. As a corollary we obtain that ® is not
finitely axiomatizable relative to 9.

THEOREM 2. There are infinitely many nonpermutational integral RRAs
such that a nonprincipal ultraproduct of these is permutational.

Proof. Suppose n={0,1,...,n—1}, n>3, and let S, G, R;, B; be the same
relations on 9 X 9 as in Section 2.1; also, recall the definitions of W, F, ¢, and
Fy .. In the sequel, we shall use + and — mod n. Let U, =n X9, and define
s={(ij,iS(j)):ien, je9},
g={(ij,iG(j)):ien, je9},
h={(ij,iH(j)):ien, je9},
k={(ij,iK(j)):ien, je9}.
Also, for each me 3,
rn=1{(ij,(i+1)k):ien, jkeR,,},
b,,={(ij,(i+2)k):ien, jkeB,,}.
Let #{,, be generated by these relations (or, equivalently, by {s, g, rg, bo}).
The proof that #, is integral is analogous to Section 2.2: For any m < n, let
tm={iJj,(i+m)k):ien, jke9},
W={sghk,s", g",h",kv,id U,},
At=WUlr,, b, r\, bl m<3}U{t;:3<i<9]}.
The multiplication table of At can be obtained as follows: The products

of elements from W Uf{r,,, b,,, ), b),: m <3} are as on Table 1, except for
the following, where i, j < 3:

r,-bj=bjr,-=t3;

b,’bj=t4;
ribf =t_s;
beJY: t_4.

The rest is determined by the following:
tw=wt;=tif weW, i<n;
LT =Tt =i, T =Tt =1;_y;
tibm=bmt,’=t,'+2, t,by,I:b,\;,t,:t,_z if l<9, m<3;
t,tj=t,+j if i,J<9.
This shows that At is the set of atoms of #l,,, and therefore #,, is integral.
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Since P7 and P8 depended only on W and not on n, they are still valid in
the more general case. Furthermore, P10 also holds if we replace S by n.
Since the period of Fy ; is 26, we have the following result:

if 26 does not divide n, then Auty #,, is not transitive.

The proof that #,, is not permutational is also analogous to Section 2.4.
The only difference is the following: Let e, r, b, p be as in 2.4. In 2.4, the
part of Table 1 concerning {e, r, b} implied that p(e) contained exactly five
blocks M,, ..., M,. In the present case n> 5, the part of the multiplication
table concerning {#,,...,%,_;} implies that p(e) contains exactly n blocks
M,,...,M, _,. The rest of the proof is completely analogous to that of 2.4
and is therefore left to the reader.

Let I ={ne w: nis prime and n > 3}, let T be a nonprincipal ultrafilter on 7,
and let U=1IU,/T and A =119, /T. We first define a representation of #:
Let a={a,:nel)/Tef, and u={u,:nel)/TelU, v={v,:nel)/TeU.
Define

(u,v)erep(a) ifandonlyif {nel:(u,,v,)ea,}leT.

It follows from 3.1.90 of [HMT] that (U, rep(a)),e g is a representation for
A. We will show that this representation is c-permutational. More precisely,
let B be the relation set algebra on U with universe B = {rep(a): a € {{}; then
B=4HA and B is c-permutational.

To facilitate notation, we shall introduce the following conventions: Set
N=TII{n: neI}/T. Observe that (N, +) is a group under addition induced
by the addition mod # on n; thus, for any k, /€ N there is an /2 € N such that
I=k+m.

There is a natural bijection between U and Nx9: Each ue U is of the
form {(k,, j):nelI)/T for some j€9 and some sequence {k,:nel) with
k,en for all ne I. Now,

u-(k,:nel)/T,J)

establishes the desired bijection. In the sequel, we shall identify U and N x 9.
Let Z denote the set of all integers, and recall that (&, +) is a group. For
any n € w, let

n={(n/modi:iel) and —n=-—n.

Since n < i for all but finitely many i/ € 7, almost all terms of 7 are equal to n.

To extend the definition of F ,, over Z, for all k, me 9 let Y(k, m) be the
unique u € 9 for which (u, k) € Ry and (u, m) € By. Now define, for all i <1
and k,me9,

Fk,m(i_z) = \L(Fk, m(i— 1)’Fk, m(i))-

It is not difficult to check that, for all i€ Z, if (k, m) e R, then (Fy (i),
Fe m(i+1)) € Ry and (Fy, ,,(i), Fy, (i +2)) € By.
The following facts follow from PS5, and are easy to check:
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Al For all i, j €9 there is a unique base automorphism 5 of & such that
n(i)=J.

A2 Let 6,7 be base automorphisms of &, and let X € {R,, By}. Then,
(6(0), v(0)) € X if and only if

(Vi,jeN[(i, /) e X & (8(i), v(/)) e X].

To show that B is c-permutational, let (X, i), (7, j) € U. We shall exhibit a
base automorphism f of B with f((k,)) =(, j). Let  be the unique base
automorphism of & with 5(7) =/, and set j’ = 5(0); also, let (j’, j”) € Ry and
let me N, t €9 be arbitrary.

Define

(7+m,y(t)) if m=n for someneZ,and v is the base
flk+m,t) = automorphism of & taking 0 to F;. ;-(n),

(T+m,t) if m¢{n:neZ).

Ch_(_)osing m= 0, and noticing that Fj ;-(0) = j’ = 5(0), we can infer that
Sk, D)=(,J).

To show that f is indeed a base automorphism of B, let us first look at
At B, the set of atoms of B. Let me N and X €9 x9 be arbitrary. Define

a(im, X)=K(n, 1), (n+m, j)):neN, (i,j) e X}.

It is not hard to see that the representations of the atoms of fi—that is, the
atoms of B—are the following:

a(0, X) where Xe &,

a(l, X') where X € {Ry, R;, R,},
a(2, X) where X € (B, By, B,},
a(—1,X) where X € {R{, RY, RY},
a(—=2,X) where X € {B{, BY, By},

Since UAtB=UXU, it is enough to show that f preserves all atoms
of B: Let Xe N such that k+x=/. Then the following are not difficult to
check for all pe N:

B1 For all i €9 there is some i’e 9 such that
S(p,)y=(p+X,i).
B2 There is an automorphism of & such that
S(p, i) =(p+X,g(i)).
B3 f(p,0)=(p+X,0)ifp¢ {k+7A:neZ},and f(p,0)=(p+X,F; j+(n))
if p=k+7 for some neZ.

Now we are ready to show that f preserves a(m, X) if a(in, X)e At%. It
follows from Bl that f preserves a(m,9x9) for all /me N. From B2 it fol-
lows that f preserves a(0, X) for all X € &. Next, we show that f preserves
a(l, Ry): By A2, it is enough to prove that for all p e N we have
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(*) (f(D,0), f(P+1,0)) € a(l, Ry).

If p¢ {k+7A:neZ)then p+1¢ {k+7:neZ}, and thus (x) holds by B3 and
(0,0) € Ry. Suppose that p = k+ 7 for some n € Z; then (*) holds by B3 and
(Fy, j+(n), Fy, j+(n+1)) € Ry,

Since a(l, R;) =a(l, SRy) = a(0, S)a(l, R,), f also preserves a(l, R,); sim-
ilarly, f preserves a(l1, R,) as well. Since a(—=1, R)Y)=a(l, R;)", f preserves
a(—1, RY) for all i € 3. The proof for the remaining cases is analogous, and
can safely be omitted. [

COROLLARY 3. The class of all permutational relation algebras is not
Jinitely axiomatizable over the class of all integral representable relation
algebras.

Proof. Assume that A is a finite set of sentences in the language of relation
algebras expressing the fact that an integral representable relation algebra is
not permutational. Let ¢ be the conjunction of the elements of A. By Los’
theorem, ¢ is preserved under ultraproducts, contradicting Theorem 2. [
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