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For which planar domains G are the polynomials dense in the Hardy space
H’(G), 1 <s < ? Roan [9] has shown that if G = ¢(D), where D is the unit
disk and ¢ is a weak-star generator of H*, then the polynomials are dense
in H°(G). What if G is not the image of the unit disk under such a ¢? Among
the “simplest” of such regions are crescents (see [10]). In [1] the author ex-
amines the question of density of the polynomials in H°(G) for crescents G
of a rather limited variety. This paper is much more conclusive in that it
completely answers this question for a large class of crescents; indeed, it
gives three nécessary and sufficient conditions for density of the polynomials
in H°(G). We begin with some definitions.

1. DEFINITION. A crescent is a region (in the complex plane) bounded by
two Jordan curves which intersect in a single point such that one of the Jor-
dan curves is internal to the other.

If G is any crescent, zpe G and 1 <5 < oo, then let w(-, G, zy) (or »(-, G, 29)
etc.) denote harmonic measure on dG evaluated at z, and P°(w) be the clo-
sure of the polynomials in L*(w); w:=w(+, G, Z¢). The Hardy space H*(G) is
the collection of all functions f which are analytic in G such that | f{® has
a harmonic majorant on G. With z, as before, define |-|;,: H*(G) - R by
| flzg= (uf(zo))’/s, where u, is the least harmonic majorant of |f|* on G.
Then |-|;, is a norm on H*(G) and under this norm A*(G) forms a Banach
space. If the polynomials are dense in H*(G), then P*(w) is isometrically
isomorphic to H*(G); we shall indicate this by P°*(w) = H*(G). Denote the
“outer boundary” of G by 8,G (8,.G:= 3(G"), where G "is the polynomially
convex hull of the closure of G), and let C, H* and D denote the complex
plane, the upper half-plane ({z € C:Im(z) > 0}) and the unit disk ({zeC:
|z| < 1}) respectively.

2. DEFINITION. Let @ be the collection of all functions f such that:
(i) f:R—][0,), f(x)=0if and only if x=0 and f(—x)=_/f(x) for all
x in R;
(ii) j(‘J log(f(x))dx > —oo, and there exists o > 1 such that f(x) <
x*/(—1) whenever 0 <= x < 1;
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(iii) there exists M > 0 such that, for all x and y, | f(x)—f(¥)|=M|x—y|
and, whenever 0<x =<y, y/f(y)—x/f(x)<M.

In Definition 2, an implication of condition (i) and the second part of (ii) is
that ¢/f(¢) — o (not necessarily monotonically) as ¢ — 0. Therefore, “most
often”, y/f(y)—x/f(x) =0 when 0 < x < y. Thus, the second part of condi-
tion (iii) is nearly redundant except when viewed as a moderate restriction
on the oscillation of ¢/f(¢) near zero.

The restrictions on the class of functions @, and hence on the ensuing col-
lection of crescents, are quite natural and not without precedent in the liter-
ature (cf. [4, Thm. 5.5]) even though our approach to the problem addressed
by this paper is somewhat nonstandard. One should note that @ contains
and is much larger than & (as defined in [1]).

ForO0<a<b<wand fe@,let 7(a, f)=inf{¢t: ¢ >0and |(¢, f(?))|=a} and
G(f,a,b)={zeH":|z|<b)\[z=x+iy:|z|=a,|x|=7(a, f) and y = f(x)]}
(see Figure 1). The collection of crescents that interests us here is defined in
terms of crescents of the sort G(f, a, b).

Figure 1

3. DEFINITION. Let ® be the collection of all crescents E for which there
exist fin @, 0<a<b<oo, and ¢>1such that G(f/c,a,b) €S E<G(cf,a,b).

Observe that {G(f,a,b): fe @ and 0 <a < b <o} <@, and that & is much
larger than C (as defined in [1]). Moreover, the size of & is actually not
limited by the fact that for each E in ® there exists & >0 such that 9, F =
[—b,b]lU{ze H*: |z|=b]}. Indeed, by a conformal mapping argument, one
can show that for any crescent G there exists a crescent G* where 9,(G*) =
d(DN H™), such that the polynomials are dense in H°(G) if and only if they
are dense in H°(G*).
Now for the main result.

4. THEOREM. Suppose E€®, zg€E, wi=w(-, E,2y), wui=w|y_g, mIs
arclength measure on 0. E, ¢(r) =length(EN{z:|z|=r})),and 1 < s < oo,
Then the following are equivalent:

(i) P(w)=H"*(E).

(’)Sg()
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(iii) Slog[%] dm = —oo,

(iv) P(0x) =L (0).

The proof of Theorem 4 is postponed until certain estimates on harmonic
measure have been made. However, before launching into any technicali-
ties, we should consider the statement of the theorem.

It is apparent from (ii) or (iii) of Theorem 4 that density of the polynomi-
als in H*(E), for E in @ and 1 <s < oo, is independent of s. Szegd’s theorem
gives the equivalence between (iii) and (iv); that (i) and (iii) are equivalent
says similarly that density of the polynomials in H*(E) is completely deter-
mined by the nature of w(-, E, zy) on d.E; of course, the distribution of
w(-, E, zp) on d. E depends on the geometry of E. Condition (ii) has a coun-
terpart in the context of area measure (cf. [4, Thm. 5.5]) which relates the
density of the polynomials in L}(E) to the divergence of {jlog(f(r))dr (in
the area measure case, ¢(r) is defined in such a way that it respects “one-
sided” behavior of the geometry of E near the multiple boundary point).
Evidently, therefore, density of the polynomials in H°(E) is much more com-
mon than in L} (E).

Although @& is large, there are some easily defined crescents to which The-
orem 4 does not apply. For example, let Q={z=x+iy: y=|x|if x<0and
y=zx?ifx=0}and G={ze H":|z]<1}\{z €Q:|z]| = 3}. For v = w(, G,z)
and 1 <s < oo one can use standard estimates on harmonic measure to show
that P°*(w.) = L°(w) and yet P¥(w—wy) # L) (w—wy). SO G satisfies (iii)
and (iv) of Theorem 4; however, P*(w) # H*(G). Notice that G ¢ & primar-
ily because the inner boundary of G is the graph of a function that is far
from being even. Just as easily one can show that, in general, (i) and (ii) of
Theorem 4 are not equivalent.

Now let us get to the technical details of the paper. We shall lead off with
a definition and two lemmas. The definition and the first of the two lemmas
each have a close relative in [1].

5. DEFINITION. If fe@®,0<60<w/2,and n is any positive integer, then let

0 if {r>0:rsin(8/n) < f(rcos(f/n))} =9,
inf{r > 0:rsin(@/n) < f(rcos(0/n))} otherwise.

Let x,,:=x,(0, f) = p, cos(8/n).

Pn+= pn(B, f)= {

Notice that this definition is consistent with its counterpart in [1] and for any
Sin @ and any 4, 0 <8 < =w/2, there exists N such that whenever n=N, p, # 0.
Furthermore, if p, # 0, then py =0 forall k=nand p, > p, 11> --- > pyy; =0
as j — oo, Since f is a function, the same holds for x,,.

6. LEMMA. If fe @ and [y(t/f(t))dt =0 for some e >0, then

S, 0,(0,f)=0c0 whenever 0<6<w/2.

n=1
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Proof. Suppose that 3 7_,p0,(8, f) <o for some 6, 0 <60 < w/2. Then
2n=1Xn<oo, where x,,:= x,(0, ). Now since fe @, there exists M >0 such
that y/f(y) —x/f(x) <M whenever 0 < x < y. Moreover, as noted previ-
ously, there exists a positive integer N such that x,, 0 for all # = N and x5 >
Xn41> 0 >Xnyj;— 0as j— oo, Consequently,

oo xn

RN [ s (f(S) f(xn))]

[ Xn+1 _ Xy S . Xn+1
<f(xn+1) f(xn>>+xn+‘f‘<i"<x,,(f(s) f(xn+1)>]

=Y xn“ +M]<oo
n=N

X

-

n

8 I8
2M

It follows that [{(¢/f(¢))dt < oo for any € > 0. O

7. LEMMA. Suppose that feQ, 0<a<b<o, o€ G:=G(f,a,b), w:=
w(+, G, z2p), and m is arclenth measure on 3., G. Then there exists a constant

M >1 such that
dw 1 a
d—m(x)z M) -exp[—s 7—(7)—611‘]

whenever 0< x <t1:=171(a,f).

Proof. Since f is Lipschitz, there exists a constant ¢, 0 <c <1, such that

={zeH":|x—z|=cf(x)]} € G whenever 0 < x < 7. Moreover, there exist
continuously differentiable functions #; and /, defined on [0, 7] such that
(2¢/3)f(x) = hy(x) =(3¢/4) f(x) and (c/4) f(x) < hy(x) = (c/3)f(x) when-
ever 0 < x < 7. Extend Ah; and A, to the nonnegative real line by letting
hy(x) = hy(7) and hy(x) = hy(7) if x> 7.

Forany x, O<x=<7let G,={z=s+it: x<s and h,(s) <t <h(s))NG
and B, = {z€0G,: Re(z) = x} (see Figure 2). By Harnack’s inequality we may
assume that zo =74 (i/2)(h(7)+ h,(7)), which is in G,.. Let DY =DNH.
Applying a standard conformal mapping argument, we can find a positive
constant d such that if 7 is any interval contained in [— 2 , 2] and 1 I=r= i,
then w(Z, D¥,ir) = d|I|; |I|:=length(Z). So, by the obvious conformal map of
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D, onto D™, for any interval 7 contained in [x—(c/2)f(x),x+(c/2)f(x)],
w(l,Dy,z) = (d/cf(x))|I| whenever z € B,.

Now there exists a constant k, 0 < k <1, such that 4,(x) —hy(x)=kf(x)
whenever 0 <x <7. So, by [3, Thm. C, p. 380] (one may also refer to [7,
§6(17)]), there is a positive constant « (independent of x) such that

w(By, Gy, 2p) = const-exp[—ST 7%)— dt} .

Therefore, if 7 is any interval contained in [x—(c/2)f(x), x+(c/2)f(x)]
and u is the harmonic function in G with boundary values x; (i.e., u#(g) =
w(l, G, z)), then by the maximum principle

w(Ia Gs ZO) = S(?G U(Z) dw(z, Gxa ZO)

X

>[inf u(z)]-w(B,, Gy, Zp)

zeB,
Z[ 1nf (’-’(1’ Dxa Z)]'w(Bx’ Gx: ZO)
zeB,
> const- expj—\ ——dt]|. U]
fx) P I, 1)

Proof of Theorem 4. First observe that since E € ®, there exists f in @,
c>1, and 0 <a < b < o such that

4.D V:=G(f/c,a,b)SE<G(cf,a,b):=W.

A consequence of this is that

4.2 “ 7 dr=oco ifandonl 'fge—t——dtz .

4.2) Sof(r) r=oc ifandonlyi 0 70 0

Moreover, if 0:=0(-, inside(d, E), Z¢) then, by a conformal mapping argu-
ment (left to the reader), there exists a constant £ > 1 such that

1,2 ;2 do 232
4.3 —|z°—=b*|==——(2)=<k|z°—Db"|.
(4.3) Ak |= <, @) =klz |
To prove the theorem, let us show that (i) = (iv) = (iii) = (ii) = (i).
Suppose P*(w)=H°(E). Then P*(w.) = L*(w.) and so, by Szegd’s theo-

rem [6, p. 136],
dw.,
S log(—d0—> do = —c0,

Therefore, by (4.3), | log(dw. /dm)dm = —co. Consequently, (i) = (iv) = (iii).
Now assume that {log(dw./dm)dm = —. Applying (4.3) and [1, Prop.
1.3], we have
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By the symmetry of V it follows that

¢ dv _
) l°g<d—m‘) dm = —co

whenever 0 <e <a. Choose e =7(a, f/c) and apply Lemma 7 to obtain

€ e Mdt
4.4 So Iog(c exp[—ch 70—)} /Mf(x)) dx = —o0,
Since fe @, f;log(f(x))dx > —oo, and so by (4.4) and Tonelli’s theorem,
€ t _
So 7o =
From (4.2) we now have that
€ r .
So i e

Finally, suppose that {{(r/f(r))dr = co. Then, by (4.2), [§(¢/cf(?))dt = co.

Combining Lemma 6 with [1, Lemma 2.4, proof of Theorem 2.5] we have
P3(u) =H*(W), where p:=u(-, W, zp). From (4.1) and [1, Prop. 2.2] it fol-
lows that P*(w) = H*(E). ]
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